The Effectiveness of Osseodensification Drilling Protocol for Implant Site Osteotomy: A Systematic Review of the Literature and Meta-Analysis

Alessio Danilo Inchingolo, Angelo Michele Inchingolo, Ioana Roxana Bordea, Edit Xhajanka, Donato Mario Romeo, Mario Romeo, Carlo Maria Felice Zappone, Giuseppina Malcangi, Antonio Scarano, Felice Lorusso, Ciro Gargiulo Isacco, Grazia Marinelli, Maria Contaldo, Andrea Ballini, Francesco Inchingolo, Gianna Dipalma, Alessio Danilo Inchingolo, Angelo Michele Inchingolo, Ioana Roxana Bordea, Edit Xhajanka, Donato Mario Romeo, Mario Romeo, Carlo Maria Felice Zappone, Giuseppina Malcangi, Antonio Scarano, Felice Lorusso, Ciro Gargiulo Isacco, Grazia Marinelli, Maria Contaldo, Andrea Ballini, Francesco Inchingolo, Gianna Dipalma

Abstract

Many different osteotomy procedures has been proposed in the literature for dental implant site preparation. The osseodensification is a drilling technique that has been proposed to improve the local bone quality and implant stability in poor density alveolar ridges. This technique determines an expansion of the implant site by increasing the density of the adjacent bone. The aim of the present investigation was to evaluate the effectiveness of the osseodensification technique for implant site preparation through a literature review and meta-analysis. The database electronic research was performed on PubMed (Medline) database for the screening of the scientific papers. A total of 16 articles have been identified suitable for the review and qualitative analysis-11 clinical studies (eight on animals, three on human subjects), four literature reviews, and one case report. The meta-analysis was performed to compare the bone-to-implant contact % (BIC), bone area fraction occupied % (BAFO), and insertion torque of clockwise and counter-clockwise osseodensification procedure in animal studies. The included articles reported a significant increase in the insertion torque of the implants positioned through the osseodensification protocol compared to the conventional drilling technique. Advantages of this new technique are important above all when the patient has a strong missing and/or low quantity of bone tissue. The data collected until the drafting of this paper detect an improvement when the osseodensification has been adopted if compared to the conventional technique. A significant difference in BIC and insertion torque between the clockwise and counter-clockwise osseodensification procedure was reported, with no difference in BAFO measurements between the two approaches. The effectiveness of the present study demonstrated that the osseodensification drilling protocol is a useful technique to obtain increased implant insertion torque and bone to implant contact (BIC) in vivo. Further randomized clinical studies are required to confirm these pieces of evidence in human studies.

Keywords: bone to implant contact; endo-osseous dental implant; osseodensification bone osteotomy; primary stability.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Studies screening and inclusion for qualitative analysis and meta-data evaluation processes [63].
Figure 2
Figure 2
Comparison of the statistic value p. between the conventional technique of implant site preparation and technique with the use of drills for osseodensification. Parameters used BAFO (considered in 4 studies of 11) and BIC (considered in 6 studies of 11). For p < 0.05 we considered statistically valid the favorable results obtained by the osseodensification technique compared to the conventional technique.
Figure 3
Figure 3
Main characteristics of the osseodensification drilling technique: details of clockwise and counterclockwise implant site preparation modalities.
Figure 4
Figure 4
Details of the osseodensification drills system. (A) description of the cutters with an indication of the depth of the bone from 3.00 mm to 20 mm of the method “implant drilling with bone compaction instrumentation technique.” (B) Complete osseodensification Kit 13. “implant drilling with bone compaction instrumentation technique.” (C) Complete kit of all the cutters Versah® (includes all the 13 cutters) with the method “implant drilling with bone compaction instrumentation technique.” Autoclavable kit at 137°. (D) Cutters in progressive order of the method “implant drilling with bone compaction instrumentation technique.”
Figure 5
Figure 5
Initial drilling pilot cutter of the method “implant drilling with bone compaction instrumentation technique.”
Figure 6
Figure 6
Second cutter with a diameter of 2.0 mm in the method “implant drilling with bone compaction instrumentation technique.”
Figure 7
Figure 7
Third cutter with a diameter of 2.3 mm in the method “implant drilling with bone compaction instrumentation technique.”
Figure 8
Figure 8
Fourth cutter with a diameter of 2.5 mm in the method “implant drilling with bone compaction instrumentation technique.”
Figure 9
Figure 9
Fifth cutter with a diameter of 3.0 mm in the method “implant drilling with bone compaction instrumentation technique.”
Figure 10
Figure 10
Tenth cutter with a diameter of 4.5 mm in the method “implant drilling with bone compaction instrumentation technique.”
Figure 11
Figure 11
The 13th and last cutter with a diameter of 5.5 mm, method “implant drilling with bone compaction instrumentation technique.”
Figure 12
Figure 12
Forest plot of comparison of BIC percentage, of the clockwise procedure (right) and counter-clockwise procedure (left).
Figure 13
Figure 13
Forest plot of comparison of insertion torque, of the clockwise procedure (right) and counter-clockwise procedure (left).
Figure 14
Figure 14
Forest plot of comparison of insertion torque, of the BAFO (right) and counter-clockwise procedure (left).
Figure 15
Figure 15
Risk of bias measurement: (A) summary of risk of bias for each included study (left) and (B) summary of each risk of bias item presented as percentages across all included studies (right).

References

    1. Albrektsson T., Zarb G., Worthington P., Eriksson A.R. The Long-Term Efficacy of Currently Used Dental Implants: A Review and Proposed Criteria of Success. Int. J. Oral Maxillofac. Implant. 1986;1:11–25.
    1. Albrektsson T., Berglundh T., Lindhe J. Osseointegration: Historic Background and Current Concepts. Clin. Periodontol. Implant Dent. 2003;4:809–820.
    1. Ballini A., Cantore S., Farronato D., Cirulli N., Inchingolo F., Papa F., Malcangi G., Inchingolo A.D., Dipalma G., Sardaro N., et al. Periodontal disease and bone pathogenesis: The crosstalk between cytokines and porphyromonas gingivalis. J. Biol. Regul. Homeost. Agents. 2015;29:273–281.
    1. Javed F., Romanos G.E. The Role of Primary Stability for Successful Immediate Loading of Dental Implants. A Literature Review. J. Dent. 2010;38:612–620. doi: 10.1016/j.jdent.2010.05.013.
    1. Javed F., Almas K., Crespi R., Romanos G.E. Implant Surface Morphology and Primary Stability: Is There a Connection? Implant Dent. 2011;20:40–46. doi: 10.1097/ID.0b013e31820867da.
    1. Buser D., Sennerby L., De Bruyn H. Modern Implant Dentistry Based on Osseointegration: 50 Years of Progress, Current Trends and Open Questions. Periodontology 2000. 2017;73:7–21. doi: 10.1111/prd.12185.
    1. Smeets R., Stadlinger B., Schwarz F., Beck-Broichsitter B., Jung O., Precht C., Kloss F., Gröbe A., Heiland M., Ebker T. Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Res. Int. 2016;2016:1–16. doi: 10.1155/2016/6285620.
    1. Fauroux M.-A., De Boutray M., Malthiéry E., Torres J.-H. New Innovative Method Relating Guided Surgery to Dental Implant Placement. J. Stomatol. Oral Maxillofac. Surg. 2018;119:249–253. doi: 10.1016/j.jormas.2018.02.002.
    1. Trindade R., Albrektsson T., Wennerberg A. Current Concepts for the Biological Basis of Dental Implants. Oral Maxillofac. Surg. Clin. N. Am. 2015;27:175–183. doi: 10.1016/j.coms.2015.01.004.
    1. Podaropoulos L. Increasing the Stability of Dental Implants: The Concept of Osseodensification. Balk. J. Dent. Med. 2017;21:133–140. doi: 10.1515/bjdm-2017-0023.
    1. Fanali S., Tumedei M., Pignatelli P., Inchingolo F., Pennacchietti P., Pace G., Piattelli A. Implant Primary Stability with an Osteocondensation Drilling Protocol in Different Density Polyurethane Blocks. Comput. Methods Biomech. Biomed. Eng. 2020:1–7. doi: 10.1080/10255842.2020.1806251.
    1. Fujiwara S., Kato S., Bengazi F., Urbizo Velez J., Tumedei M., Kotsu M., Botticelli D. Healing at Implants Installed in Osteotomies Prepared Either with a Piezoelectric Device or Drills: An Experimental Study in Dogs. Oral Maxillofac. Surg. 2020 doi: 10.1007/s10006-020-00895-y.
    1. Kotsu M., Urbizo Velez J., Bengazi F., Tumedei M., Fujiwara S., Kato S., Botticelli D. Healing at Implants Installed from ~ 70- to <10-Ncm Insertion Torques: An Experimental Study in Dogs. Oral Maxillofac. Surg. 2020 doi: 10.1007/s10006-020-00890-3.
    1. Comuzzi L., Tumedei M., Piattelli A., Iezzi G. Short vs. Standard Length Cone Morse Connection Implants: An In Vitro Pilot Study in Low Density Polyurethane Foam. Symmetry. 2019;11:1349. doi: 10.3390/sym11111349.
    1. Comuzzi L., Tumedei M., Pontes A.E., Piattelli A., Iezzi G. Primary Stability of Dental Implants in Low-Density (10 and 20 Pcf) Polyurethane Foam Blocks: Conical vs Cylindrical Implants. Int. J. Environ. Res. Public Health. 2020;17:2617. doi: 10.3390/ijerph17082617.
    1. Pjetursson B.E., Thoma D., Jung R., Zwahlen M., Zembic A. A Systematic Review of the Survival and Complication Rates of Implant-Supported Fixed Dental Prostheses (FDPs) after a Mean Observation Period of at Least 5 Years. Clin. Oral Implant. Res. 2012;23(Suppl. 6):22–38. doi: 10.1111/j.1600-0501.2012.02546.x.
    1. Jung R.E., Al-Nawas B., Araujo M., Avila-Ortiz G., Barter S., Brodala N., Chappuis V., Chen B., De Souza A., Almeida R.F., et al. Group 1 ITI Consensus Report: The Influence of Implant Length and Design and Medications on Clinical and Patient-Reported Outcomes. Clin. Oral Implant. Res. 2018;29(Suppl. 16):69–77. doi: 10.1111/clr.13342.
    1. Chackartchi T., Romanos G.E., Sculean A. Soft Tissue-related Complications and Management around Dental Implants. Periodontology 2000. 2019;81:124–138. doi: 10.1111/prd.12287.
    1. Sonnenschein S.K., Kohnen R., Ciardo A., Ziegler P., Seide S., Kim T. Changes of Clinical Parameters at Implants: A Retrospective Comparison of Implants versus Natural Teeth over 5 Years of Supportive Periodontal Therapy. Clin. Oral Implant. Res. 2020;31:646–654. doi: 10.1111/clr.13601.
    1. Ballini A., Santacroce L., Cantore S., Bottalico L., Dipalma G., Vito D.D., Saini R., Inchingolo F. Probiotics Improve Urogenital Health in Women. Open Access Maced. J. Med. Sci. 2018;6:1845–1850. doi: 10.3889/oamjms.2018.406.
    1. Santacroce L., Charitos I.A., Ballini A., Inchingolo F., Luperto P., De Nitto E., Topi S. The Human Respiratory System and Its Microbiome at a Glimpse. Biology. 2020;9:318. doi: 10.3390/biology9100318.
    1. Ballini A., Dipalma G., Isacco C.G., Boccellino M., Di Domenico M., Santacroce L., Nguyễn K.C.D., Scacco S., Calvani M., Boddi A., et al. Oral Microbiota and Immune System Crosstalk: A Translational Research. Biology. 2020;9:131. doi: 10.3390/biology9060131.
    1. Lorusso F., Postiglione F., Delvecchio M., Rapone B., Scarano A. The impact of diabetes in implant oral rehabilitations: A bibliometric study and literature review. Acta Med. 2020;36:3333.
    1. Chappuis V., Avila-Ortiz G., Araújo M.G., Monje A. Medication-related Dental Implant Failure: Systematic Review and Meta-analysis. Clin. Oral Implant. Res. 2018;29:55–68. doi: 10.1111/clr.13137.
    1. Prasad D.K., Shetty M., Bansal N., Hegde C. Crestal Bone Preservation: A Review of Different Approaches for Successful Implant Therapy. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2011;22:317–323. doi: 10.4103/0970-9290.84311.
    1. Ekelund J.-A., Lindquist L.W., Carlsson G.E., Jemt T. Implant Treatment in the Edentulous Mandible: A Prospective Study on Brånemark System Implants over More than 20 Years. Int. J. Prosthodont. 2003;16:602–608.
    1. Grassi F.R., Ciccolella F., D’Apolito G., Papa F., Iuso A., Salzo A.E., Trentadue R., Nardi G.M., Scivetti M., De Matteo M., et al. Effect of Low-Level Laser Irradiation on Osteoblast Proliferation and Bone Formation. J. Biol. Regul. Homeost. Agents. 2011;25:603–614.
    1. Dohan Ehrenfest D.M., Del Corso M., Inchingolo F., Charrier J.-B. Selecting a Relevant in Vitro Cell Model for Testing and Comparing the Effects of a Choukroun’s Platelet-Rich Fibrin (PRF) Membrane and a Platelet-Rich Plasma (PRP) Gel: Tricks and Traps. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010;110:409–411. doi: 10.1016/j.tripleo.2010.05.056.
    1. Inchingolo F., Martelli F.S., Gargiulo Isacco C., Borsani E., Cantore S., Corcioli F., Boddi A., Nguyễn K.C.D., De Vito D., Aityan S.K., et al. Chronic Periodontitis and Immunity, Towards the Implementation of a Personalized Medicine: A Translational Research on Gene Single Nucleotide Polymorphisms (SNPs) Linked to Chronic Oral Dysbiosis in 96 Caucasian Patients. Biomedicines. 2020;8:115. doi: 10.3390/biomedicines8050115.
    1. Cantore S., Mirgaldi R., Ballini A., Coscia M.F., Scacco S., Papa F., Inchingolo F., Dipalma G., De Vito D. Cytokine Gene Polymorphisms Associate with Microbiogical Agents in Periodontal Disease: Our Experience. Int. J. Med. Sci. 2014;11:674–679. doi: 10.7150/ijms.6962.
    1. Dohan Ehrenfest D.M., Del Corso M., Inchingolo F., Sammartino G., Charrier J.-B. Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) in Human Cell Cultures: Growth Factor Release and Contradictory Results. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010;110:418–421; author reply 421–422. doi: 10.1016/j.tripleo.2010.05.059.
    1. Cantore S., Ballini A., De Vito D., Martelli F.S., Georgakopoulos I., Almasri M., Dibello V., Altini V., Farronato G., Dipalma G., et al. Characterization of Human Apical Papilla-Derived Stem Cells. J. Biol. Regul. Homeost. Agents. 2017;31:901–910.
    1. Marei H., Abdel-Hady A., Al-Khalifa K., Al-Mahalawy H. Influence of Surgeon Experience on the Accuracy of Implant Placement via a Partially Computer-Guided Surgical Protocol. Int. J. Oral Maxillofac. Implant. 2019;34:1177–1183. doi: 10.11607/jomi.7480.
    1. Contaldo M., Itro A., Lajolo C., Gioco G., Inchingolo F., Serpico R. Overview on Osteoporosis, Periodontitis and Oral Dysbiosis: The Emerging Role of Oral Microbiota. Appl. Sci. 2020;10:6000. doi: 10.3390/app10176000.
    1. Fuster-Torres M.Á., Peñarrocha-Diago M., Peñarrocha-Oltra D., Peñarrocha-Diago M. Relationships between Bone Density Values from Cone Beam Computed Tomography, Maximum Insertion Torque, and Resonance Frequency Analysis at Implant Placement: A Pilot Study. Int. J. Oral Maxillofac. Implant. 2011;26:1051–1056.
    1. Kola M.Z., Shah A.H., Khalil H.S., Rabah A.M., Harby N.M.H., Sabra S.A., Raghav D. Surgical Templates for Dental Implant Positioning; Current Knowledge and Clinical Perspectives. Niger. J. Surg. Off. Publ. Niger. Surg. Res. Soc. 2015;21:1–5. doi: 10.4103/1117-6806.152720.
    1. Almutairi A.S., Walid M.A., Alkhodary M.A. The Effect of Osseodensification and Different Thread Designs on the Dental Implant Primary Stability. F1000Research. 2018;7:1898. doi: 10.12688/f1000research.17292.1.
    1. Insua A., Monje A., Wang H.-L., Miron R.J. Basis of Bone Metabolism around Dental Implants during Osseointegration and Peri-Implant Bone Loss. J. Biomed. Mater. Res. A. 2017;105:2075–2089. doi: 10.1002/jbm.a.36060.
    1. Carr A.B., Arwani N., Lohse C.M., Gonzalez R.L.V., Muller O.M., Salinas T.J. Early Implant Failure Associated With Patient Factors, Surgical Manipulations, and Systemic Conditions. J. Prosthodont. 2019;28:623–633. doi: 10.1111/jopr.12978.
    1. Feher B., Lettner S., Heinze G., Karg F., Ulm C., Gruber R., Kuchler U. An Advanced Prediction Model for Postoperative Complications and Early Implant Failure. Clin. Oral Implant. Res. 2020;31:928–935. doi: 10.1111/clr.13636.
    1. Lee K., Cha J., Sanz-Martin I., Sanz M., Jung U. A Retrospective Case Series Evaluating the Outcome of Implants with Low Primary Stability. Clin. Oral Implant. Res. 2019;30:861–871. doi: 10.1111/clr.13491.
    1. Norton M.R. The Influence of Low Insertion Torque on Primary Stability, Implant Survival, and Maintenance of Marginal Bone Levels: A Closed-Cohort Prospective Study. Int. J. Oral Maxillofac. Implant. 2017;32:849–857. doi: 10.11607/jomi.5889.
    1. Simonpieri A., Del Corso M., Vervelle A., Jimbo R., Inchingolo F., Sammartino G., M Dohan Ehrenfest D. Current Knowledge and Perspectives for the Use of Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) in Oral and Maxillofacial Surgery Part 2: Bone Graft, Implant and Reconstructive Surgery. Curr. Pharm. Biotechnol. 2012;13:1231–1256. doi: 10.2174/138920112800624472.
    1. Monje A., Ravidà A., Wang H.-L., Helms J.A., Brunski J.B. Relationship between Primary/Mechanical and Secondary/Biological Implant Stability. Int. J. Oral Maxillofac. Implant. 2019;34:s7–s23. doi: 10.11607/jomi.19suppl.g1.
    1. Scarano A., Lorusso F., Arcangelo M., D’Arcangelo C., Celletti R., de Oliveira P.S. Lateral Sinus Floor Elevation Performed with Trapezoidal and Modified Triangular Flap Designs: A Randomized Pilot Study of Post-Operative Pain Using Thermal Infrared Imaging. Int. J. Environ. Res. Public Health. 2018;15:1277. doi: 10.3390/ijerph15061277.
    1. Scarano A., Valbonetti L., Marchetti M., Lorusso F., Ceccarelli M. Soft Tissue Augmentation of the Face with Autologous Platelet-Derived Growth Factors and Tricalcium Phosphate. Microtomography Evaluation of Mice. J. Craniofac. Surg. 2016;27:1212–1214. doi: 10.1097/SCS.0000000000002712.
    1. Dohan Ehrenfest D.M., Del Corso M., Diss A., Mouhyi J., Charrier J.-B. Three-Dimensional Architecture and Cell Composition of a Choukroun’s Platelet-Rich Fibrin Clot and Membrane. J. Periodontol. 2010;81:546–555. doi: 10.1902/jop.2009.090531.
    1. Scarano A., de Oliveira P.S., Traini T., Lorusso F. Sinus Membrane Elevation with Heterologous Cortical Lamina: A Randomized Study of a New Surgical Technique for Maxillary Sinus Floor Augmentation without Bone Graft. Materials. 2018;11:1457. doi: 10.3390/ma11081457.
    1. Yoon H.-G., Heo S.-J., Koak J.-Y., Kim S.-K., Lee S.-Y. Effect of Bone Quality and Implant Surgical Technique on Implant Stability Quotient (ISQ) Value. J. Adv. Prosthodont. 2011;3:10–15. doi: 10.4047/jap.2011.3.1.10.
    1. Bezdjian A., Klis S.F.L., Peters J.P.M., Grolman W., Stegeman I. Quality of Reporting of Otorhinolaryngology Articles Using Animal Models with the ARRIVE Statement. Lab. Anim. 2018;52:79–87. doi: 10.1177/0023677217718862.
    1. He Y., Fok A., Aparicio C., Teng W. Contact Analysis of Gap Formation at Dental Implant-abutment Interface under Oblique Loading: A Numerical-experimental Study. Clin. Implant Dent. Relat. Res. 2019 doi: 10.1111/cid.12792.
    1. Trisi P., Berardini M., Falco A., Podaliri Vulpiani M. Validation of Value of Actual Micromotion as a Direct Measure of Implant Micromobility after Healing (Secondary Implant Stability). An in Vivo Histologic and Biomechanical Study. Clin. Oral Implant. Res. 2016;27:1423–1430. doi: 10.1111/clr.12756.
    1. Tumedei M., Piattelli A., Degidi M., Mangano C., Iezzi G. A Narrative Review of the Histological and Histomorphometrical Evaluation of the Peri-Implant Bone in Loaded and Unloaded Dental Implants. A 30-Year Experience (1988–2018) Int. J. Environ. Res. Public Health. 2020;17:2088. doi: 10.3390/ijerph17062088.
    1. Tumedei M., Piattelli A., Degidi M., Mangano C., Iezzi G. A 30-Year (1988-2018) Retrospective Microscopical Evaluation of Dental Implants Retrieved for Different Causes: A Narrative Review. Int. J. Periodontics Restor. Dent. 2020;40:e211–e227. doi: 10.11607/prd.4796.
    1. Comuzzi L., Iezzi G., Piattelli A., Tumedei M. An In Vitro Evaluation, on Polyurethane Foam Sheets, of the Insertion Torque (IT) Values, Pull-Out Torque Values, and Resonance Frequency Analysis (RFA) of NanoShort Dental Implants. Polymers. 2019;11:1020. doi: 10.3390/polym11061020.
    1. Chauhan C., Shah D., Sutaria F. Various Bio-Mechanical Factors Affecting Heat Generation during Osteotomy Preparation: A Systematic Review. Indian J. Dent. Res. 2018;29:81. doi: 10.4103/ijdr.IJDR_729_16.
    1. Heinemann F., Hasan I., Bourauel C., Biffar R., Mundt T. Bone Stability around Dental Implants: Treatment Related Factors. Ann. Anat. Anat. Anz. Off. Organ Anat. Ges. 2015;199:3–8. doi: 10.1016/j.aanat.2015.02.004.
    1. De Benedittis M., Petruzzi M., Pastore L., Inchingolo F., Serpico R. Nd:YAG Laser for Gingivectomy in Sturge-Weber Syndrome. J. Oral Maxillofac. Surg. 2007;65:314–316. doi: 10.1016/j.joms.2006.05.011.
    1. Charitos I.A., Ballini A., Bottalico L., Cantore S., Passarelli P.C., Inchingolo F., D’Addona A., Santacroce L. Special Features of SARS-CoV-2 in Daily Practice. World J. Clin. Cases. 2020;8:3920–3933. doi: 10.12998/wjcc.v8.i18.3920.
    1. Scarano A., Inchingolo F., Lorusso F. Facial Skin Temperature and Discomfort When Wearing Protective Face Masks: Thermal Infrared Imaging Evaluation and Hands Moving the Mask. Int. J. Environ. Res. Public Health. 2020;17:4624. doi: 10.3390/ijerph17134624.
    1. Falco A., Berardini M., Trisi P. Correlation Between Implant Geometry, Implant Surface, Insertion Torque, and Primary Stability: In Vitro Biomechanical Analysis. Int. J. Oral Maxillofac. Implants. 2018;33:824–830. doi: 10.11607/jomi.6285.
    1. Slete F.B., Olin P., Prasad H. Histomorphometric Comparison of 3 Osteotomy Techniques. Implant Dent. 2018;27:424–428. doi: 10.1097/ID.0000000000000767.
    1. Castellanos-Cosano L., Rodriguez-Perez A., Spinato S., Wainwright M., Machuca-Portillo G., Serrera-Figallo M.-A., Torres-Lagares D. Descriptive Retrospective Study Analyzing Relevant Factors Related to Dental Implant Failure. Med. Oral Patol. Oral Cirugia Bucal. 2019;24:e726–e738. doi: 10.4317/medoral.23082.
    1. Padhye N.M., Padhye A.M., Bhatavadekar N.B. Osseodensification—A Systematic Review and Qualitative Analysis of Published Literature. J. Oral Biol. Craniofacial Res. 2020;10:375–380. doi: 10.1016/j.jobcr.2019.10.002.
    1. Hutton B., Salanti G., Caldwell D.M., Chaimani A., Schmid C.H., Cameron C., Ioannidis J.P.A., Straus S., Thorlund K., Jansen J.P., et al. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-Analyses of Health Care Interventions: Checklist and Explanations. Ann. Intern. Med. 2015;162:777–784. doi: 10.7326/M14-2385.
    1. Alifarag A.M., Lopez C.D., Neiva R.F., Tovar N., Witek L., Coelho P.G. Atemporal Osseointegration: Early Biomechanical Stability through Osseodensification: Early biomechanical stability. J. Orthop. Res. 2018;36:2516–2523. doi: 10.1002/jor.23893.
    1. Hindi Ar., Bede Sy. The Effect of Osseodensification on Implant Stability and Bone Density: A Prospective Observational Study. J. Clin. Exp. Dent. 2020:e474–e478. doi: 10.4317/jced.56727.
    1. Witek L., Alifarag A., Tovar N., Lopez C., Gil L., Gorbonosov M., Hannan K., Neiva R., Coelho P. Osteogenic Parameters Surrounding Trabecular Tantalum Metal Implants in Osteotomies Prepared via Osseodensification Drilling. Med. Oral Patol. Oral Cir. Bucal. 2019 doi: 10.4317/medoral.23108.
    1. Koutouzis T., Huwais S., Hasan F., Trahan W., Waldrop T., Neiva R. Alveolar Ridge Expansion by Osseodensification-Mediated Plastic Deformation and Compaction Autografting: A Multicenter Retrospective Study. Implant Dent. 2019;28:349–355. doi: 10.1097/ID.0000000000000898.
    1. Lahens B., Lopez C.D., Neiva R.F., Bowers M.M., Jimbo R., Bonfante E.A., Morcos J., Witek L., Tovar N., Coelho P.G. The Effect of Osseodensification Drilling for Endosteal Implants with Different Surface Treatments: A Study in Sheep: OSSEODENSIFICATION OF ENDOSTEAL IMPLANTS. J. Biomed. Mater. Res. B Appl. Biomater. 2019;107:615–623. doi: 10.1002/jbm.b.34154.
    1. Trisi P., Berardini M., Falco A., Podaliri Vulpiani M. New Osseodensification Implant Site Preparation Method to Increase Bone Density in Low-Density Bone: In Vivo Evaluation in Sheep. Implant Dent. 2016;25:24–31. doi: 10.1097/ID.0000000000000358.
    1. Sultana A., Makkar S., Saxena D., Wadhawan A., Kusum C. To Compare the Stability and Crestal Bone Loss of Implants Placed Using Osseodensification and Traditional Drilling Protocol: A Clinicoradiographical Study. J. Indian Prosthodont. Soc. 2020;20:45. doi: 10.4103/jips.jips_133_19.
    1. Tian J.H., Neiva R., Coelho P.G., Witek L., Tovar N.M., Lo I.C., Gil L.F., Torroni A. Alveolar Ridge Expansion: Comparison of Osseodensification and Conventional Osteotome Techniques. J. Craniofacial Surg. 2019;30:607–610. doi: 10.1097/SCS.0000000000004956.
    1. Doi K., Kubo T., Makihara Y., Oue H., Morita K., Oki Y., Kajihara S., Tsuga K. Osseointegration aspects of placed implant in bone reconstruction with newly developed block-type interconnected porous calcium hydroxyapatite. J. Appl. Oral Sci. 2016;24:325–331. doi: 10.1590/1678-775720150597.
    1. Lahens B., Neiva R., Tovar N., Alifarag A.M., Jimbo R., Bonfante E.A., Bowers M.M., Cuppini M., Freitas H., Witek L., et al. Biomechanical and Histologic Basis of Osseodensification Drilling for Endosteal Implant Placement in Low Density Bone. An Experimental Study in Sheep. J. Mech. Behav. Biomed. Mater. 2016;63:56–65. doi: 10.1016/j.jmbbm.2016.06.007.
    1. Lorean A., Barer N., Barbu H., Levin L. Novel Electrical Conductivity Device for Osteotomy Preparation for Dental Implants Placement: A Cadaver Study. Clin. Implant Dent. Relat. Res. 2018;20:569–573. doi: 10.1111/cid.12618.
    1. Elsayyad A.A., Osman R.B. Osseodensification in Implant Dentistry: A Critical Review of the Literature. Implant Dent. 2019;28:306–312. doi: 10.1097/ID.0000000000000884.
    1. Lang N.P., Salvi G.E., Huynh-Ba G., Ivanovski S., Donos N., Bosshardt D.D. Early Osseointegration to Hydrophilic and Hydrophobic Implant Surfaces in Humans. Clin. Oral Implant. Res. 2011;22:349–356. doi: 10.1111/j.1600-0501.2011.02172.x.
    1. Pai U. 44. Indirect Sinus Lift of Atrophic Posterior Maxilla Using Osseodensification: A Case Report. J. Indian Prosthodont. Soc. 2018;18:108. doi: 10.4103/0972-4052.246620.
    1. Sakka S., Baroudi K., Nassani M.Z. Factors Associated with Early and Late Failure of Dental Implants. J. Investig. Clin. Dent. 2012;3:258–261. doi: 10.1111/j.2041-1626.2012.00162.x.
    1. Trisi P., Perfetti G., Baldoni E., Berardi D., Colagiovanni M., Scogna G. Implant Micromotion Is Related to Peak Insertion Torque and Bone Density. Clin. Oral Implant. Res. 2009;20:467–471. doi: 10.1111/j.1600-0501.2008.01679.x.
    1. Podaropoulos L., Veis A.A., Trisi P., Papadimitriou S., Alexandridis C., Kalyvas D. Bone Reactions around Dental Implants Subjected to Progressive Static Load: An Experimental Study in Dogs. Clin. Oral Implant. Res. 2016;27:910–917. doi: 10.1111/clr.12658.
    1. Torroni A., Lima Parente P.E., Witek L., Hacquebord J.H., Coelho P.G. Osseodensification Drilling vs Conventional Manual Instrumentation Technique for Posterior Lumbar Fixation: Ex-Vivo Mechanical and Histomorphological Analysis in an Ovine Model. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2020 doi: 10.1002/jor.24707.
    1. Neugebauer J., Traini T., Thams U., Piattelli A., Zöller J.E. Peri-Implant Bone Organization under Immediate Loading State. Circularly Polarized Light Analyses: A Minipig Study. J. Periodontol. 2006;77:152–160. doi: 10.1902/jop.2006.040360.
    1. Scarano A., Assenza B., Inchingolo F., Mastrangelo F., Lorusso F. New Implant Design with Midcrestal and Apical Wing Thread for Increased Implant Stability in Single Postextraction Maxillary Implants. Case Rep. Dent. 2019;2019:9529248. doi: 10.1155/2019/9529248.
    1. Huwais S., Mazor Z., Ioannou A.L., Gluckman H., Neiva R. A Multicenter Retrospective Clinical Study with Up-to-5-Year Follow-up Utilizing a Method That Enhances Bone Density and Allows for Transcrestal Sinus Augmentation Through Compaction Grafting. Int. J. Oral Maxillofac. Implant. 2018;33:1305–1311. doi: 10.11607/jomi.6770.

Source: PubMed

3
Abonner