Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes

Branko Trajkovski, Matthias Jaunich, Wolf-Dieter Müller, Florian Beuer, Gregory-George Zafiropoulos, Alireza Houshmand, Branko Trajkovski, Matthias Jaunich, Wolf-Dieter Müller, Florian Beuer, Gregory-George Zafiropoulos, Alireza Houshmand

Abstract

The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties' influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone®), synthetic (maxresorb®), and allograft (maxgraft®, Puros®) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft) and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®). The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results.

Keywords: biomaterials; bone grafting; bone substitutes; hydrophilicity; mechanical analysis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic description of the method for Dynamic Mechanical Analysis (DMA).
Figure 2
Figure 2
Schematic description of the method for hydrophilicity analysis.
Figure 3
Figure 3
Dynamic Mechanical Analysis (DMA): (a) Dimensional changes; (b) molecular mobility changes.
Figure 4
Figure 4
Hydrophilicity analysis: (a) cerabone® 0.5–1 mm (fast blood uptake driven by capillary forces); (b) Bio-Oss® 0.25–1 mm (blood adjustment over the surface followed by delayed leaking due to heavier drop formation).
Figure 4
Figure 4
Hydrophilicity analysis: (a) cerabone® 0.5–1 mm (fast blood uptake driven by capillary forces); (b) Bio-Oss® 0.25–1 mm (blood adjustment over the surface followed by delayed leaking due to heavier drop formation).
Figure 5
Figure 5
Hydrophilicity analysis: (a) NuOss® 0.25–1 mm; (b) SIC® nature graft 0.3–1 mm (blood adjustment over the surface of both materials followed by leaking).
Figure 6
Figure 6
Hydrophilicity analysis: (a) maxresorb® 0.5–1 mm (fast uptake of blood once in contact with the surface); (b) NanoBone® 0.6 mm (blood adjustment over the surface followed by leaking).
Figure 7
Figure 7
Hydrophilicity analysis: (a) Straumann® BoneCeramic 0.5–1 mm (blood adjustment over the surface without any leaking during the tested period); (b) Ceros® 0.7–1.4 mm (blood adjustment over the surface followed by delayed leaking after the sixth drop due to heavier drop formation).
Figure 7
Figure 7
Hydrophilicity analysis: (a) Straumann® BoneCeramic 0.5–1 mm (blood adjustment over the surface without any leaking during the tested period); (b) Ceros® 0.7–1.4 mm (blood adjustment over the surface followed by delayed leaking after the sixth drop due to heavier drop formation).
Figure 8
Figure 8
µCT analysis: (a) cerabone® and (b) maxgraft® have “labyrinth-like” cancellous bone structure; (c) maxresorb® has “foam-like” structure with highly interconnected regular-circular pores. 1 mm ruler in every figure.
Figure 9
Figure 9
Particle distribution size analysis by Scanning Electron Microscopy SEM: Particles bigger than 1 mm were found in all samples and particles smaller than 0.25 mm were found in Bio-Oss®.
Figure 10
Figure 10
Particle surface analysis by Scanning Electron Microscopy SEM: cerabone® shows rougher wave-like surface roughness when compared to Bio-Oss®; maxresorb® has even rougher foam-like surface structure, and maxgraft® has fiber-like surface structure due to presence of organic material. 20 µm ruler in every figure.
Figure 11
Figure 11
Chemical differences analyzed by FTIR: P-O bonds at 570–605 cm−1 and 970–1100 cm−1 as well as O-H bonds at ~3500 cm−1 and 1650 cm−1 were observed in all samples. cerabone® and maxresorb® showed additional hydroxyapatite O-H band around 3575 cm−1. 1460 cm−1, 1420 cm−1, and 880 cm−1 bands were observed for Bio-Oss® and maxgraft® due to presence of CO32− that were not present in cerabone® and maxresorb®. maxgraft® also had absorption bands at 1550 cm−1 and 1245 cm−1 corresponding to C-H and N-H bonds.
Figure 12
Figure 12
Crystallinity differences analyzed by XRD: Hydroxyapatite peaks were seen in all samples, and only maxresorb® has additional reflexes due presence of β-tricalcium phosphate (Ca3(PO4)2). The narrow peaks and a low baseline indicate the high crystallinity of cerabone® and maxresorb®. Bio-Oss® shows broader peaks due lower crystallinity level. maxgraft® also has broad peaks and a high baseline due low crystallinity and amorphous structure.

References

    1. Griffin K.S., Davis K.M., McKinley T.O., Anglen J.O., Chu T.M.G., Boerckel J.D., Kacena M.A. Evolution of Bone Grafting: Bone Grafts and Tissue Engineering Strategies for Vascularized Bone Regeneration. Clin. Rev. Bone Min. Metab. 2015;13:232–244. doi: 10.1007/s12018-015-9194-9.
    1. Kolk A., Handschel J., Drescher W., Rothamel D., Kloss F., Blessmann M., Heiland M., Wolff K.D., Smeets R. Current trends and future perspectives of bone substitute materials—From space holders to innovative biomaterials. J. Cranio-Maxillofac. Surg. 2012;40:706–718. doi: 10.1016/j.jcms.2012.01.002.
    1. Sheikh Z., Javaid M.A., Hamdan N., Hashmi R. Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. Materials. 2015;8:1778–1816. doi: 10.3390/ma8041778.
    1. Group M.R. The European Market for Dental Bone Graft Substitutes. Implant Dent. 2003;12:3–5. doi: 10.1097/01.ID.0000042239.45701.74.
    1. iData Research . European Market for Dental Bone Graft Substitutes and Other Biomaterials. iData Research; Burnaby, BC, Canada: 2013.
    1. Transparency Market Research . Dental Membrane and Bone Graft Substitutes Market. Transparency Market Research; Albany, NY, USA: 2016.
    1. Dumitrescu A.L. Chemicals in Surgical Periodontal Therapy. Springer; Berlin, Germany: 2011. Bone Grafts and Bone Graft Substitutes in Periodontal Therapy; p. 307.
    1. BDIZ EDI Cologne Classification of Alveolar Ridge Defects (CCARD); Proceedings of the 8th European Consensus Conference of BDIZ EDI; Cologne, Germany. 9 Februery 2013.
    1. Sheikh Z., Drager J., Zhang Y.L., Abdallah M.N., Tamimi F., Barralet J. Controlling Bone Graft Substitute Microstructure to Improve Bone Augmentation. Adv. Healthc. Mater. 2016;5:1646–1655. doi: 10.1002/adhm.201600052.
    1. Chee W., Jivraj S. Failures in implant dentistry. Br. Dent. J. 2007;202:123–129. doi: 10.1038/bdj.2007.74.
    1. Buser D., Broggini N., Wieland M., Schenk R.K., Denzer A.J., Cochran D.L., Hoffmann B., Lussi A., Steinemann S.G. Enhanced bone apposition to a chemically modified SLA titanium surface. J. Dent. Res. 2004;83:529–533. doi: 10.1177/154405910408300704.
    1. Oates T.W., Valderrama P., Bischof M., Nedir R., Jones A., Simpson J., Toutenburg H., Cochran D.L. Enhanced implant stability with a chemically modified SLA surface: A randomized pilot study. Int. J. Oral Maxillofac. Implants. 2007;22:755–760.
    1. Gorna K., Gogolewski S. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J. Biomed. Mater. Res. A. 2003;67:813–827. doi: 10.1002/jbm.a.10148.
    1. Petersen A., Joly P., Bergmann C., Korus G., Duda G.N. The Impact of Substrate Stiffness and Mechanical Loading on Fibroblast-Induced Scaffold Remodeling. Tissue Eng. Part A. 2012;18:1804–1817. doi: 10.1089/ten.tea.2011.0514.
    1. Schwartz Z., Goldstein M., Raviv E., Hirsch A., Ranly D.M., Boyan B.D. Clinical evaluation of demineralized bone allograft in a hyaluronic acid carrier for sinus lift augmentation in humans: A computed tomography and histomorphometric study. Clin. Oral Implants Res. 2007;18:204–211. doi: 10.1111/j.1600-0501.2006.01303.x.
    1. Holzmann P., Niculescu-Morzsa E., Zwickl H., Halbwirth F., Pichler M., Matzner M., Gottsauner-Wolf F., Nehrer S. Investigation of bone allografts representing different steps of the bone bank procedure using the CAM-model. ALTEX. 2010;27:97–103. doi: 10.14573/altex.2010.2.97.
    1. Hofmann C., Schädel-Höpfner M., Berns T., Sitter H., Gotzen L. Influence of processing and sterilization on the mechanical properties of pins made from bovine cortical bone. Unfallchirurg. 2003;106:478–482. doi: 10.1007/s00113-003-0611-z.
    1. Mano J.F., Reis R.L., Cunha A.M. Dynamic Mechanical Analysis in Polymers for Medical Applications. In: Reis R., Cohn D., editors. Polymer Based Systems on Tissue Engineering, Replacement and Regeneration SE—10. Volume 86. Springer; Amsterdam, The Netherlands: 2002. pp. 139–164. (NATO Science Series).
    1. Bidan C.M., Kommareddy K.P., Rumpler M., Kollmannsberger P., Fratzl P., Dunlop J.W.C. Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds. Adv. Healthc. Mater. 2013;2:186–194. doi: 10.1002/adhm.201200159.
    1. Seidel P., Dingeldein E. Cerabone®—Eine Spongiosa-Keramik bovinen Ursprungs. Materwiss. Werksttech. 2004;35:208–212. doi: 10.1002/mawe.200400734.
    1. Schnettler R., Franke J., Rimashevskiy D., Zagorodniy N., Batpenov N., Unger R.E., Wenisch S., Barbeck M. Allogeneic Bone Grafting Materials—Update of the Current Scientific Status. New Tech. Traumatol. Orthop. 2017;23 doi: 10.21823/2311-2905-2017-23-4-92-100.
    1. Doktor T., Valach J., Kytyr D., Jiroušek O. Pore Size Distribution of Human Trabecular Bone—Comparison of Intrusion Measurements with Image Analysis; Proceedings of the 17th International Conference Engineering Mechanics 2011; Svratka, Czech Republic. 9–12 May 2011.
    1. Gosau M., Viale-Bouroncle S., Eickhoff H., Prateeptongkum E., Reck A., Götz W., Klingelhöffer C., Müller S., Morsczeck C. Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions. Int. J. Implant Dent. 2015;1:2. doi: 10.1186/s40729-014-0002-y.
    1. Trajkovski B., Petersen A., Strube P., Mehta M., Duda G.N. Intra-operatively customized implant coating strategies for local and controlled drug delivery to bone. Adv. Drug Deliv. Rev. 2012;64:1142–1151. doi: 10.1016/j.addr.2012.05.016.
    1. Sheikh Z., Sima C., Glogauer M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials. 2015;8:2953–2993. doi: 10.3390/ma8062953.
    1. Xavier S.P., Santos T.S., Sehn F.P., Silva E.R., Garcez-Filho J.A., Martins-Filho P.R.S. Maxillary sinus grafting with fresh frozen allograft versus bovine bone mineral: A tomographic and histological study. J. Craniomaxillofac. Surg. 2016;44:708–714. doi: 10.1016/j.jcms.2016.03.005.
    1. Rodella L.F., Favero G., Labanca M. Biomaterials in maxillofacial surgery: Membranes and grafts. Int. J. Biomed. Sci. 2011;7:81–88.
    1. Artzi Z., Wasersprung N., Weinreb M., Steigmann M., Prasad H.S., Tsesis I. Effect of suided tissue regeneration on newly formed Bone and cementum in periapical tissue healing after endodontic surgery: An in vivo study in the cat. J. Endod. 2012;38:163–169. doi: 10.1016/j.joen.2011.10.002.
    1. Riachi F., Naaman N., Tabarani C., Aboelsaad N., Aboushelib M.N., Berberi A., Salameh Z. Influence of material properties on rate of resorption of two bone graft materials after sinus lift using radiographic assessment. Int. J. Dent. 2012;2012:737262. doi: 10.1155/2012/737262.
    1. Degidi M., Perrotti V., Piattelli A., Iezzi G. Eight-year results of site retention of anorganic bovine bone and anorganic bovine matrix. J. Oral Implantol. 2013;39:727–732. doi: 10.1563/AAID-JOI-D-11-00091.
    1. Danilchenko S.N., Koropov A.V., Protsenko I.Y., Sulkio-Cleff B., Sukhodub L.F. Thermal behavior of biogenic apatite crystals in bone: An X-ray diffraction study. Cryst. Res. Technol. 2006;41:268–275. doi: 10.1002/crat.200510572.
    1. Scarano A., Carinci F., Assenza B., Piattelli M., Murmura G., Piattelli A. Vertical ridge augmentation of atrophic posterior mandible using an inlay technique with a xenograft without miniscrews and miniplates: Case series. Clin. Oral Implants Res. 2011;22:1125–1130. doi: 10.1111/j.1600-0501.2010.02083.x.
    1. Konermann A., Staubwasser M., Dirk C., Keilig L., Bourauel C., Götz W., Jäger A., Reichert C. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells. Int. J. Oral Maxillofac. Surg. 2016;43:514–521. doi: 10.1016/j.ijom.2013.10.017.
    1. Calvo-Guirado J.L., Delgado-Ruíz R.A., Ramírez-Fernández M.P., Maté-Sánchez J.E., Ortiz-Ruiz A., Marcus A. Histomorphometric and mineral degradation study of Ossceram®: A novel biphasic B-tricalcium phosphate, in critical size defects in rabbits. Clin. Oral Implants Res. 2012;23:667–675. doi: 10.1111/j.1600-0501.2011.02193.x.
    1. Handschel J., Simonowska M., Naujoks C., Depprich R.A., Ommerborn M.A., Meyer U., Kübler N.R. A histomorphometric meta-analysis of sinus elevation with various grafting materials. Head Face Med. 2009;5:1–10. doi: 10.1186/1746-160X-5-12.
    1. Kattz J. The effects of various cleaning and sterilization processes on allograft bone incorporation. J. Long-Term Eff. Med. Implants. 2010;20:271–276. doi: 10.1615/JLongTermEffMedImplants.v20.i4.20.
    1. Froum S.J., Wallace S.S., Elian N., Cho S.C., Tarnow D.P. Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: Histomorphometry at 26 to 32 weeks after grafting. Int. J. Periodontics Restor. Dent. 2006;26:543–551.
    1. Gultekin B.A., Cansiz E., Borahan O., Mangano C., Kolerman R., Mijiritsky E., Yalcin S. Evaluation of Volumetric Changes of Augmented Maxillary Sinus With Different Bone Grafting Biomaterials. J. Craniofac. Surg. 2016;27 doi: 10.1097/SCS.0000000000002393.
    1. Minichetti J.C., D’Amore J.C., Hong A.Y.J., Cleveland D.B. Human Histologic Analysis of Mineralized Bone Allograft (Puros) Placement Before Implant Surgery. J. Oral Implantol. 2004;30:74–82. doi: 10.1563/0.693.1.
    1. Gruskin E., Doll B.A., Futrell F.W., Schmitz J.P., Hollinger J.O. Demineralized bone matrix in bone repair: History and use. Adv. Drug Deliv. Rev. 2012;64:1063–1077. doi: 10.1016/j.addr.2012.06.008.
    1. Katz J.M., Nataraj C., Jaw R., Deigl E., Bursac P. Demineralized bone matrix as an osteoinductive biomaterial and in vitro predictors of its biological potential. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;89:127–134. doi: 10.1002/jbm.b.31195.
    1. Tadic D., Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–994. doi: 10.1016/S0142-9612(03)00621-5.
    1. Ghanaati S., Barbeck M., Booms P., Lorenz J., Kirkpatrick C.J., Sader R.A. Potential lack of “standardized” processing techniques for production of allogeneic and xenogeneic bone blocks for application in humans. Acta Biomater. 2014;10:3557–3562. doi: 10.1016/j.actbio.2014.04.017.
    1. Rothamel D., Schwarz F., Herten M., Berndsen K., Fienitz T., Ritter L., Dreiseidler T., Zöller J. Impact of Citric Acid Etching on Biocompatibility and Osseous Organisation of a Natural Bovine Bone Mineral: Preliminary Results of an In Vitro/In-Vivo Study. In: Dössel O., Schlegel W.C., editors. World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany; Vol. 25/11 Biomedical Engineering for Audiology, Ophthalmology, Emergency Dental Medicine. Springer; Berlin/Heidelberg, Germany: 2009. pp. 259–262.

Source: PubMed

3
Abonner