Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males

Maria Apostolopoulou, Lucia Mastrototaro, Sonja Hartwig, Dominik Pesta, Klaus Straßburger, Elisabetta de Filippo, Tomas Jelenik, Yanislava Karusheva, Sofiya Gancheva, Daniel Markgraf, Christian Herder, K Sreekumaran Nair, Andreas S Reichert, Stefan Lehr, Karsten Müssig, Hadi Al-Hasani, Julia Szendroedi, Michael Roden, Maria Apostolopoulou, Lucia Mastrototaro, Sonja Hartwig, Dominik Pesta, Klaus Straßburger, Elisabetta de Filippo, Tomas Jelenik, Yanislava Karusheva, Sofiya Gancheva, Daniel Markgraf, Christian Herder, K Sreekumaran Nair, Andreas S Reichert, Stefan Lehr, Karsten Müssig, Hadi Al-Hasani, Julia Szendroedi, Michael Roden

Abstract

High-intensity interval training (HIIT) improves cardiorespiratory fitness (VO2max), but its impact on metabolism remains unclear. We hypothesized that 12-week HIIT increases insulin sensitivity in males with or without type 2 diabetes [T2D and NDM (nondiabetic humans)]. However, despite identically higher VO2max, mainly insulin-resistant (IR) persons (T2D and IR NDM) showed distinct alterations of circulating small extracellular vesicles (SEVs) along with lower inhibitory metabolic (protein kinase Cε activity) or inflammatory (nuclear factor κB) signaling in muscle of T2D or IR NDM, respectively. This is related to the specific alterations in SEV proteome reflecting down-regulation of the phospholipase C pathway (T2D) and up-regulated antioxidant capacity (IR NDM). Thus, SEV cargo may contribute to modulating the individual metabolic responsiveness to exercise training in humans.

Figures

Fig. 1.. HIIT induces metabolic changes and…
Fig. 1.. HIIT induces metabolic changes and stimulates maximal skeletal muscle mitochondrial capacity in humans with (T2D) and without T2D (NDM).
(A) Maximal oxygen uptake (VO2max) (***P = 0.00025 for T2D, ***P = 6.42 × 10−5 for IR NDM, and **P = 0.008 for IS NDM), (B) peripheral insulin sensitivity (M value) (**P = 0.003 for T2D and **P = 0.002 for IR NDM), (C) hepatic insulin sensitivity [suppression of EGP (iEGP)] during high-insulin clamp (***P = 0.0001 for T2D, **P = 0.007 for IR NDM, and *P = 0.02 for IS NDM; #P = 0.01 T2D versus IR NDM, ###P = 7.87 × 10−7 T2D versus IS NDM; & P = 0.04 IR NDM versus IS NDM), (D) liver fat content (**P = 0.003 for T2D and *P = 0.02 for IR NDM; ###P = 0.0005 T2D versus IR NDM, ###P = 7.17 × 10−5 T2D versus IS NDM), (E) maximal uncoupled respiration (Ww, wet weight) (***P = 3.73 × 10−5 for T2D, ***P = 0.0005 for IR NDM, and **P = 0.001 for IS NDM), (F) leak control ratio (LCR), (G) citrate synthase activity (CSA) (**P = 0.001 for T2D, ***P < 0.0001 for IR NDM, and **P = 0.004 for IS NDM; §§P = 0.004 T2D versus IR NDM, §P = 0.01 IS NDM versus IR NDM at 12 weeks), and (H) reduced-to-oxidized glutathione (GSH/GSSG) ratio (***P < 0.0001 for T2D and IS NDM and ***P = 0.0002 for IR NDM) at baseline and after 12-week HIIT in persons with T2D, IR NDM, and IS NDM. Data are presented as means ± SEM.
Fig. 2.. HIIT differently affects myocellular pathways…
Fig. 2.. HIIT differently affects myocellular pathways of insulin sensitivity in the IR responders (T2D-R and IR-R).
(A) M value (***P = 3.88 × 10−5 for T2D-R, ***P = 1.79 × 10−5 for IR-R, and *P = 0.02 for IS-NR), (B) maximal uncoupled respiration (***P = 0.0002 for T2D-R, **P = 0.002 for IR-R, and *P = 0.02 for IS-NR), (C) GSH/GSSG ratio (***P < 0.0001 for T2D-R, ***P = 0.0009 for IR-R, and ***P = 0.0002 for IS-NR), (D) protein kinase Cε (PKCε) (*P = 0.02 for T2D-R; #P = 0.02 T2D-R versus IR-R, #P = 0.04 T2D-R versus IS-NR), (E) PKCθ (*P = 0.03 for T2D-R), and (F) NF-κB (*P = 0.01 for IR-R) Western blot analysis in the subgroups T2D-R (N = 16), IR-R (N = 9), and IS-NR (N = 7) at baseline and after 12-week HIIT. Data are expressed as means ± SEM. A.U., arbitrary units.
Fig. 3.. HIIT intervention increases the release…
Fig. 3.. HIIT intervention increases the release of circulating SEVs in humans with T2D-R and IR-R but not in IS-NR to exercising.
(A) Representative distribution profiles of SEV isolated from serum of a patient with T2D at baseline (red plot) and after 12-week HIIT (orange plot); (B) morphology of serum SEV imaged using TEM (scale bars, 100 nm); (C) Western blot analysis of proteins extracted from cell lysate (HepG2), SEV, and the original serum before SEC (diluted 1:15); (D) plots of peak and diameter sizes of SEV isolated from T2D-R (N = 8), IR-R (N = 8), and IS-NR (N = 6) at baseline and after 12-wk HIIT; (E) number of circulating SEV at baseline (#P = 0.04 T2D-R versus IS-NR); and (F) number of circulating SEV log10-transformed at baseline and after 12-week HIIT (*P = 0.01 for T2D-R and *P = 0.02 for IR-R) in the pilot group including T2D-R (N = 8), IR-R (N = 8), and IS-NR (N = 6) humans. Data are expressed as means ± SEM.
Fig. 4.. Characteristics of SEV proteins differentially…
Fig. 4.. Characteristics of SEV proteins differentially regulated after the 12-week HIIT.
(A) Venn diagram showing the overlap of the proteins identified in serum SEV with the human protein entries in the EV database Vesiclepedia. Gene products were matched in FunRich. (B) Volcano plot depicting the FCs in proteins isolated from circulating SEV comparing 12-week HIIT versus baseline: Only proteins with an FC of <0.67 or >1.5 (absolute log FC > 0.5) were included for further analysis. (C) GO-CC analysis for the 262 SEV proteins regulated after the 12-week HIIT with P value and percentage of proteins. (D) Venn diagram showing the overlap of proteins regulated after the 12-week HIIT among the three groups. (E) Amino acid sequences of the SEV proteins regulated during exercise (262 entries) were analyzed to predict the presence of a secretory signal peptide (SP). (F) Venn diagram showing the overlap of proteins regulated after 12-week HIIT in circulating SEV and after EPS in hSkMC-derived SEV in vitro.
Fig. 5.. HIIT differently affects the proteomic…
Fig. 5.. HIIT differently affects the proteomic profile of SEVs in IR (IR-R and T2D-R) and IS humans.
Cellular functions, pathways, and biological process of the SEV proteins regulated during exercise in T2D-R (A), IR-R (B), and IS-NR (C). Squares indicate the unique pathways for each group.
Fig. 6.. Selected SEV-cargoed proteins are differentially…
Fig. 6.. Selected SEV-cargoed proteins are differentially expressed in skeletal muscle after HIIT.
Western blot analysis of pAMPKα(Thr172)/AMPKα (#P = 0.03 T2D-R versus IR-R) (A), pIRS1(Ser1101)/IRS1 (B), pIRS1(Ser307)/IRS1 (§P = 0.02 T2D-R versus IR-R, §§P = 0.007 IR-R versus IS-NR) (C), NRF2 (##P = 0.001 T2D-R versus IR-R) (D), NQO1 (#P = 0.02 T2D-R versus IR-R) (E), p38/MAPK (#P = 0.01 T2D-R versus IR-R) (F), p42-p44/MAPK (**P = 0.002 for IR-R; P = 0.009 T2D-R versus IR-R, P = 0.02 IR-R versus IS-NR) (G), LC3 (***P = 0.0001 for IS-NR; P < 0.0001 IS-NR versus T2D-R and IR-R) (H), and p62 (*P = 0.02 for IS-NR; P = 0.003 IS-NR versus T2D-R and IR-R) (I) in muscle biopsies obtained from T2D-R (N = 15), IR-R (N = 9), and IS-NR (N = 7) individuals at baseline and after the 12-week HIIT. Data are expressed as means ± SEM.

References

    1. Chudyk A., Petrella R. J., Effects of exercise on cardiovascular risk factors in type 2 diabetes: A meta-analysis. Diabetes Care 34, 1228–1237 (2011).
    1. Colberg S. R., Sigal R. J., Yardley J. E., Riddell M. C., Dunstan D. W., Dempsey P. C., Horton E. S., Castorino K., Tate D. F., Physical activity/exercise and diabetes: A position statement of the american diabetes association. Diabetes Care 39, 2065–2079 (2016).
    1. Stephens N. A., Sparks L. M., Resistance to the beneficial effects of exercise in type 2 diabetes: Are some individuals programmed to fail? J. Clin. Endocrinol. Metab. 100, 43–52 (2015).
    1. Kacerovsky-Bielesz G., Kacerovsky M., Chmelik M., Farukuoye M., Ling C., Pokan R., Tschan H., Szendroedi J., Schmid A. I., Gruber S., Herder C., Wolzt M., Moser E., Pacini G., Smekal G., Groop L., Roden M., A single nucleotide polymorphism associates with the response of muscle ATP synthesis to long-term exercise training in relatives of type 2 diabetic humans. Diabetes Care 35, 350–357 (2012).
    1. Sparks L. M., Exercise training response heterogeneity: Physiological and molecular insights. Diabetologia 60, 2329–2336 (2017).
    1. Gibala M. J., Little J. P., Macdonald M. J., Hawley J. A., Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 590, 1077–1084 (2012).
    1. Robinson M. M., Dasari S., Konopka A. R., Johnson M. L., Manjunatha S., Esponda R. R., Carter R. E., Lanza I. R., Nair K. S., Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 25, 581–592 (2017).
    1. Irving B. A., Short K. R., Nair K. S., Stump C. S., Nine days of intensive exercise training improves mitochondrial function but not insulin action in adult offspring of mothers with type 2 diabetes. J. Clin. Endocrinol. Metab. 96, E1137–E1141 (2011).
    1. Herder C., Carstensen M., Ouwens D. M., Anti-inflammatory cytokines and risk of type 2 diabetes. Diabetes Obes. Metab. 15 ( Suppl. 3), 39–50 (2013).
    1. Molnos S., Wahl S., Haid M., Eekhoff E. M. W., Pool R., Floegel A., Deelen J., Much D., Prehn C., Breier M., Draisma H. H., van Leeuwen N., Simonis-Bik A. M. C., Jonsson A., Willemsen G., Bernigau W., Wang-Sattler R., Suhre K., Peters A., Thorand B., Herder C., Rathmann W., Roden M., Gieger C., Kramer M. H. H., van Heemst D., Pedersen H. K., Gudmundsdottir V., Schulze M. B., Pischon T., de Geus E. J. C., Boeing H., Boomsma D. I., Ziegler A. G., Slagboom P. E., Hummel S., Beekman M., Grallert H., Brunak S., McCarthy M. I., Gupta R., Pearson E. R., Adamski J., t. Hart L. M., Metabolite ratios as potential biomarkers for type 2 diabetes: A DIRECT study. Diabetologia 61, 117–129 (2018).
    1. Vasu S., Kumano K., Darden C. M., Rahman I., Lawrence M. C., Naziruddin B., MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cell 8, 1533 (2019).
    1. Safdar A., Saleem A., Tarnopolsky M. A., The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517 (2016).
    1. Thery C., Witwer K. W., Aikawa E., Alcaraz M. J., Anderson J. D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G. K., Ayre D. C., Bach J.-M., Bachurski D., Baharvand H., Balaj L., Baldacchino S., Bauer N. N., Baxter A. A., Bebawy M., Beckham C., Zavec A. B., Benmoussa A., Berardi A. C., Bergese P., Bielska E., Blenkiron C., Bobis-Wozowicz S., Boilard E., Boireau W., Bongiovanni A., Borràs F. E., Bosch S., Boulanger C. M., Breakefield X., Breglio A. M., Brennan M. Á., Brigstock D. R., Brisson A., Broekman M. L., Bromberg J. F., Bryl-Górecka P., Buch S., Buck A. H., Burger D., Busatto S., Buschmann D., Bussolati B., Buzás E. I., Byrd J. B., Camussi G., Carter D. R., Caruso S., Chamley L. W., Chang Y.-T., Chen C., Chen S., Cheng L., Chin A. R., Clayton A., Clerici S. P., Cocks A., Cocucci E., Coffey R. J., Cordeiro-da-Silva A., Couch Y., Coumans F. A., Coyle B., Crescitelli R., Criado M. F., D’Souza-Schorey C., Das S., Chaudhuri A. D., de Candia P., De Santana E. F., De Wever O., Del Portillo H. A., Demaret T., Deville S., Devitt A., Dhondt B., Vizio D. D., Dieterich L. C., Dolo V., Rubio A. P. D., Dominici M., Dourado M. R., Driedonks T. A., Duarte F. V., Duncan H. M., Eichenberger R. M., Ekström K., Andaloussi S. E., Elie-Caille C., Erdbrügger U., Falcón-Pérez J. M., Fatima F., Fish J. E., Flores-Bellver M., Försönits A., Frelet-Barrand A., Fricke F., Fuhrmann G., Gabrielsson S., Gámez-Valero A., Gardiner C., Gärtner K., Gaudin R., Gho Y. S., Giebel B., Gilbert C., Gimona M., Giusti I., Goberdhan D. C., Görgens A., Gorski S. M., Greening D. W., Gross J. C., Gualerzi A., Gupta G. N., Gustafson D., Handberg A., Haraszti R. A., Harrison P., Hegyesi H., Hendrix A., Hill A. F., Hochberg F. H., Hoffmann K. F., Holder B., Holthofer H., Hosseinkhani B., Hu G., Huang Y., Huber V., Hunt S., Ibrahim A. G.-E., Ikezu T., Inal J. M., Isin M., Ivanova A., Jackson H. K., Jacobsen S., Jay S. M., Jayachandran M., Jenster G., Jiang L., Johnson S. M., Jones J. C., Jong A., Jovanovic-Talisman T., Jung S., Kalluri R., Kano S.-I., Kaur S., Kawamura Y., Keller E. T., Khamari D., Khomyakova E., Khvorova A., Kierulf P., Kim K. P., Kislinger T., Klingeborn M., Klinke D. J. II, Kornek M., Kosanović M. M., Kovács Á. F., Krämer-Albers E.-M., Krasemann S., Krause M., Kurochkin I. V., Kusuma G. D., Kuypers S., Laitinen S., Langevin S. M., Languino L. R., Lannigan J., Lässer C., Laurent L. C., Lavieu G., Lázaro-Ibáñez E., Lay S. L., Lee M.-S., Lee Y. X. F., Lemos D. S., Lenassi M., Leszczynska A., Li I. T., Liao K., Libregts S. F., Ligeti E., Lim R., Lim S. K., Linē A., Linnemannstöns K., Llorente A., Lombard C. A., Lorenowicz M. J., Lörincz Á. M., Lötvall J., Lovett J., Lowry M. C., Loyer X., Lu Q., Lukomska B., Lunavat T. R., Maas S. L., Malhi H., Marcilla A., Mariani J., Mariscal J., Martens-Uzunova E. S., Martin-Jaular L., Martinez M. C., Martins V. R., Mathieu M., Mathivanan S., Maugeri M., Ginnis L. K. M., Vey M. J. M., Meckes D. G. Jr., Meehan K. L., Mertens I., Minciacchi V. R., Möller A., Jørgensen M. M., Morales-Kastresana A., Morhayim J., Mullier F., Muraca M., Musante L., Mussack V., Muth D. C., Myburgh K. H., Najrana T., Nawaz M., Nazarenko I., Nejsum P., Neri C., Neri T., Nieuwland R., Nimrichter L., Nolan J. P., Nm Nolte-’t Hoen E., Hooten N. N., O’Driscoll L., O’Grady T., O’Loghlen A., Ochiya T., Olivier M., Ortiz A., Ortiz L. A., Osteikoetxea X., Østergaard O., Ostrowski M., Park J., Pegtel D. M., Peinado H., Perut F., Pfaffl M. W., Phinney D. G., Pieters B. C., Pink R. C., Pisetsky D. S., Pogge von Strandmann E., Polakovicova I., Poon I. K., Powell B. H., Prada I., Pulliam L., Quesenberry P., Radeghieri A., Raffai R. L., Raimondo S., Rak J., Ramirez M. I., Raposo G., Rayyan M. S., Regev-Rudzki N., Ricklefs F. L., Robbins P. D., Roberts D. D., Rodrigues S. C., Rohde E., Rome S., Rouschop K. M., Rughetti A., Russell A. E., Saá P., Sahoo S., Salas-Huenuleo E., Sánchez C., Saugstad J. A., Saul M. J., Schiffelers R. M., Schneider R., Schøyen T. H., Scott A., Shahaj E., Sharma S., Shatnyeva O., Shekari F., Shelke G. V., Shetty A. K., Shiba K., Siljander P. R.-M., Silva A. M., Skowronek A., Snyder O. L. II, Soares R. P., Sódar B. W., Soekmadji C., Sotillo J., Stahl P. D., Stoorvogel W., Stott S. L., Strasser E. F., Swift S., Tahara H., Tewari M., Timms K., Tiwari S., Tixeira R., Tkach M., Toh W. S., Tomasini R., Torrecilhas A. C., Tosar J. P., Toxavidis V., Urbanelli L., Vader P., van Balkom B. W. M., van der Grein S. G., Van Deun J., van Herwijnen M. J. C., Van Keuren-Jensen K., van Niel G., van Royen M. E., van Wijnen A. J., Vasconcelos M. H., Vechetti I. J. Jr., Veit T. D., Vella L. J., Velot É., Verweij F. J., Vestad B., Viñas J. L., Visnovitz T., Vukman K. V., Wahlgren J., Watson D. C., Wauben M. H., Weaver A., Webber J. P., Weber V., Wehman A. M., Weiss D. J., Welsh J. A., Wendt S., Wheelock A. M., Wiener Z., Witte L., Wolfram J., Xagorari A., Xander P., Xu J., Yan X., Yáñez-Mó M., Yin H., Yuana Y., Zappulli V., Zarubova J., Žėkas V., Zhang J.-Y., Zhao Z., Zheng L., Zheutlin A. R., Zickler A. M., Zimmermann P., Zivkovic A. M., Zocco D., Zuba-Surma E. K., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).
    1. Fruhbeis C., Helmig S., Tug S., Simon P., Kramer-Albers E. M., Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles 4, 28239 (2015).
    1. Whitham M., Parker B. L., Friedrichsen M., Hingst J. R., Hjorth M., Hughes W. E., Egan C. L., Cron L., Watt K. I., Kuchel R. P., Jayasooriah N., Estevez E., Petzold T., Suter C. M., Gregorevic P., Kiens B., Richter E. A., James D. E., Wojtaszewski J. F. P., Febbraio M. A., Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251.e4 (2018).
    1. Mulcahy L. A., Pink R. C., Carter D. R., Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).
    1. Roden M., Shulman G. I., The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019).
    1. Ferrannini E., Buzzigoli G., Bonadonna R., Giorico M. A., Oleggini M., Graziadei L., Pedrinelli R., Brandi L., Bevilacqua S., Insulin resistance in essential hypertension. N. Engl. J. Med. 317, 350–357 (1987).
    1. Welton J. L., Webber J. P., Botos L. A., Jones M., Clayton A., Ready-made chromatography columns for extracellular vesicle isolation from plasma. J. Extracell. Vesicles 4, 27269 (2015).
    1. Karusheva Y., Koessler T., Strassburger K., Markgraf D., Mastrototaro L., Jelenik T., Simon M. C., Pesta D., Zaharia O. P., Bódis K., Bärenz F., Schmoll D., Wolkersdorfer M., Tura A., Pacini G., Burkart V., Müssig K., Szendroedi J., Roden M., Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: A randomized controlled crossover trial. Am. J. Clin. Nutr. 110, 1098–1107 (2019).
    1. Larsen S., Nielsen J., Hansen C. N., Nielsen L. B., Wibrand F., Stride N., Schroder H. D., Boushel R., Helge J. W., Dela F., Hey-Mogensen M., Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 590, 3349–3360 (2012).
    1. Aquilano K., Baldelli S., Ciriolo M. R., Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol. 5, 196 (2014).
    1. Shoelson S. E., Lee J., Goldfine A. B., Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).
    1. Szendroedi J., Phielix E., Roden M., The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8, 92–103 (2011).
    1. Szendroedi J., Yoshimura T., Phielix E., Koliaki C., Marcucci M., Zhang D., Jelenik T., Müller J., Herder C., Nowotny P., Shulman G. I., Roden M., Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl. Acad. Sci. U.S.A. 111, 9597–9602 (2014).
    1. Shoelson S. E., Lee J., Yuan M., Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord. 27, S49–S52 (2003).
    1. Powers S. K., Talbert E. E., Adhihetty P. J., Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J. Physiol. 589, 2129–2138 (2011).
    1. Smolarz M., Pietrowska M., Matysiak N., Mielanczyk L., Widlak P., Proteome profiling of exosomes purified from a small amount of human serum: The problem of co-purified serum components. Proteomes 7, 18 (2019).
    1. Mathivanan S., Ji H., Simpson R. J., Exosomes: Extracellular organelles important in intercellular communication. J. Proteomics 73, 1907–1920 (2010).
    1. Kurgan N., Noaman N., Pergande M. R., Cologna S. M., Coorssen J. R., Klentrou P., Changes to the human serum proteome in response to high intensity interval exercise: A sequential top-down proteomic analysis. Front. Physiol. 10, 362 (2019).
    1. Barazzoni R., Kiwanuka E., Zanetti M., Cristini M., Vettore M., Tessari P., Insulin acutely increases fibrinogen production in individuals with type 2 diabetes but not in individuals without diabetes. Diabetes 52, 1851–1856 (2003).
    1. Saccani S., Marazzi I., Beg A. A., Natoli G., Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor κB response. J. Exp. Med. 200, 107–113 (2004).
    1. Collins P. E., Mitxitorena I., Carmody R. J., The ubiquitination of NF-κB subunits in the control of transcription. Cell 5, 23 (2016).
    1. Stanton R. C., Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 64, 362–369 (2012).
    1. Perez-Lopez A., Martin-Rincon M., Santana A., Perez-Suarez I., Dorado C., Calbet J. A. L., Morales-Alamo D., Antioxidants facilitate high-intensity exercise IL-15 expression in skeletal muscle. Int. J. Sports Med. 40, 16–22 (2019).
    1. Savina A., Furlan M., Vidal M., Colombo M. I., Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278, 20083–20090 (2003).
    1. Wu H., Ballantyne C. M., Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Invest. 127, 43–54 (2017).
    1. Little J. P., Safdar A., Wilkin G. P., Tarnopolsky M. A., Gibala M. J., A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. J. Physiol. 588, 1011–1022 (2010).
    1. Toledo F. G., Menshikova E. V., Ritov V. B., Azuma K., Radikova Z., De Lany J., Kelley D. E., Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56, 2142–2147 (2007).
    1. Pesta D., Roden M., The janus head of oxidative stress in metabolic diseases and during physical exercise. Curr. Diab. Rep. 17, 41 (2017).
    1. Cassidy S., Thoma C., Houghton D., Trenell M. I., High-intensity interval training: A review of its impact on glucose control and cardiometabolic health. Diabetologia 60, 7–23 (2017).
    1. Matos M. A. d., Vieira D. V., Pinhal K. C., Lopes J. F., Dias-Peixoto M. F., Pauli J. R., de Castro Magalhães F., Little J. P., Rocha-Vieira E., Amorim F. T., High-intensity interval training improves markers of oxidative metabolism in skeletal muscle of individuals with obesity and insulin resistance. Front. Physiol. 9, 1451 (2018).
    1. Perseghin G., Price T. B., Petersen K. F., Roden M., Cline G. W., Gerow K., Rothman D. L., Shulman G. I., Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N. Engl. J. Med. 335, 1357–1362 (1996).
    1. Taylor R., al-Mrabeh A., Zhyzhneuskaya S., Peters C., Barnes A. C., Aribisala B. S., Hollingsworth K. G., Mathers J. C., Sattar N., Lean M. E. J., Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery. Cell Metab. 28, 667 (2018).
    1. Pickering C., Kiely J., Exercise genetics: Seeking clarity from noise. BMJ Open Sport Exerc. Med. 3, e000309 (2017).
    1. An P., Teran-Garcia M., Rice T., Rankinen T., Weisnagel S. J., Bergman R. N., Boston R. C., Mandel S., Stefanovski D., Leon A. S., Skinner J. S., Rao D. C., Bouchard C.; HERITAGE Family Study , Genome-wide linkage scans for prediabetes phenotypes in response to 20 weeks of endurance exercise training in non-diabetic whites and blacks: The HERITAGE Family Study. Diabetologia 48, 1142–1149 (2005).
    1. Kacerovsky-Bielesz G., Chmelik M., Ling C., Pokan R., Szendroedi J., Farukuoye M., Kacerovsky M., Schmid A. I., Gruber S., Wolzt M., Moser E., Pacini G., Smekal G., Groop L., Roden M., Short-term exercise training does not stimulate skeletal muscle ATP synthesis in relatives of humans with type 2 diabetes. Diabetes 58, 1333–1341 (2009).
    1. Stephens N. A., Brouwers B., Eroshkin A. M., Yi F., Cornnell H. H., Meyer C., Goodpaster B. H., Pratley R. E., Smith S. R., Sparks L. M., Exercise response variations in skeletal muscle PCr recovery rate and insulin sensitivity relate to muscle epigenomic profiles in individuals with type 2 diabetes. Diabetes Care 41, 2245–2254 (2018).
    1. Monfort-Pires M., Ferreira S. R., Inflammatory and metabolic responses to dietary intervention differ among individuals at distinct cardiometabolic risk levels. Nutrition 33, 331–337 (2017).
    1. Hallsworth K., Thoma C., Hollingsworth K. G., Cassidy S., Anstee Q. M., Day C. P., Trenell M. I., Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: A randomized controlled trial. Clin. Sci. (Lond.) 129, 1097–1105 (2015).
    1. Brouwers B., Schrauwen-Hinderling V. B., Jelenik T., Gemmink A., Sparks L. M., Havekes B., Bruls Y., Dahlmans D., Roden M., Hesselink M. K. C., Schrauwen P., Exercise training reduces intrahepatic lipid content in people with and people without nonalcoholic fatty liver. Am. J. Physiol. Endocrinol. Metab. 314, E165–E173 (2018).
    1. Freeman D. W., Hooten N. N., Eitan E., Green J., Mode N. A., Bodogai M., Zhang Y., Lehrmann E., Zonderman A. B., Biragyn A., Egan J., Becker K. G., Mattson M. P., Ejiogu N., Evans M. K., Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes 67, 2377–2388 (2018).
    1. Amosse J., Durcin M., Malloci M., Vergori L., Fleury A., Gagnadoux F., Dubois S., Simard G., Boursier J., Hue O., Martinez M. C., Andriantsitohaina R., Le Lay S., Phenotyping of circulating extracellular vesicles (EVs) in obesity identifies large EVs as functional conveyors of macrophage migration inhibitory factor. Mol. Metab. 18, 134–142 (2018).
    1. Pedersen B. K., Muscle as a secretory organ. Compr. Physiol. 3, 1337–1362 (2013).
    1. Arkun Y., Dynamic modeling and analysis of the cross-talk between insulin/AKT and MAPK/ERK signaling pathways. PLOS ONE 11, e0149684 (2016).
    1. Schmitz-Peiffer C., Laybutt D. R., Burchfield J. G., Gurisik E., Narasimhan S., Mitchell C. J., Pedersen D. J., Braun U., Cooney G. J., Leitges M., Biden T. J., Inhibition of PKCepsilon improves glucose-stimulated insulin secretion and reduces insulin clearance. Cell Metab. 6, 320–328 (2007).
    1. He L., Chang E., Peng J., An H., McMillin S. M., Radovick S., Stratakis C. A., Wondisford F. E., Activation of the cAMP-PKA pathway antagonizes metformin suppression of hepatic glucose production. J. Biol. Chem. 291, 10562–10570 (2016).
    1. Bloch-Damti A., Potashnik R., Gual P., le Marchand-Brustel Y., Tanti J. F., Rudich A., Bashan N., Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the induction of insulin resistance by oxidative stress. Diabetologia 49, 2463–2473 (2006).
    1. Cai D., Yuan M., Frantz D. F., Melendez P. A., Hansen L., Lee J., Shoelson S. E., Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).
    1. Vainshtein A., Hood D. A., The regulation of autophagy during exercise in skeletal muscle. J. Appl. Physiol. 120, 664–673 (2016).
    1. Woo J. S., Derleth C., Stratton J. R., Levy W. C., The influence of age, gender, and training on exercise efficiency. J. Am. Coll. Cardiol. 47, 1049–1057 (2006).
    1. Astorino T. A., Allen R. P., Roberson D. W., Jurancich M., Lewis R., McCarthy K., Trost E., Adaptations to high-intensity training are independent of gender. Eur. J. Appl. Physiol. 111, 1279–1286 (2011).
    1. Wisløff U., Støylen A., Loennechen J. P., Bruvold M., Rognmo Ø., Haram P. M., Tjønna A. E., Helgerud J., Slørdahl S. A., Lee S. J., Videm V., Bye A., Smith G. L., Najjar S. M., Ellingsen Ø., Skjærpe T., Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation 115, 3086–3094 (2007).
    1. Szendroedi J., Saxena A., Weber K. S., Strassburger K., Herder C., Burkart V., Nowotny B., Icks A., Kuss O., Ziegler D., Al-Hasani H., Müssig K., Roden M.; GDS Group , Cohort profile: The German diabetes study (GDS). Cardiovasc. Diabetol. 15, 59 (2016).
    1. Apostolopoulou M., Strassburger K., Herder C., Knebel B., Kotzka J., Szendroedi J., Roden M.; GDS group , Metabolic flexibility and oxidative capacity independently associate with insulin sensitivity in individuals with newly diagnosed type 2 diabetes. Diabetologia 59, 2203–2207 (2016).
    1. Gancheva S., Ouni M., Jelenik T., Koliaki C., Szendroedi J., Toledo F. G. S., Markgraf D. F., Pesta D. H., Mastrototaro L., de Filippo E., Herder C., Jähnert M., Weiss J., Strassburger K., Schlensak M., Schürmann A., Roden M., Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat. Commun. 10, 4179 (2019).
    1. Kahl S., Gancheva S., Straßburger K., Herder C., Machann J., Katsuyama H., Kabisch S., Henkel E., Kopf S., Lagerpusch M., Kantartzis K., Kupriyanova Y., Markgraf D., van Gemert T., Knebel B., Wolkersdorfer M. F., Kuss O., Hwang J.-H., Bornstein S. R., Kasperk C., Stefan N., Pfeiffer A., Birkenfeld A. L., Roden M., Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: A randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care 43, 298–305 (2020).
    1. Livingstone R. S., Begovatz P., Kahl S., Nowotny B., Straßburger K., Giani G., Bunke J., Roden M., Hwang J. H., Initial clinical application of modified Dixon with flexible echo times: Hepatic and pancreatic fat assessments in comparison with 1H MRS. MAGMA 27, 397–405 (2014).
    1. Machann J., Thamer C., Stefan N., Schwenzer N. F., Kantartzis K., Häring H. U., Claussen C. D., Fritsche A., Schick F., Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology 257, 353–363 (2010).
    1. Phielix E., Jelenik T., Nowotny P., Szendroedi J., Roden M., Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: A randomised clinical trial. Diabetologia 57, 572–581 (2014).
    1. Griffith O. W., Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212 (1980).
    1. Morgunov I., Srere P. A., Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J. Biol. Chem. 273, 29540–29544 (1998).
    1. Mahmood T., Yang P. C., Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci. 4, 429–434 (2012).
    1. Dietze D., Koenen M., Rohrig K., Horikoshi H., Hauner H., Eckel J., Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes 51, 2369–2376 (2002).
    1. Lambernd S., Taube A., Schober A., Platzbecker B., Görgens S. W., Schlich R., Jeruschke K., Weiss J., Eckardt K., Eckel J., Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways. Diabetologia 55, 1128–1139 (2012).
    1. Hartwig S., de Filippo E., Göddeke S., Knebel B., Kotzka J., al-Hasani H., Roden M., Lehr S., Sell H., Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochim. Biophys. Acta Proteins Proteom. 1867, 140172 (2019).
    1. Lobb R. J., Becker M., Wen Wen S., Wong C. S. F., Wiegmans A. P., Leimgruber A., Möller A., Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 27031 (2015).
    1. Bruderer R., Bernhardt O. M., Gandhi T., Miladinović S. M., Cheng L. Y., Messner S., Ehrenberger T., Zanotelli V., Butscheid Y., Escher C., Vitek O., Rinner O., Reiter L., Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteomics 14, 1400–1410 (2015).
    1. Bendtsen J. D., Jensen L. J., Blom N., Von Heijne G., Brunak S., Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17, 349–356 (2004).
    1. Pathan M., Keerthikumar S., Ang C. S., Gangoda L., Quek C. Y. J., Williamson N. A., Mouradov D., Sieber O. M., Simpson R. J., Salim A., Bacic A., Hill A. F., Stroud D. A., Ryan M. T., Agbinya J. I., Mariadason J. M., Burgess A. W., Mathivanan S., FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 15, 2597–2601 (2015).
    1. Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yılmaz Ş., Tiwary S., Cox J., Audain E., Walzer M., Jarnuczak A. F., Ternent T., Brazma A., Vizcaíno J. A., The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
    1. Gómez García A., Rivera Rodríguez M., Gómez Alonso C., Rodriguez Ochoa D. Y., Alvarez Aguilar C., Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab. J. 39, 59–65 (2015).
    1. Liu J., Shen W., Zhao B., Wang Y., Wertz K., Weber P., Zhang P., Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: Hope from natural mitochondrial nutrients. Adv. Drug Deliv. Rev. 61, 1343–1352 (2009).
    1. Liu X., Qu H., Zheng Y., Liao Q., Zhang L., Liao X., Xiong X., Wang Y., Zhang R., Wang H., Tong Q., Liu Z., Dong H., Yang G., Zhu Z., Xu J., Zheng H., Mitochondrial glycerol 3-phosphate dehydrogenase promotes skeletal muscle regeneration. EMBO Mol. Med. 10, e9390 (2018).
    1. Bishop D. J., Botella J., Genders A. J., Lee M. J., Saner N. J., Kuang J., Yan X., Granata C., High-intensity exercise and mitochondrial biogenesis: Current controversies and future research directions. Physiology 34, 56–70 (2019).
    1. Valapala M., Vishwanatha J. K., Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. J. Biol. Chem. 286, 30911–30925 (2011).

Source: PubMed

3
Abonner