Structural and Hemodynamic Changes of the Right Ventricle in PH-HFpEF

Maria Barilli, Maria Cristina Tavera, Serafina Valente, Alberto Palazzuoli, Maria Barilli, Maria Cristina Tavera, Serafina Valente, Alberto Palazzuoli

Abstract

One of the most important diagnostic challenges in clinical practice is the distinction between pulmonary hypertension (PH) due to primitive pulmonary arterial hypertension (PAH) and PH due to left heart diseases. Both conditions share some common characteristics and pathophysiological pathways, making the two processes similar in several aspects. Their diagnostic differentiation is based on hemodynamic data on right heart catheterization, cardiac structural modifications, and therapeutic response. More specifically, PH secondary to heart failure with preserved ejection fraction (HFpEF) shares features with type 1 PH (PAH), especially when the combined pre- and post-capillary form (CpcPH) takes place in advanced stages of the disease. Right ventricular (RV) dysfunction is a common consequence related to worse prognosis and lower survival. This condition has recently been identified with a new classification based on clinical signs and progression markers. The role and prevalence of PH and RV dysfunction in HFpEF remain poorly identified, with wide variability in the literature reported from the largest clinical trials. Different parenchymal and vascular alterations affect the two diseases. Capillaries and arteriole vasoconstriction, vascular obliteration, and pulmonary blood fluid redistribution from the basal to the apical district are typical manifestations of type 1 PH. Conversely, PH related to HFpEF is primarily due to an increase of venules/capillaries parietal fibrosis, extracellular matrix deposition, and myocyte hypertrophy with a secondary "arteriolarization" of the vessels. Since the development of structural changes and the therapeutic target substantially differ, a better understanding of pathobiological processes underneath PH-HFpEF, and the identification of potential maladaptive RV mechanisms with an appropriate diagnostic tool, become mandatory in order to distinguish and manage these two similar forms of pulmonary hypertension.

Keywords: HFpEF; imaging; pulmonary hypertension; right ventricle.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Development of pulmonary hypertension in HFpEF: pathobiological vessels’ alterations and hemodynamic changes from isolated pre-capillary (Ipc) to combined pre- and post-capillary hypertension (Cpc-PH).
Figure 2
Figure 2
Mechanisms of RV adaptation in pulmonary hypertension (PH) progression related to heart failure with preserved ejection fraction (HFpEF): ventriculo-arterial coupling and uncoupling.

References

    1. Galiè N., Hoeper M.M., Humbert M., Torbicki A., Vachiery J.-L., Barbera J.A., Beghetti M., Corris P., Gaine S., Gibbs J.S., et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2016;37:67–119. doi: 10.1093/eurheartj/ehv317.
    1. Galiè N., McLaughlin V.V., Rubin L.J., Simonneau G. An overview of the 6th World Symposium on Pulmonary Hypertension. Eur. Respir. J. 2019;53:1802148. doi: 10.1183/13993003.02148-2018.
    1. Parker F., Weiss S. The Nature and Significance of the Structural Changes in the Lungs in Mitral Stenosis. [(accessed on 20 February 2021)];Am. J. Pathol. 1936 12:573–598.15. Available online: .
    1. Ruocco G., Gavazzi A., Gonnelli S., Palazzuoli A. Pulmonary arterial hypertension and heart failure with preserved ejection fraction: Are they so discordant? Cardiovasc. Diagn. Ther. 2020;10:534–545. doi: 10.21037/cdt-19-405.
    1. Guazzi M., Ghio S., Adir Y. Pulmonary Hypertension in HFpEF and HFrEF. J. Am. Coll. Cardiol. 2020;76:1102–1111. doi: 10.1016/j.jacc.2020.06.069.
    1. Guazzi M., Naeije R. Pulmonary Hypertension in Heart Failure. J. Am. Coll. Cardiol. 2017;69:1718–1734. doi: 10.1016/j.jacc.2017.01.051.
    1. Vachiéry J.-L., Tedford R.J., Rosenkranz S., Palazzini M., Lang I., Guazzi M., Coghlan G., Chazova I., De Marco T. Pulmonary hypertension due to left heart disease. Eur. Respir. J. 2019;53:1801897. doi: 10.1183/13993003.01897-2018.
    1. Gerges M., Gerges C., Pistritto A.M., Lang M.B., Trip P., Jakowitsch J., Binder T., Lang I.M. Pulmonary Hypertension in Heart Failure. Epidemiology, Right Ventricular Function, and Survival. Am. J. Respir. Crit. Care Med. 2015;192:1234–1246. doi: 10.1164/rccm.201503-0529OC.
    1. Maeder M.T. Selexipag and the pulmonary hypertension continuum. Eur. J. Heart Fail. 2022;24:215–218. doi: 10.1002/ejhf.2387.
    1. Tuder R.M., Archer S.L., Dorfmüller P., Erzurum S.C., Guignabert C., Michelakis E., Rabinovitch M., Schermuly R., Stenmark K.R., Morrell N.W. Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension. J. Am. Coll. Cardiol. 2013;62:D4–D12. doi: 10.1016/j.jacc.2013.10.025.
    1. Leopold J.A. Pulmonary Venous Remodeling in Pulmonary Hypertension. Circulation. 2018;137:1811–1813. doi: 10.1161/CIRCULATIONAHA.118.033013.
    1. Fayyaz A.U., Edwards W.D., Maleszewski J.J., Ewa A., Konik E.A., Hilary M., DuBrock H.M., Barry A., Borlaug B.A., Robert P., et al. Global Pulmonary Vascular Remodeling in Pulmonary Hypertension Associated with Heart Failure and Preserved or Reduced Ejection Fraction. Circulation. 2018;137:1796–1810. doi: 10.1161/CIRCULATIONAHA.117.031608.
    1. Packer M., McMurray J., Massie B.M., Caspi A., Charlon V., Cohen-Solal A., Kiowski W., Kostuk W., Krum H., Levine B., et al. Clinical effects of endothelin receptor antagonism with bosentan in patients with severe chronic heart failure: Results of a pilot study. J. Card. Fail. 2005;11:12–20. doi: 10.1016/j.cardfail.2004.05.006.
    1. Califf R.M., Adams K.F., McKenna W.J., Gheorghiade M., Uretsky B.F., McNulty S.E., Darius H., Schulman K., Zannad F., Handberg-Thurmond F., et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST) Am. Heart J. 1997;134:44–54. doi: 10.1016/S0002-8703(97)70105-4.
    1. Hoeper M.M., Lam C.S.P., Vachiery J.L., Bauersachs J., Gerges C., Lang I.M., Bonderman D., Olsson K.M., Gibbs J.S.R., Dorfmuller P., et al. Pulmonary hypertension in heart failure with preserved ejection fraction: A plea for proper phenotyping and further research. Eur. Heart J. 2016;38:2869–2873. doi: 10.1093/eurheartj/ehw597.
    1. Vanderpool R.R., Saul M., Nouraie M., Gladwin M.T., Simon M.A. Association Between Hemodynamic Markers of Pulmonary Hypertension and Outcomes in Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2018;3:298. doi: 10.1001/jamacardio.2018.0128.
    1. Elliott C.G. The Fifth World Symposium on Pulmonary Hypertension and Robyn, J. Barst, MD. Adv. Pulm. Hypertens. 2014;13:15–16. doi: 10.21693/1933-088X-13.1.15.
    1. Thenappan T., Shah S.J., Gomberg-Maitland M. Clinical Characteristics of Pulmonary Hypertension in Patients with Heart Failure and Preserved Ejection Fraction. Circ. Heart Fail. 2011;4:257–265. doi: 10.1161/CIRCHEARTFAILURE.110.958801.
    1. Guazzi M., Dixon D., Labate V., Beussink-Nelson L., Bandera F., Cuttica M.J., Sanijv J., Shah S.J. RV Contractile Function and its Coupling to Pulmonary Circulation in Heart Failure with Preserved Ejection Fraction. JACC Cardiovasc. Imaging. 2017;10:1211–1221. doi: 10.1016/j.jcmg.2016.12.024.
    1. Frantz R.P. Pulmonary arterial hypertension or left heart disease with pulmonary hypertension? Toward noninvasive clarity, but time for a new paradigm. Eur. Respir. J. 2015;46:299–302. doi: 10.1183/13993003.00456-2015.
    1. Berthelot E., Montani D., Algalarrondo V., Dreyfuss C., Rifai R., Benmalek A., Jais W., Bouchachi A., Savale L., Simonneau G., et al. A Clinical and Echocardiographic Score to Identify Pulmonary Hypertension Due to HFpEF. J. Card. Fail. 2017;23:29–35. doi: 10.1016/j.cardfail.2016.10.002.
    1. D’Alto M., Romeo E., Argiento P., Pavelescu A., Mélot C., D’Andrea A., Correra A., Bossone E., Calabrò R., Russo M.G., et al. Echocardiographic Prediction of Pre- versus Postcapillary Pulmonary Hypertension. J. Am. Soc. Echocardiogr. 2015;28:108–115. doi: 10.1016/j.echo.2014.09.004.
    1. Opotowsky A.R., Ojeda J., Rogers F., Prasanna V., Clair M., Moko L., Vaidya A., Jonathan Afilalo J., Paul R., Forfia P.R. A Simple Echocardiographic Prediction Rule for Hemodynamics in Pulmonary Hypertension. Circ. Cardiovasc. Imaging. 2012;5:765–775. doi: 10.1161/CIRCIMAGING.112.976654.
    1. Bonderman D., Wexberg P., Martischnig A.M. A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur. Respir. J. 2011;37:1096–1103. doi: 10.1183/09031936.00089610.
    1. Thenappan T., Prins K.W., Cogswell R., Shah S.J. Pulmonary Hypertension Secondary to Heart Failure with Preserved Ejection Fraction. Can. J. Cardiol. 2015;31:430–439. doi: 10.1016/j.cjca.2014.12.028.
    1. Opitz C.F., Hoeper M.M., Gibbs J.S.R. Pre-Capillary, Combined, and Post-Capillary Pulmonary Hypertension. J. Am. Coll. Cardiol. 2016;68:368–378. doi: 10.1016/j.jacc.2016.05.047.
    1. Galiè N., Barberà J.A., Frost A.E., Ghofrani H.A., Hoeper M.M., McLaughlin V.V., Peacock A.J., Simonneau G., Vachiery J.L., Grünig E., et al. Initial Use of Ambrisentan plus Tadalafil in Pulmonary Arterial Hypertension. N. Engl. J. Med. 2015;373:834–844. doi: 10.1056/NEJMoa1413687.
    1. Olsson K.M., Delcroix M., Ghofrani H.A., Tiede H., Huscher D., Speich R., Staehler G., Rosenktranz S., Halank M., Held M., et al. Anticoagulation and Survival in Pulmonary Arterial Hypertension. Circulation. 2014;129:57–65. doi: 10.1161/CIRCULATIONAHA.113.004526.
    1. McGoon M.D., Benza R.L., Escribano-Subias P. Pulmonary Arterial Hypertension. J. Am. Coll. Cardiol. 2013;62:D51–D59. doi: 10.1016/j.jacc.2013.10.023.
    1. Peacock A.J., Murphy N.F., McMurray J.J.V., Caballero L., Stewart S. An epidemiological study of pulmonary arterial hypertension. Eur. Respir. J. 2007;30:104–109. doi: 10.1183/09031936.00092306.
    1. Humbert M., Sitbon O., Chaouat A., Bertocchi M., Habib G., Gressin V., Yaici A., Weitzenblum E., Cordier J.F., Chabot F., et al. Pulmonary Arterial Hypertension in France. Am. J. Respir. Crit. Care Med. 2006;173:1023–1030. doi: 10.1164/rccm.200510-1668OC.
    1. Thenappan T., Gomberg-Maitland M. Epidemiology of Pulmonary Hypertension and Right Ventricular Failure in Left Heart Failure. Curr. Heart Fail. Rep. 2014;11:428–435. doi: 10.1007/s11897-014-0216-6.
    1. Shah A.M., Shah S.J., Anand I.S., Sweitzer N.K., O’Meara E., Heitner J.F., Soplo G., Li G., Assmann S.F., McKinlay S.M., et al. Cardiac Structure and Function in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2014;7:104–115. doi: 10.1161/CIRCHEARTFAILURE.113.000887.
    1. Shah A.M., Cikes M., Prasad N., Li G., Getchevski S., Claggett B., Rizkala A., Lukashevich I., O’Meara E., Ryan J.J., et al. Echocardiographic Features of Patients with Heart Failure and Preserved Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2019;74:2858–2873. doi: 10.1016/j.jacc.2019.09.063.
    1. Dixon D.D., Trivedi A., Shah S.J. Combined post- and pre-capillary pulmonary hypertension in heart failure with preserved ejection fraction. Heart Fail. Rev. 2016;21:285–297. doi: 10.1007/s10741-015-9523-6.
    1. Kanwar M., Tedford R.J., Agarwal R., Clarke M.M., Walter C., Sokos G., Murali S., Benza R.L. Management of Pulmonary Hypertension due to Heart Failure with Preserved Ejection Fraction. Curr. Hypertens. Rep. 2014;16:501. doi: 10.1007/s11906-014-0501-5.
    1. Vachiéry J.L., Adir Y., Barberà J.A., Champion H., Coghlan J.G., Cottin V., De Marco T., Galie N., Ghio S., Gibbs S.R., et al. Pulmonary Hypertension Due to Left Heart Diseases. J. Am. Coll. Cardiol. 2013;62:D100–D108. doi: 10.1016/j.jacc.2013.10.033.
    1. Georgiopoulou V.V., Kalogeropoulos A.P., Borlaug B.A., Gheorghiade M., Butler J. Left Ventricular Dysfunction with Pulmonary Hypertension. Circ. Heart Fail. 2013;6:344–354. doi: 10.1161/CIRCHEARTFAILURE.112.000095.
    1. Vonk-Noordegraaf A., Haddad F., Chin K.M., Forfia P.R., Kawut S.M., Lumens J., Naeije R., Newman J., Oudiz R.J., Provencher S., et al. Right Heart Adaptation to Pulmonary Arterial Hypertension. J. Am. Coll. Cardiol. 2013;62:D22–D33. doi: 10.1016/j.jacc.2013.10.027.
    1. Gerges C., Gerges M., Lang M.B., Zhang Y., Jakowitsch J., Probst P., Maurer G., Lang I.M. Diastolic Pulmonary Vascular Pressure Gradient. Chest. 2013;143:758–766. doi: 10.1378/chest.12-1653.
    1. Harris P. In: The Human Pulmonary Circulation: Its Form and Function in Health and Disease/Peter Harris, Donald Heath. Heath D., editor. Churchill Livingstone; London, UK: 1977. Foreword by Melville, Arnott; distributed in the United States of America by Longman.
    1. Ooi H., Colucci W.S., Givertz M.M. Endothelin Mediates Increased Pulmonary Vascular Tone in Patients with Heart Failure. Circulation. 2002;106:1618–1621. doi: 10.1161/01.CIR.0000034444.31846.F4.
    1. Cooper C.J., Jevnikar F.W., Walsh T., Dickinson J., Mouhaffel A., Selwyn A.P. The influence of basal nitric oxide activity on pulmonary vascular resistance in patients with congestive heart failure. Am. J. Cardiol. 1998;82:609–614. doi: 10.1016/S0002-9149(98)00400-7.
    1. Guazzi M., Borlaug B.A. Pulmonary Hypertension Due to Left Heart Disease. Circulation. 2012;126:975–990. doi: 10.1161/CIRCULATIONAHA.111.085761.
    1. Saouti N., Westerhof N., Postmus P.E., Vonk-Noordegraaf A. The arterial load in pulmonary hypertension. Eur. Respir. Rev. 2010;19:197–203. doi: 10.1183/09059180.00002210.
    1. Lankhaar J.W., Westerhof N., Faes T.J.C., Gan T.J., Marques K.M., Boonstra A., van den Berg F.G., Postmus P.E., Vonk-Noordegraaf A. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur. Heart J. 2008;29:1688–1695. doi: 10.1093/eurheartj/ehn103.
    1. Reuben S.R. Compliance of the Human Pulmonary Arterial System in Disease. Circ. Res. 1971;29:40–50. doi: 10.1161/01.RES.29.1.40.
    1. Kind T., Faes T.J.C., Vonk-Noordegraaf A., Westerhof N. Proportional Relations Between Systolic, Diastolic and Mean Pulmonary Artery Pressure are Explained by Vascular Properties. Cardiovasc. Eng. Technol. 2011;2:15–23. doi: 10.1007/s13239-010-0027-1.
    1. Vonk Noordegraaf A., Westerhof B.E., Westerhof N. The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2017;69:236–243. doi: 10.1016/j.jacc.2016.10.047.
    1. Tumminello G., Lancellotti P., Lempereur M., D’Orio V., Pierard L.A. Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur. Heart J. 2006;28:569–574. doi: 10.1093/eurheartj/ehl561.
    1. Swift A.J., Rajaram S., Condliffe R., Capener D., Hurdman J., Elliot C., Kiely D.G., Wild J.M. Pulmonary Artery Relative Area Change Detects Mild Elevations in Pulmonary Vascular Resistance and Predicts Adverse Outcome in Pulmonary Hypertension. Investig. Radiol. 2012;47:571–577. doi: 10.1097/RLI.0b013e31826c4341.
    1. D’Alonzo G.E. Survival in Patients with Primary Pulmonary Hypertension. Ann. Intern. Med. 1991;115:343. doi: 10.7326/0003-4819-115-5-343.
    1. Gan C.T.J., Lankhaar J.W., Westerhof N., Marcus J.T., Becker A., Twisk J.W.R., Boonstra A., Postmus P.E., Vonk-Noordegraaf A. Noninvasively Assessed Pulmonary Artery Stiffness Predicts Mortality in Pulmonary Arterial Hypertension. Chest. 2007;132:1906–1912. doi: 10.1378/chest.07-1246.
    1. Ghio S., Pazzano A.S., Klersy C., Scelsi L., Raineri C., Camporotondo R., D’Armini A., Visconti L.O. Clinical and Prognostic Relevance of Echocardiographic Evaluation of Right Ventricular Geometry in Patients with Idiopathic Pulmonary Arterial Hypertension. Am. J. Cardiol. 2011;107:628–632. doi: 10.1016/j.amjcard.2010.10.027.
    1. Raymond R.J., Hinderliter A.L., Willis P.W., Ralph D., Caldwell E.J., WSilliams W., Ettinger N.A., Hill N.S., Summer W.R., de Boisblanc B., et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J. Am. Coll. Cardiol. 2002;39:1214–1219. doi: 10.1016/S0735-1097(02)01744-8.
    1. Sachdev A., Villarraga H.R., Frantz R.P., McGoon M.D., Hsiao J.F., Maalouf J.F., Ammash N.M., McCully R.B., Miller F.A., Pellikka P.A., et al. Right Ventricular Strain for Prediction of Survival in Patients with Pulmonary Arterial Hypertension. Chest. 2011;139:1299–1309. doi: 10.1378/chest.10-2015.
    1. Ruocco G., Palazzuoli A. Early detection of pulmonary arterial hypertension: Do not forget the right ventricle. Nat. Rev. Cardiol. 2015;12:134. doi: 10.1038/nrcardio.2014.191-c1.
    1. Guihaire J., Haddad F., Boulate D. Non-invasive indices of right ventricular function are markers of ventricular-arterial coupling rather than ventricular contractility: Insights from a porcine model of chronic pressure overload. Eur. Heart J. Cardiovasc. Imaging. 2013;14:1140–1149. doi: 10.1093/ehjci/jet092.
    1. Kuehne T., Yilmaz S., Steendijk P., Moore P., Groenink M., Saaed M., Weber O., Higgins C.B., Ewert P., Fleck E., et al. Magnetic Resonance Imaging Analysis of Right Ventricular Pressure-Volume Loops. Circulation. 2004;110:2010–2016. doi: 10.1161/01.CIR.0000143138.02493.DD.
    1. Sano M., Minamino T., Toko H., Miyauchi H., Orimo M., Qin Y., Akazawa H., Tateno K., Kayama Y., Harada M., et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446:444–448. doi: 10.1038/nature05602.
    1. Chen D.D., Dong Y.G., Yuan H., Chen A.F. Endothelin 1 Activation of Endothelin A Receptor/NADPH Oxidase Pathway and Diminished Antioxidants Critically Contribute to Endothelial Progenitor Cell Reduction and Dysfunction in Salt-Sensitive Hypertension. Hypertension. 2012;59:1037–1043. doi: 10.1161/HYPERTENSIONAHA.111.183368.
    1. Tji-Joong Gan C., Lankhaar J.W., Marcus J.T., Westerhof N., Marques K.M., Bronzwaer J.G.F., Boonstra A., Postmus P.E., Vonk-Noordegraaf A. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am. J. Physiol.-Heart Circ. Physiol. 2006;290:H1528–H1533. doi: 10.1152/ajpheart.01031.2005.
    1. Marcus J.T., Gan C.T.J., Zwanenburg J.J.M., Boonstra A., Allaart C.P., Götte M.J., Vonk-Noordegraaf A. Interventricular Mechanical Asynchrony in Pulmonary Arterial Hypertension. J. Am. Coll. Cardiol. 2008;51:750–757. doi: 10.1016/j.jacc.2007.10.041.
    1. Mauritz G.J., Marcus J.T., Westerhof N., Postmus P.E., Vonk-Noordegraaf A. Prolonged right ventricular post-systolic isovolumic period in pulmonary arterial hypertension is not a reflection of diastolic dysfunction. Heart. 2011;97:473–478. doi: 10.1136/hrt.2010.193375.
    1. Vonk Noordegraaf A., Chin K.M., Haddad F., Hassoun P.M., Hemnes A.R., Hopkins S.R., Kawut S.M., Langleben D., Lumens J., Naeije R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: An update. Eur. Respir. J. 2019;53:1801900. doi: 10.1183/13993003.01900-2018.
    1. Ghio S., Guazzi M., Scardovi A.B., Klersy C., Clemenza F., Carluccio E., Temporelli P.L., Rossi A., Faggiano P., Traversi E., et al. Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur. J. Heart Fail. 2017;19:873–879. doi: 10.1002/ejhf.664.
    1. Lam C.S.P., Borlaug B.A., Kane G.C., Enders F.T., Rodeheffer R.J., Redfield M.M. Age-Associated Increases in Pulmonary Artery Systolic Pressure in the General Population. Circulation. 2009;119:2663–2670. doi: 10.1161/CIRCULATIONAHA.108.838698.
    1. Kjaergaard J., Akkan D., Iversen K.K., Kjoller E., Kober L., Torp-Pedersen C., Hassager C. Prognostic Importance of Pulmonary Hypertension in Patients with Heart Failure. Am. J. Cardiol. 2007;99:1146–1150. doi: 10.1016/j.amjcard.2006.11.052.
    1. Damy T., Kallvikbacka-Bennett A., Goode K., Khaleva O., Lewinter C., Hobkirk J., Nikitin N.P., Dubois-Rande J.L., Hittinger L., Vlark A.J., et al. Prevalence of, Associations With, and Prognostic Value of Tricuspid Annular Plane Systolic Excursion (TAPSE) Among Out-Patients Referred for the Evaluation of Heart Failure. J. Card. Fail. 2012;18:216–225. doi: 10.1016/j.cardfail.2011.12.003.
    1. Ghio S., Recusani F., Klersy C., Sebastiani R., Laudisa M.L., Campana C., Gavazzi A., Tavazzi L. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am. J. Cardiol. 2000;85:837–842. doi: 10.1016/S0002-9149(99)00877-2.
    1. Guazzi M., Bandera F., Pelissero G., Castelvecchio S., Menicanti L., Ghio S., Temporelli P.L., Arena R. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: An index of right ventricular contractile function and prognosis. Am. J. Physiol.-Heart Circ. Physiol. 2013;305:H1373–H1381. doi: 10.1152/ajpheart.00157.2013.
    1. Palazzuoli A., Ruocco G., Evangelista I., de Vivo O., Nuti R., Ghio S. Prognostic Significance of an Early Echocardiographic Evaluation of Right Ventricular Dimension and Function in Acute Heart Failure. J. Card. Fail. 2020;26:813–820. doi: 10.1016/j.cardfail.2020.01.002.
    1. Melenovsky V., Hwang S.J., Lin G., Redfield M.M., Borlaug B.A. Right heart dysfunction in heart failure with preserved ejection fraction. Eur. Heart J. 2014;35:3452–3462. doi: 10.1093/eurheartj/ehu193.
    1. Bosch L., Lam C.S.P., Gong L., Chan S.P., Sim D., Yeo D., Jaufeerallu F., Leong K.T.G., Ong H.Y., Ng T.P., et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur. J. Heart Fail. 2017;19:1664–1671. doi: 10.1002/ejhf.873.

Source: PubMed

3
Abonner