Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia

Marcela Kanova, Pavel Kohout, Marcela Kanova, Pavel Kohout

Abstract

Skeletal muscle is a highly adaptable organ, and its amount declines under catabolic conditions such as critical illness. Aging is accompanied by a gradual loss of muscle, especially when physical activity decreases. Intensive care unit-acquired weakness is a common and highly serious neuromuscular complication in critically ill patients. It is a consequence of critical illness and is characterized by a systemic inflammatory response, leading to metabolic stress, that causes the development of multiple organ dysfunction. Muscle dysfunction is an important component of this syndrome, and the degree of catabolism corresponds to the severity of the condition. The population of critically ill is aging; thus, we face another negative effect-sarcopenia-the age-related decline of skeletal muscle mass and function. Low-grade inflammation gradually accumulates over time, inhibits proteosynthesis, worsens anabolic resistance, and increases insulin resistance. The cumulative consequence is a gradual decline in muscle recovery and muscle mass. The clinical manifestation for both of the above conditions is skeletal muscle weakness, with macromolecular damage, and a common mechanism-mitochondrial dysfunction. In this review, we compare the molecular mechanisms underlying the two types of muscle atrophy, and address questions regarding possible shared molecular mechanisms, and whether critical illness accelerates the aging process.

Keywords: intensive care unit-acquired weakness; muscle atrophy; proteostasis; rapamycin system; sarcopenia; ubiquitin–proteasome system.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Protein turnover in the young, the old, and the critically ill partly according to [11]: In old patients, protein synthesis decreases postprandially due to anabolic resistance; compared to young patients, the protein balance becomes negative over time, leading to sarcopenia. Proteolysis between meals postabsorptively does not change significantly. In critically ill patients, on the one hand, proteosynthesis is affected due to anabolic resistance, but above all, proteolysis is markedly activated, for the need of protein as source of stress metabolism-activated gluconeogenesis. Protein balance is strongly negative; ICUAW develops rapidly.
Figure 2
Figure 2
Signaling pathways that activate caspase3 and the UPS in skeletal muscle. Schematic of the main molecular pathways balancing muscle protein synthesis and proteolysis. Sepsis, inflammation, and immobility shift this balance towards protein breakdown. X means insulin resistance, block of insulin receptor.
Figure 3
Figure 3
Signaling pathway of muscle protein synthesis. Insulin and insulin-like growth factors (IGF) act through phosphoinositol-3-kinase (PI3K) and Akt kinase to activate mammalian target of rapamycin (raptor mTORC1 and rictor mTORC2). Adequate supply of amino acids (leucine) in the diet activates Rag GTPase and activates raptor mTORC1, but not rictor mTORC2.
Figure 4
Figure 4
Mitochondrial biogenesis according to [32]. The central regulator of mitochondrial biogenesis: peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Transcription factors (TFs): forkhead box class-O (FoxO1), hepatocyte nuclear factor 4a (HNF4a), nuclear respiratory factor (NRF1, NRF2).
Figure 5
Figure 5
Mitochondrial dynamics (fission and fusion events) according to [37]. The central regulator of mitochondrial biogenesis: peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Transcription factors (TFs): forkhead box class-O (FoxO1), hepatocyte nuclear factor 4a (HNF4a), nuclear respiratory factor (NRF1, NRF2).
Figure 6
Figure 6
Mitophagy (schematic representation of the autophagy machinery) partly according to [32].
Figure 7
Figure 7
Exercise-induced muscle growth through induced proteolysis and induced autophagy according to [59]. Exercise-induced protein damage via increased ROS/mechanical and heat stress, increased MuRF1, and atrogin-1 (MAFbx), and both muscle-specific ubiquitin ligases lead to the activation of the 26 S proteasome to rid the cells of non-functional myofibrillar proteins. Exercise also activates autophagy: beclin-1 is phosphorylated and released from the BCL2–beclin-1 complex. Exercise-induced autophagy is necessary for the clearance of damaged organelles and proteins. This is critical for skeletal muscle remodeling and growth.

References

    1. Kress J.P., Hall J.B. ICU-acquired weakness and recovery from critical illness. N. Eng. J. Med. 2014;370:17. doi: 10.1056/NEJMra1209390.
    1. Schefold J.C., Wollersheim T., Grunow J.J., Luedi M.M., Z’Graggen W.J., Weber-Carstens S. Muscular weakness and muscle wasting in the critically ill. J. Cachexia Sarcopenia Muscle. 2020;11:1399–1412. doi: 10.1002/jcsm.12620.
    1. Wang W., Xu C., Ma X., Zhang X., Xie P. Intensive Care Unit-acquired weakness: A review of recent progress with a look toward the future. Front. Med. 2020;7:559789. doi: 10.3389/fmed.2020.559789.
    1. Lad H., Saumur T.M., Herridge M.S., Cdos Santos C., Mathur S., Batt J., Gilbert P.M. Intensive Care Unit-Acquired Weakness: Not just another muscle atrophying condition. Int. J. Mol. Sci. 2020;21:7840. doi: 10.3390/ijms21217840.
    1. Hawkins R.B., Raymond S.L., Stortz J.A., Hiroyuki H., Brakenridge S.C., Gardner A., Efron P.A., Bihorac A., Segal M., Moore F.A., et al. Chronic critical illness and Persistent Inflammation, Immunosuppression and catabolism syndrome. Front. Immunol. 2018;9:1511. doi: 10.3389/fimmu.2018.01511.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:601. doi: 10.1093/ageing/afz046.
    1. Kizilarslanoglu M.C., Kuyumcu M.E., Yesil Y., Halil M. Sarcopenia in critically ill patients. J. Anesth. 2016;30:884–890. doi: 10.1007/s00540-016-2211-4.
    1. Hoffmann C., Weigert C. Skeletal Muscle as an endocrine organ: The role of myokines in exercise adaptations. Cold Spring Harb. Perspect. Med. 2017;7:a029793. doi: 10.1101/cshperspect.a029793.
    1. Ottens F., Franz A., Hoppe T. Build-UPS and break-downs: Metabolism impacts on proteostasis and aging. Cell Death Differ. 2021;28:505–521. doi: 10.1038/s41418-020-00682-y.
    1. Flick K., Kaiser P. Protein degradation and the stress response. Semin. Cell Dev. Biol. 2012;23:515–522. doi: 10.1016/j.semcdb.2012.01.019.
    1. Dillon E.L. Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids. 2013;45:431–441. doi: 10.1007/s00726-012-1438-0.
    1. Preiser J.C., Ichai C., Orban J.C., Groeneveld A.B.J. Metabolic response to stress of critical illness. BJA. 2014;113:945–954. doi: 10.1093/bja/aeu187.
    1. Bloch S., Polkey M.I., Griffiths M., Kemp P. Molecular mechanisms of intensive care unit-acquired weakness. Eur. Respir. J. 2012;39:1000–1011. doi: 10.1183/09031936.00090011.
    1. Hermans G., Van den Berge G. Clinical review: Intensive care unit acquired weakness. Critical Care. 2015;19:274. doi: 10.1186/s13054-015-0993-7.
    1. Marshall R.S., Vierstra R.D. Dynamic regulation of the 26S proteasome: From synthesis to degradation. Front. Mol. Biosci. 2019;6:40. doi: 10.3389/fmolb.2019.00040.
    1. Wray C.J., Mammen J.M., Hershko D.D., Hasselgren P.-O. Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int. J. Biochem Cell Biol. 2003;35:698–705. doi: 10.1016/S1357-2725(02)00341-2.
    1. Klaude M., Fredriksson K., Tjader I., Hammarqvist F., Ahlman B., Rooyackers O., Wernerman J. Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis. Clin. Sci. 2007;112:499–506. doi: 10.1042/CS20060265.
    1. Marshall R.S., Vierstra R.D. Eat or be eaten: The autophagic plight of inactive 26S proteasomes. Autophagy. 2015;11:1927–1928. doi: 10.1080/15548627.2015.1078961.
    1. Du J., Hu Z., Mitch W.E. Molecular mechanisms activating muscle protein degradation in chronic kidney disease and other catabolic conditions. Eur. J. Clin. Investig. 2005;35:157–163. doi: 10.1111/j.1365-2362.2005.01473.x.
    1. Zhao J., Zhai B., Gygi S.P., Godberg L. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc. Natl. Acad. Sci. USA. 2015;112:15790–15796. doi: 10.1073/pnas.1521919112.
    1. Zhao J., Goldberg A.L. Coordinate regulation of autophagy and the ubiquitin proteasome system by mTOR. Autophagy. 2016;12:1967–1970. doi: 10.1080/15548627.2016.1205770.
    1. Folleta V.C., White L.J., Larsen A.E., Léger B., Russel A.P. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Eur. J. Physiol. 2011;461:325–335. doi: 10.1007/s00424-010-0919-9.
    1. Combaret L., Taillandier D., Darvedet D., Bechet D., Rallière C., Claustre A., Grizard J., Attaix D. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscle. Biochem. J. 2004;378:239–246. doi: 10.1042/bj20031660.
    1. Lang C.H., Frost R.A. Sepsis-induced suppression of skeletal muscle translation initiation mediated byx tumor necrosis factorα. Curr. Opin. Clin. Nutr. Metab. Care. 2006;9:185–189.
    1. Showkat M., Beigh M.A., Andrabi K.I. mTOR signaling in protein translation regulation: Implications in cancer genesis and therapeutic interventions. Mol. Biol. Int. 2014;2014:686984. doi: 10.1155/2014/686984.
    1. Tan V.P., Miyamoto S. Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. J. Mol. Cell Cardiol. 2016;95:31–41. doi: 10.1016/j.yjmcc.2016.01.005.
    1. Zink W., Kaess M., Hofer S., Plachky J., Zausig Y.A., Sinner B., Weigand M.A., Fink R.H., Graf B.M. Alteration in intracellular Ca2+ homeostasis of skeletal muscle fibers during sepsis. Crit. Care Med. 2008;36:1559–1563. doi: 10.1097/CCM.0b013e318170aa97.
    1. Clark M.G., Rattigan S., Barrett E.J. Nutritive blood flow as and essential element supporting muscle anabolism. Curr. Opin. Clin. Nutr. Metab. Care. 2006;9:185–189. doi: 10.1097/01.mco.0000222097.90890.c2.
    1. Friedrich O., Hund E., Weber C., Hacke W., Fink R.H.A. Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle. J. Neurol. 2004;251:53–65. doi: 10.1007/s00415-004-0272-z.
    1. Khan J., Harrison T., Rich M. Mechanisms of neuromuscular dysfunction in critical illness. Crit. Care Clin. 2008;24:165–177. doi: 10.1016/j.ccc.2007.10.004.
    1. Z’Graggen W.J., Lin C.S.Y., Howard R.S., Beale R.J., Bostock H. Nerve excitability changes in critical illness polyneuromyopathy. Brain. 2006;129:2461–2470. doi: 10.1093/brain/awl191.
    1. Wu J., Yao Y.M., Lu Z.Q. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J. Mol. Med. 2019;97:451–462. doi: 10.1007/s00109-019-01756-2.
    1. Ferri E., Marzetti E., Calvani R., Picca A., Cesari M., Arosio B. Role of age-related mitochondrial dysfunction in sarcopenia. Int. J. Mol. Sci. 2020;21:5236. doi: 10.3390/ijms21155236.
    1. Galley H.F. Oxidative stress and mitochondrial dysfunction in sepsis. Br. J. Anaesth. 2011;107:57–64. doi: 10.1093/bja/aer093.
    1. Boengler K., Kosiol M., Mayr M., Schulz R., Rohrbach S. Mitochondria in ageing. Role in heart, skeletal muscle and adipose tissue. J. Cachexia Sarcopenia Muscle. 2017;8:349–369. doi: 10.1002/jcsm.12178.
    1. Short K.R., Vitone J.L., Bigelow M.L., Proctor D.N., Nair K.S. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am. J. Phyisiol. Endocrinol. Metab. 2004;286:E92–E101. doi: 10.1152/ajpendo.00366.2003.
    1. Leduc-Gaudet J.P., Hussain S.N.A., Barreiro E., Gouspillou G. Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int. J. Mol. Sci. 2021;22:8179. doi: 10.3390/ijms22158179.
    1. Frontera W.R., Ochala J. Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 2015;96:183–195. doi: 10.1007/s00223-014-9915-y.
    1. Guidicde J., Taylor J.M. Muscle as a paracrine and endocrine organ. Curr. Opin. Pharmacol. 2017;34:49–55.
    1. Bar-Or D., Rael L.T., Madayag R.M., Banton K.L., Il A.T., Acune D.L., Liser M.J., Marshall G.T., Mains C.W., Brody E. Stress hyperglycemia in critically ill patients: Insight into possible molecular pathways. Front. Med. 2019;6:54. doi: 10.3389/fmed.2019.00054.
    1. Brooks G.A. Role of the heart in lactate shuttling. Front. Nutr. 2021;8:663560. doi: 10.3389/fnut.2021.663560.
    1. Smirnova E., Griparic L., Shurland D.L., van der Bliek A.M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell. 2001;12:2245–2256. doi: 10.1091/mbc.12.8.2245.
    1. Kalia R., Wang R.Y.R., Yusuf A., Thomas P.V., Agard D.A., Shaw J.M., Frost A. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature. 2018;558:401–405. doi: 10.1038/s41586-018-0211-2.
    1. Otera H., Wang C.X., Cleland M.M., Setoguchi K., Yokota S., Youle R.J., Mihara K. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 2010;191:1141–1158. doi: 10.1083/jcb.201007152.
    1. Song Z.Y., Ghochani M., McCaffery J.M., Frey T.G., Chan D.C. Mitofusins and OPA1 Mediate Sequential Steps in Mitochondrial Membrane Fusion. Mol. Biol. Cell. 2009;20:3525–3532. doi: 10.1091/mbc.e09-03-0252.
    1. Hansen M.E., Simmons K.J., Tippetts T.S., Thatcher M.O., Saito R.R., Hubbard S.T., Trumbull A.M., Parker B.A., Taylor O.J., Bikman B.T. Lipopolysaccharide disrupts mitochondrial physiology in skeletal muscle via disparate effects on sphingolipid metabolisms. Shock. 2015;44:585–592. doi: 10.1097/SHK.0000000000000468.
    1. Lazarou M., Sliter D.A., Kane L.A., Sarraf S.A., Wang C., Burman J.L., Sideris D.P., Fogel A.I., Youle R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309–314. doi: 10.1038/nature14893.
    1. Calvani R., Joseph A.M., Adhihetty P.J., Miccheli A., Bossola M., Leeuwenburgh C., Bernabei R., Landi F., Marzetti E. Update on mitochondria and muscle aging: All wrong roads lead to sarcopenia. Biol. Chem. 2018;399:421–436.
    1. O’Hara R., Tedone E., Ludlow A., Huang E., Arosio B., Mari D., Shay J.W. Quantitative mitochondrial copy number determination using droplet digital PCR with single-cell resolution. Genome Res. 2019;29:1878–1888. doi: 10.1101/gr.250480.119.
    1. MacGarvey N.C., Suliman H.B., Bartz R.R., Fu P., Withers C.M., Welty-Wolf K.E., Piantadosi C.A. Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NF-E2-related factor 2 induction rescue mice from lethal Staphylococcus aureus sepsis. Am. J. Respir. Crit. Care Med. 2012;185:851–861. doi: 10.1164/rccm.201106-1152OC.
    1. Bullon P., Roman-Malo L., Marin-Aguilar F., Alvarez-Suarez J.M., Giampieri F., Battino M., Cordero M.D. Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement. Pharmacol. Res. 2015;91:1–8. doi: 10.1016/j.phrs.2014.10.007.
    1. Hondares E., Pineda-Torra I., Iglesias R., Staels B., Villarroya F., Giralt M. PPARdelta, but not PPARalpha activates PGC-1alpha gene transcription in muscle. Biochem. Biophys. Res. Commun. 2007;354:1021–1027. doi: 10.1016/j.bbrc.2007.01.092.
    1. Dulac N., Leduc-Gaudet J.P., Cefis M., Ayoub M.B., Reynaud O., Shams A., Moamer A., Nery Fereira M.F., Hussain S.N., Gouispillou G. Regulation of muscle and mitochondrial health by the mitochondrial fission protein Drp1 in aged mice. J. Physiol. 2021;599:4045–4063. doi: 10.1113/JP281752.
    1. Yen Y.T., Yang H.R., Lo H.C., Hsieh Y.C., Tsai S.C., Hong C.W., Hsieh C.H. Enhancing autophagy with activated protein C and rapamycin protects against sepsis-induced acute lung injury. Surgery. 2013;153:689–698. doi: 10.1016/j.surg.2012.11.021.
    1. Van Zanten A.R., De Waele E., Wischmeyer P.E. Nutritional therapy and critical illness: Practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit. Care. 2019;23:368. doi: 10.1186/s13054-019-2657-5.
    1. Musci R.V., Hamilton K.L., Linden M.A. Exercise-Induced Mitohormesis for the maintenance of skeletal muscle and the health span extension. Sport. 2019;7:170. doi: 10.3390/sports7070170.
    1. Patterson S.D., Hughes L., Warmington S., Burr J., Scott B.R., Owens J., Abe T., Nielsen J.L., Libardi C.A., Laurentino G., et al. Blood flow restriction exercise: Consideration of methodology, application, and safety. Front. Physiol. 2019;10:533. doi: 10.3389/fphys.2019.00533.
    1. Maffiuleti N.A., Roig M., Karatzanos E., Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: A systematic review. BMC Med. 2013;11:137. doi: 10.1186/1741-7015-11-137.
    1. Bell R.A.V., Al-Khalaf M., Megeney L.A. The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet. Muscle. 2016;6:16. doi: 10.1186/s13395-016-0086-6.
    1. Hass K.F., Woodruff E., Brodie K. Proteasome function is required to maintain muscle cellular architecture. Biol. Cell. 2007;99:615–626. doi: 10.1042/BC20070019.
    1. Murton A.J., Constantin D., Greenhaff P.L. The involvement of the ubiquitin proteasome system in humans skeletal muscle remodeling and atrophy. Biochim. Biophys Acta. 2008;1782:730–743. doi: 10.1016/j.bbadis.2008.10.011.
    1. Larsen B.D., Rampalli S., Burns L.E., Brunette S., Dilworth F.J., Megeney L.A. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc. Natl. Acad. Sci. USA. 2010;107:4230–4235. doi: 10.1073/pnas.0913089107.
    1. Suryawan A., Rudar M., Fioroto M.L., Davis T.A. Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. J. Appl. Physiol. 2020;128:286–295. doi: 10.1152/japplphysiol.00332.2019.
    1. Dzik K.P., Kaczor J.J. Mechanisms of vitamin D on skeletal muscle function: Oxidative stress, energy metabolism and anabolic state. Eur. J. Appl. Physiol. 2019;119:825–839. doi: 10.1007/s00421-019-04104-x.
    1. Sinha A., Hollingsworth K.G., Ball S., Cheetham T. Improving the vitamin D status of vitamin D deficient adults is assocciated with improved mitochondrial oxidative function in skeletal muscle. J. Clin. Endocrinol. Met. 2013;98:E509–E513. doi: 10.1210/jc.2012-3592.
    1. Qin E.S., Hough C.L., Andrews J., Bunnell A.E. Intensive care unit-acquired weakness and the COVID-19 pandemic: A clinical review. PM R. 2022;14:227–238. doi: 10.1002/pmrj.12757.
    1. Hughes L., Paton B., Rosentblatt B., Gissane C., Patterson S.D. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systemic review and metaanalyses. Br. J. Sports Med. 2017;51:1003–1011. doi: 10.1136/bjsports-2016-097071.
    1. Shakoory B., Carcillo J.A., Chatham W.W., Amdur R.L., Zhao H., Dinarello C.A., Cron R.Q., Opal S.M. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome. Crit. Care Med. 2016;44:275–281.
    1. Kooistra E.J., Waalders N.J.B., Grondman I., Janssen N.A.F., de Nooijer A.H., Netea M.G., van de Veerdonk F.L., Ewalds E., van der Hoeven J.G., Kox M., et al. Anakinra treatment in critically ill COVID-19 patients: A prospective cohort study. Crit. Care. 2020;24:688. doi: 10.1186/s13054-020-03364-w.
    1. Fernández J.P., Montero A.F., Matínez A.C., Pastor D., Rodrígez A.M., Roche E. Sarcopenia: Molecular pathways and potential targets for intervention. Int. J. Mol. Sci. 2020;21:8844. doi: 10.3390/ijms21228844.
    1. Kim J.S., Cross J.M., Bamman M.M. Impact of resistence loading on myostatin expression and cell cycle regulation in young and older men and women. Am. J. Physiol. Endocrinol. Metab. 2005;288:E1100–E1119. doi: 10.1152/ajpendo.00464.2004.
    1. Paproski J.J., Finelo G.C., Murillo A., Mandel E. The importance of protein intake and strength exercises for older adult. JAAPA. 2019;32:32–36. doi: 10.1097/01.JAA.0000586328.11996.c0.
    1. Abiri B., Vafa M. The role of nutrition in attenuating age-related skeletal muscle atrophy. Adv. Exp. Med. Biol. 2020;1260:297–318.
    1. Martínez-Arnau F.M., Fonfría-Vivas R., Buigues C., Castillo Y., Molina P., Hoogland A.J., vanDoesburg F., Pruimboom L., Fernández-Garrido J., Cauli O. Effects of leucine administration in sarcopenia. A randomized and placebo-controlled clinical trial. Nutrients. 2020;12:932. doi: 10.3390/nu12040932.
    1. Yoon J.H., Kwon K.S. Receptor-mediated muscle homeostasis as a target for sarcopenia therapeutics. Endocrinol. Metab. 2021;36:478–490. doi: 10.3803/EnM.2021.1081.

Source: PubMed

3
Abonner