The double agents in liquid biopsy: promoter and informant biomarkers of early metastases in breast cancer

Vinitha Richard, Matthew G Davey, Heidi Annuk, Nicola Miller, Michael J Kerin, Vinitha Richard, Matthew G Davey, Heidi Annuk, Nicola Miller, Michael J Kerin

Abstract

Breast cancer continues to be a major global problem with significant mortality associated with advanced stage and metastases at clinical presentation. However, several findings suggest that metastasis is indeed an early occurrence. The standard diagnostic techniques such as invasive core needle biopsy, serological protein marker assays, and non-invasive radiological imaging do not provide information about the presence and molecular profile of small fractions of early metastatic tumor cells which are prematurely dispersed in the circulatory system. These circulating tumor cells (CTCs) diverge from the primary tumors as clusters with a defined secretome comprised of circulating cell-free nucleic acids and small microRNAs (miRNAs). These circulatory biomarkers provide a blueprint of the mutational profile of the tumor burden and tumor associated alterations in the molecular signaling pathways involved in oncogenesis. Amidst the multitude of circulatory biomarkers, miRNAs serve as relatively stable and precise biomarkers in the blood for the early detection of CTCs, and promote step-wise disease progression by executing paracrine signaling that transforms the microenvironment to guide the metastatic CTCs to anchor at a conducive new organ. Random sampling of easily accessible patient blood or its serum/plasma derivatives and other bodily fluids collectively known as liquid biopsy (LB), forms an efficient alternative to tissue biopsies. In this review, we discuss in detail the divergence of early metastases as CTCs and the involvement of miRNAs as detectable blood-based diagnostic biomarkers that warrant a timely screening of cancer, serial monitoring of therapeutic response, and the dynamic molecular adaptations induced by miRNAs on CTCs in guiding primary and second-line systemic therapy.

Keywords: Biomarkers; Breast cancer; Cell-free nucleic acids; Circulating tumor cells; Liquid biopsy; Metastasis; microRNAs.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Emergence of Circulating Tumor Cells in Early Stage Breast Cancer. Tumor cells enter the blood stream as single CTC or cluster of CTCs endowed with attributes of immune evasion, stemness and proliferation potentials. These cells also secrete cell-free nucleic acids that may be utilized as blood-based biomarkers for detecting the presence of breast cancer
Fig. 2
Fig. 2
Components of Blood Biopsy for the Early Detection of Breast Cancer. Molecular components of liquid biopsy with immense implications in precision medicine

References

    1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi: 10.3322/caac.21660.
    1. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274(2):113–126. doi: 10.1111/joim.12084.
    1. Di Gioia D, Stieber P, Schmidt GP, Nagel D, Heinemann V, Baur-Melnyk A. Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase. Br J Cancer. 2015;112(5):809–818. doi: 10.1038/bjc.2015.8.
    1. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–3277. doi: 10.1200/JCO.2009.25.9820.
    1. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, et al. Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:1194–1220. doi: 10.1093/annonc/mdz173.
    1. Look MP, van Putten WL, Duffy MJ, Harbeck N, Christensen IJ, et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst. 2002;94(2):116–128. doi: 10.1093/jnci/94.2.116.
    1. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–544. doi: 10.1038/nbt.2576.
    1. Zhang H, Lin X, Huang Y, Wang M, Cen C, et al. Detection methods and clinical applications of circulating tumor cells in breast cancer. Front Oncol. 2021;11:1816. doi: 10.3389/fonc.2021.652253.
    1. Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146.
    1. Fisher B. Biological research in the evolution of cancer surgery: a personal perspective. Cancer Res. 2008;68(24):10007. doi: 10.1158/0008-5472.
    1. Fisher B, Ravdin RG, Ausman RK, Slack NH, Moore GE, Noer RJ. Surgical adjuvant chemotherapy in cancer of the breast: results of a decade of cooperative investigation. Ann Surg. 1968;168(3):337–356. doi: 10.1097/00000658-196809000-00004.
    1. Rabinovitch R, Kavanagh B. Double Helix of breast cancer therapy: intertwining the Halsted and Fisher hypotheses. J Clin Oncol. 2009;27(15):2422–2423. doi: 10.1200/JCO.2009.21.8453.
    1. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13(1):8–10. doi: 10.1200/JCO.1995.13.1.8.
    1. Domínguez-Vigil IG, Moreno-Martínez AK, Wang JY, Roehrl MHA, Barrera-Saldaña HA. The dawn of the liquid biopsy in the fight against cancer. Oncotarget. 2017;9(2):2912–2922. doi: 10.18632/oncotarget.23131.
    1. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–491. doi: 10.1158/-15-1483.
    1. Yang C, Xia B-R, Jin W-L, Lou G: Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019, 19(1):341. doi: 10.1186/s12935-019-1067-8.
    1. Yang M, Forbes ME, Bitting RL, O'Neill SS, Chou PC, Topaloglu U, Miller LD, Hawkins GA, Grant SC, DeYoung BR, et al. Incorporating blood-based liquid biopsy information into cancer staging: time for a TNMB system? Ann Oncol. 2018;29(2):311–323. doi: 10.1093/annonc/mdx766.
    1. Siravegna G, Bardelli A. Genotyping cell-free tumor DNA in the blood to detect residual disease and drug resistance. Genome Biol. 2014;15(8):449. doi: 10.1186/s13059-014-0449-4.
    1. Davey MG, Davies M, Lowery AJ, Miller N, Kerin MJ. The role of MicroRNA as clinical biomarkers for breast cancer surgery and treatment. Int J Mol Sci. 2021;22(15):8290. doi: 10.3390/ijms22158290.
    1. Davey MG, Lowery AJ, Miller N, Kerin MJ. MicroRNA expression profiles and breast cancer chemotherapy. Int J Mol Sci. 2021;22(19):10812. doi: 10.3390/ijms221910812.
    1. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035.
    1. Huan J, Hornick NI, Shurtleff MJ, Skinner AM, Goloviznina NA, Roberts CT, Jr, Kurre P. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 2013;73(2):918–929. doi: 10.1158/0008-5472.CAN-12-2184.
    1. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–866. doi: 10.1038/nrc1997.
    1. Richard V, Davey MG, Annuk H, Miller N, Dwyer RM, Lowery A, Kerin MJ. MicroRNAs in molecular classification and pathogenesis of breast tumors. Cancers (Basel) 2021;13(21):5332. doi: 10.3390/cancers13215332.
    1. Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55:623. doi: 10.1373/clinchem.2008.112805.
    1. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8(10):R214. doi: 10.1186/gb-2007-8-10-r214.
    1. Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11(3):R27. doi: 10.1186/bcr2257.
    1. McGuire A, Brown JA, Kerin MJ. Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev. 2015;34(1):145–155. doi: 10.1007/s10555-015-9551-7.
    1. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–838. doi: 10.1038/nature03702.
    1. Sathipati SY, Ho S-Y. Identifying a miRNA signature for predicting the stage of breast cancer. Sci Rep. 2018;8(1):16138. doi: 10.1038/s41598-018-34604-3.
    1. Kanchan RK, Siddiqui JA, Mahapatra S, et al. MicroRNAs orchestrate pathophysiology of breast cancer brain metastasis: advances in therapy. Mol Cancer. 2020;19:29. doi: 10.1186/s12943-020-1140-x.
    1. Michael IP, Saghafinia S, Hanahan D. A set of microRNAs coordinately controls tumorigenesis, invasion, and metastasis. PNAS. 2019;116(48):24184–24195. doi: 10.1073/pnas.1913307116.
    1. Hamam R, Hamam D, Alsaleh KA, et al. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017;8(9):e3045. doi: 10.1038/cddis.2017.440.
    1. Nik-Zainal S, Alexandrov LB, Wedge DC, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):979–993. doi: 10.1016/j.cell.2012.04.024.
    1. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569:560–564. doi: 10.1038/s41586-019-1056-z.
    1. Hüsemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13(1):58–68. doi: 10.1016/j.ccr.2007.12.003.
    1. Krol I, Schwab FD, Carbone R, Ritter M, Picocci S, et al. Detection of clustered circulating tumour cells in early breast cancer. Br J Cancer. 2021;125(1):23–27. doi: 10.1038/s41416-021-01327-8.
    1. Engel J, Eckel R, Kerr J, Schmidt M, Fürstenberger G, et al. The process of metastasisation for breast cancer. Eur J Cancer. 2003;39(12):1794–1806. doi: 10.1016/S0959-8049(03)00422-2.
    1. Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol. 2017;11(1):40–61. doi: 10.1002/1878-0261.12022.
    1. Steeg P. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12:895–904. doi: 10.1038/nm1469.
    1. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10(24):8152. doi: 10.1158/1078-0432.CCR-04-1110.
    1. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353(8):793–802. doi: 10.1056/NEJMoa050434.
    1. Hartung F, Wang Y, Aronow B, Weber GF. A core program of gene expression characterizes cancer metastases. Oncotarget. 2017;8(60):102161–102175. doi: 10.18632/oncotarget.22240.
    1. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Nat Acad Sci. 2003;100(13):7737. doi: 10.1073/pnas.1331931100.
    1. Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O, et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell. 2005;8(3):227–239. doi: 10.1016/j.ccr.2005.08.003.
    1. Waldman FM, DeVries S, Chew KL, Moore DH, II, Kerlikowske K, Ljung B-M. Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst. 2000;92(4):313–320. doi: 10.1093/jnci/92.4.313.
    1. Chin K, de Solorzano CO, Knowles D, Jones A, Chou W, et al. In situ analyses of genome instability in breast cancer. Nat Genet. 2004;36(9):984–988. doi: 10.1038/ng1409.
    1. Iwamoto T, Niikura N, Ogiya R, et al. Distinct gene expression profiles between primary breast cancers and brain metastases from pair-matched samples. Sci Rep. 2019;9(1):13343. doi: 10.1038/s41598-019-50099-y.
    1. Riebensahm C, Joosse SA, Mohme M, Hanssen A, Matschke J, et al. Clonality of circulating tumor cells in breast cancer brain metastasis patients. Breast Cancer Res. 2019;21(1):101. doi: 10.1186/s13058-019-1184-2.
    1. Holsbø E, Olsen KS. Metastatic breast cancer and pre-diagnostic blood gene expression profiles—the Norwegian Women and Cancer (NOWAC) post-genome cohort. Front Oncol. 2020;10(2277). 10.3389/fonc.2020.575461.
    1. Sieuwerts AM, Mostert B, Bolt-de Vries J, Peeters D, de Jongh FE, et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res. 2011;17(11):3600. doi: 10.1158/1078-0432.CCR-11-0255.
    1. Yu M, Bardia A, Wittner BS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–584. doi: 10.1126/science.1228522.
    1. Hosseini H, Obradović MMS, Hoffmann M, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016;540(7634):552–558. doi: 10.1038/nature20785.
    1. Khan S, Greco D, Michailidou K, Milne RL, Muranen TA, et al. MicroRNA related polymorphisms and breast cancer risk. PLoS One. 2014;9(11):e109973. doi: 10.1371/journal.pone.0109973.
    1. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–419. doi: 10.1038/nature01957.
    1. Cheung KJ, Ewald AJ. A collective route to metastasis: seeding by tumor cell clusters. Science. 2016;352(6282):167–169. doi: 10.1126/science.aaf6546.
    1. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. PNAS. 2016;113(7):E854. doi: 10.1073/pnas.1508541113.
    1. Donato C, Kunz L, Castro-Giner F, et al. Hypoxia triggers the intravasation of clustered circulating tumor cells. Cell Rep. 2020;32(10):108105. doi: 10.1016/j.celrep.2020.108105.
    1. Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–1122. doi: 10.1016/j.cell.2014.07.013.
    1. Aktary Z, Pasdar M. Plakoglobin: role in tumorigenesis and metastasis. Int J Cell Biol. 2012;2012:189521. doi: 10.1155/2012/189521.
    1. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;176(1–2):98–112.e114. doi: 10.1016/j.cell.2018.11.046.
    1. Smietanka U, Szostakowska-Rodzos M, Tabor S, Fabisiewicz A, Grzybowska EA. Clusters, assemblies and aggregates of tumor cells in the blood of breast cancer patients; composition, mode of action, detection and impact on metastasis and survival. Int J Transl Med. 2021;1(1):55–68. doi: 10.3390/ijtm1010005.
    1. Wrenn ED, Yamamoto A, Moore BM, Huang Y, McBirney M, et al. Regulation of collective metastasis by nanolumenal signaling. Cell. 2020;183(2):395–410.e19. doi: 10.1016/j.cell.2020.08.045.
    1. Ward MP, Kane LE, Norris LA, et al. Platelets, immune cells and the coagulation cascade; friend or foe of the circulating tumour cell? Mol Cancer. 2021;20(1):59. doi: 10.1186/s12943-021-01347-1.
    1. Tan W, Liang G, Xie X, et al. Incorporating microRNA into molecular phenotypes of circulating tumor cells enhances the prognostic accuracy for patients with metastatic breast cancer. Oncologist. 2019;24(11):e1044–e1054. doi: 10.1634/theoncologist.2018-0697.
    1. Reduzzi C, Di Cosimo S, Gerratana L, et al. Circulating tumor cell clusters are frequently detected in women with early-stage breast cancer. Cancers (Basel) 2021;13(10):2356. doi: 10.3390/cancers13102356.
    1. Larsson AM, Jansson S, Bendahl PO, et al. Longitudinal enumeration and cluster evaluation of circulating tumor cells improve prognostication for patients with newly diagnosed metastatic breast cancer in a prospective observational trial. Breast Cancer Res. 2018;20(1):48. doi: 10.1186/s13058-018-0976-0.
    1. Wang C, Mu Z, Chervoneva I, et al. Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res Treat. 2017;161(1):83–94. doi: 10.1007/s10549-016-4026-2.
    1. Mohanty A, Mohanty SK, Rout S, Pani C. Liquid biopsy, the hype vs. hope in molecular and clinical oncology. Semin Oncol. 2021;48(3):259–267. doi: 10.1053/j.seminoncol.2021.06.002.
    1. Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: a comprehensive review. Clin Genet. 2019;95(6):643–660. doi: 10.1111/cge.13514.
    1. Qi F, Gao F, Cai Y, Han X, Qi Y, et al. Complex age- and cancer-related changes in human blood transcriptome-implications for pan-cancer diagnostics. Front Genet. 2021;12:746879. doi: 10.3389/fgene.2021.746879.
    1. Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer. 2019;19(10):553–567. doi: 10.1038/s41568-019-0180-2.
    1. Seale KN, Tkaczuk KHR. Circulating biomarkers in breast cancer. Clin Breast Cancer. 2021. 10.1016/j.clbc.2021.09.006.
    1. Tkaczuk KHR, Goloubeva O, Tait NS, Feldman F, Tan M, et al. The significance of circulating epithelial cells in breast cancer patients by a novel negative selection method. Breast Cancer Res Treat. 2008;111(2):355–364. doi: 10.1007/s10549-007-9771-9.
    1. Sparano J, O’Neill A, Alpaugh K, Wolff AC, Northfelt DW, Dang CT, Sledge GW, Miller KD. Association of circulating tumor cells with late recurrence of estrogen receptor–positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4(12):1700–1706. doi: 10.1001/jamaoncol.2018.2574.
    1. Bortolini Silveira A, Bidard FC, Tanguy ML, Girard E, Trédan O, et al. Multimodal liquid biopsy for early monitoring and outcome prediction of chemotherapy in metastatic breast cancer. NPJ Breast Cancer. 2021;7(1):115. doi: 10.1038/s41523-021-00319-4.
    1. Panagopoulou M, Karaglani M, Balgkouranidou I, Biziota E, Koukaki T, et al. Circulating cell-free DNA in breast cancer: size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers. Oncogene. 2019;38(18):3387–3401. doi: 10.1038/s41388-018-0660-y.
    1. Mouliere F, Rosenfeld N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci. 2015;112(11):3178. doi: 10.1073/pnas.1501321112.
    1. Allegretti M, Fabi A, Giordani E, Ercolani C, Romania P, et al. Liquid biopsy identifies actionable dynamic predictors of resistance to Trastuzumab Emtansine (T-DM1) in advanced HER2-positive breast cancer. Mol Cancer. 2021;20(1):151. doi: 10.1186/s12943-021-01438-z.
    1. Russo A, Incorvaia L, Del Re M, Malapelle U, Capoluongo E, et al. The molecular profiling of solid tumors by liquid biopsy: a position paper of the AIOM-SIAPEC-IAP-SIBioC-SIC-SIF Italian Scientific Societies. ESMO Open. 2021;6(3):100164. doi: 10.1016/j.esmoop.2021.100164.
    1. André F, Ciruelos EM, Juric D, Loibl S, Campone M, et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann Oncol. 2021;32(2):208–217. doi: 10.1016/j.annonc.2020.11.011.
    1. O’Leary B, Hrebien S, Morden JP, Beaney M, Fribbens C, Huang X, et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat Commun. 2018;9(1):896. doi: 10.1038/s41467-018-03215-x.
    1. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004. doi: 10.1073/pnas.0307323101.
    1. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, et al. MicroRNA gene expression deregulation in human breast cancer. 2005;65(16):7065–70. 10.1158/0008-5472.CAN-05-1783.
    1. Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J Mol Diagn. 2015;17(3):209–224. doi: 10.1016/j.jmoldx.2015.02.001.
    1. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. doi: 10.3390/cells8070727.
    1. Izzotti A, Carozzo S, Pulliero A, Zhabayeva D, Ravetti JL, Bersimbaev R. Extracellular MicroRNA in liquid biopsy: applicability in cancer diagnosis and prevention. Am J Cancer Res. 2016;6(7):1461–1493.
    1. Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L, et al. Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One. 2012;7(1):e29770. doi: 10.1371/journal.pone.0029770.
    1. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–5008. doi: 10.1073/pnas.1019055108.
    1. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596.
    1. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–159. doi: 10.1038/nrg2521.
    1. López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pérez-Plasencia C, Campos-Parra AD. Crosstalk between long non-coding rnas, micro-RNAs and mRNAs: Deciphering molecular mechanisms of master regulators in cancer. Front Oncol. 2019;9:669. doi: 10.3389/fonc.2019.00669.
    1. Mahmoud MM, Sanad EF, Elshimy RAA, Hamdy NM. Competitive endogenous role of the LINC00511/miR-185-3p axis and miR-301a-3p from liquid biopsy as molecular markers for breast cancer diagnosis. Front Oncol. 2021;11:749753. doi: 10.3389/fonc.2021.749753.
    1. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi: 10.1080/20013078.2018.1535750.
    1. Nanou A, Miller MC, Zeune LL, de Wit S, Punt CJ, et al. Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br J Cancer. 2020;122(6):801–811. doi: 10.1038/s41416-019-0726-9.
    1. O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21(10):585–606. doi: 10.1038/s41580-020-0251-y.
    1. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14(1):319. doi: 10.1186/1471-2164-14-319.
    1. Pigati L, Yaddanapudi SCS, Iyengar R, Kim D-J, Hearn SA, et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 2010;5(10):e13515. doi: 10.1371/journal.pone.0013515.
    1. Madhavan D, Zucknick M, Wallwiener M, Cuk K, Modugno C, et al. Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res. 2012;18(21):5972. doi: 10.1158/1078-0432.CCR-12-1407.
    1. Heaphy CM, Griffith JK, Bisoffi M. Mammary field cancerization: molecular evidence and clinical importance. Breast Cancer Res Treat. 2009;118(2):229–239. doi: 10.1007/s10549-009-0504-0.
    1. Alunni-Fabbroni M, Majunke L, Trapp EK, et al. Whole blood microRNAs as potential biomarkers in post-operative early breast cancer patients. BMC Cancer. 2018;18:141. doi: 10.1186/s12885-018-4020-7.
    1. Majumder M, Ugwuagbo KC, Maiti S, Lala PK, Brackstone M. Pri-miR526b and Pri-miR655 are potential blood biomarkers for breast cancer. Cancers. 2021;13(15):3838. doi: 10.3390/cancers13153838.
    1. Shin B, Feser R, Nault B, Hunter S, Maiti S, Ugwuagbo KC, Majumder M. MiR526b and miR655 induce oxidative stress in breast cancer. Int J Mol Sci. 2019;20(16):4039. doi: 10.3390/ijms20164039.
    1. Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3. 10.3402/jev.v3403.23743.
    1. Hunter S, Nault B, Ugwuagbo KC, Maiti S, Majumder M. Mir526b and Mir655 promote tumour associated angiogenesis and lymphangiogenesis in breast cancer. Cancers. 2019;11(7):938. doi: 10.3390/cancers11070938.
    1. Itani MM, Nassar FJ, Tfayli AH, Talhouk RS, Chamandi GK, et al. A signature of four circulating microRNAs as potential biomarkers for diagnosing early-stage breast cancer. Int J Mol Sci. 2021;22(11):6121. doi: 10.3390/ijms22116121.
    1. Silvestri M, Reduzzi C, Feliciello G, et al. Detection of genomically aberrant cells within circulating tumor microemboli (CTMs) isolated from early-stage breast cancer patients. Cancers (Basel) 2021;13(6):1409. doi: 10.3390/cancers13061409.
    1. Pérez-Rivas LG, Jerez JM, Carmona R, de Luque V, Vicioso L, et al. A microRNA signature associated with early recurrence in breast cancer. PLoS One. 2014;9(3):e91884. doi: 10.1371/journal.pone.0091884.
    1. Yan LX, Huang XF, Shao Q, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–2360. doi: 10.1261/rna.1034808.
    1. McAnena P, Tanriverdi K, Curran C, et al. Circulating microRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer. BMC Cancer. 2019;19(1):436. doi: 10.1186/s12885-019-5636-y.
    1. Søkilde R, Persson H, Ehinger A, et al. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics. 2019;20(1):503. doi: 10.1186/s12864-019-5887-7.
    1. Lowery AJ, Miller N, Dwyer RM, Kerin MJ. Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer. 2010;10:502. doi: 10.1186/1471-2407-10-502.
    1. Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10(2):202–210. doi: 10.1038/ncb1681.
    1. Jinesh GG, Flores ER, Brohl AS. Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS One. 2018;13(10):e0206008. doi: 10.1371/journal.pone.0206008.
    1. Jordan N, Bardia A, Wittner B, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537:102–106. doi: 10.1038/nature19328.
    1. Yu T, Wang C, Xie M, Zhu C, Shu Y, Tang J, Guan X. Heterogeneity of CTC contributes to the organotropism of breast cancer. Biomed Pharmacother. 2021;137:111314. doi: 10.1016/j.biopha.2021.111314.
    1. Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18(1):90. doi: 10.1186/s13058-016-0753-x.
    1. Ozawa PMM, Vieira E, Lemos DS, Souza ILM, Zanata SM, et al. Identification of miRNAs enriched in extracellular vesicles derived from serum samples of breast cancer patients. Biomolecules. 2020;10(1). 10.3390/biom10010150.
    1. Li M, Zhou Y, Xia T, Zhou X, Huang Z, et al. Circulating microRNAs from the miR-106a–363 cluster on chromosome X as novel diagnostic biomarkers for breast cancer. Breast Cancer Res Treat. 2018;170(2):257–270. doi: 10.1007/s10549-018-4757-3.
    1. Ozawa PMM, Jucoski TS, Vieira E, Carvalho TM, Malheiros D. Ribeiro EMdSF: liquid biopsy for breast cancer using extracellular vesicles and cell-free microRNAs as biomarkers. Transl Res. 2020;223:40–60. doi: 10.1016/j.trsl.2020.04.002.
    1. Holubekova V, Kolkova Z, Grendar M, Brany D, Dvorska D, et al. Pathway analysis of selected circulating miRNAs in plasma of breast cancer patients: a preliminary study. Int J Mol Sci. 2020;21(19). 10.3390/ijms21197288.
    1. Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer. 2013;132(7):1602–1612. doi: 10.1002/ijc.27799.
    1. Lagendijk M, Sadaatmand S, Koppert LB, Tilanus-Linthorst MMA, de Weerd V, et al. MicroRNA expression in pre-treatment plasma of patients with benign breast diseases and breast cancer. Oncotarget. 2018;9(36):24335–24346. doi: 10.18632/oncotarget.25262.
    1. Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15(7):673–682. doi: 10.1634/theoncologist.2010-0103.
    1. Zhao F-l, Dou Y-c, Wang X-f, Han D-c, Lv Z-g, Ge S-l, Zhang Y-k. Serum microRNA-195 is down-regulated in breast cancer: a potential marker for the diagnosis of breast cancer. Mol Biol Rep. 2014;41(9):5913–5922. doi: 10.1007/s11033-014-3466-1.
    1. Witzel I, Oliveira-Ferrer L, Pantel K, Müller V, Wikman H. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res. 2016;18(1):8. doi: 10.1186/s13058-015-0665-1.
    1. Jin J, Gao Y, Zhang J, Wang L, Wang B, Cao J, Shao Z, Wang Z. Incidence, pattern and prognosis of brain metastases in patients with metastatic triple negative breast cancer. BMC Cancer. 2018;18(1):446. doi: 10.1186/s12885-018-4371-0.
    1. Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun. 2015;6(1):6716. doi: 10.1038/ncomms7716.
    1. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–549. doi: 10.1016/S1535-6108(03)00132-6.
    1. Wu K, Feng J, Lyu F, Xing F, Sharma S, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat Commun. 2021;12(1):5196. doi: 10.1038/s41467-021-25473-y.
    1. Di Cosimo S, Appierto V, Pizzamiglio S, Silvestri M, Baselga J, et al. Early modulation of circulating microRNAs levels in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Int J Mol Sci. 2020;21(4):1386. doi: 10.3390/ijms21041386.
    1. Salvador-Coloma C, Santaballa A, Sanmartín E, Calvo D, García A, et al. Immunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Cancer (Oxford, England: 1990) 2020;139:119–134. doi: 10.1016/j.ejca.2020.08.020.
    1. Shimomura A, Shiino S, Kawauchi J, Takizawa S, Sakamoto H, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci. 2016;107(3):326–334. doi: 10.1111/cas.12880.
    1. Stückrath I, Rack B, Janni W, Jäger B, Pantel K, Schwarzenbach H. Aberrant plasma levels of circulating miR-16, miR-107, miR-130a and miR-146a are associated with lymph node metastasis and receptor status of breast cancer patients. Oncotarget. 2015;6(15):13387–13401. doi: 10.18632/oncotarget.3874.
    1. Lasham A, Fitzgerald SJ, Knowlton N, Robb T, Tsai P, et al. A predictor of early disease recurrence in patients with breast cancer using a cell-free RNA and protein liquid biopsy. Clin Breast Cancer. 2020;20(2):108–116. doi: 10.1016/j.clbc.2019.07.003.
    1. Rodríguez-Martínez A, de Miguel-Pérez D, Ortega FG, García-Puche JL, Robles-Fernández I, et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res. 2019;21(1):21. doi: 10.1186/s13058-019-1109-0.
    1. Riethdorf S. Detection of microRNAs in circulating tumor cells. Trans Can Res. 2017;7(2):S197–S208. doi: 10.21037/tcr.2017.10.24.
    1. Gasch C, Plummer PN, Jovanovic L, et al. Heterogeneity of miR-10b expression in circulating tumor cells. Sci Rep. 2015;5:15980. doi: 10.1038/srep15980.
    1. Yoo B, Kavishwar A, Wang P, et al. Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Sci Rep. 2017;7:45060. doi: 10.1038/srep45060.
    1. Fischer KR, Durrans A, Lee S, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527(7579):472–476. doi: 10.1038/nature15748.
    1. Drusco A, Bottoni A, Laganà A, et al. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget. 2015;6(25):20829–20839. doi: 10.18632/oncotarget.4096.
    1. Gao S, Lu X, Ma J, Zhou Q, Tang R, Fu Z, Wang F, Lv M, Lu C. Comprehensive analysis of lncRNA and miRNA regulatory network reveals potential prognostic non-coding RNA involved in breast cancer progression. Front Genet. 2021;12:621809. doi: 10.3389/fgene.2021.621809.
    1. Zhou Z, Wu Q, Yan Z, Zheng H, Chen CJ, et al. Extracellular RNA in a single droplet of human serum reflects physiologic and disease states. Proc Natl Acad Sci U S A. 2019;116(38):19200–19208. doi: 10.1073/pnas.1908252116.

Source: PubMed

3
Abonner