The Impact of Developmental Timing for Stress and Recovery

Dylan G Gee, B J Casey, Dylan G Gee, B J Casey

Abstract

Stress can have lasting effects on the brain and behavior. Delineating the impact of stress on the developing brain is fundamental for understanding mechanisms through which stress induces persistent effects on behavior that can lead to psychopathology. The growing field of translational developmental neuroscience has revealed a significant role of the timing of stress on risk, resilience, and neuroplasticity. Studies of stress across species have provided essential insight into the mechanisms by which the brain changes and the timing of those changes on outcome. In this article, we review the neurobiological effects of stress and propose a model by which sensitive periods of neural development interact with stressful life events to affect plasticity and the effects of stress on functional outcomes. We then highlight how early-life stress can alter the course of brain development. Finally, we examine mechanisms of buffering against early-life stress that may promote resilience and positive outcomes. The findings are discussed in the context of implications for early identification of risk and resilience factors and development of novel interventions that target the biological state of the developing brain to ultimately ameliorate the adverse consequences of stress during childhood and adolescence.

Keywords: amygdala; development; early-life stress; neuroplasticity; prefrontal cortex; resilience; sensitive period.

Figures

Fig. 1
Fig. 1
Model of sensitive periods of brain development. Periods of rapid and substantial changes in brain development, such as the first three years of life and adolescence (shaded in gray), may provide the most opportunity for adaptive behavioral changes. These sensitive periods of neural development may also render the developing brain most vulnerable to the effects of stress. Figure adapted with permission from Lee et al., 2014 (Copyright 2014 AAAS).
Fig. 2
Fig. 2
Mature frontoamygdala functional connectivity following maternal deprivation. Left) A group by emotion interaction was observed in the mPFC (p Proceedings of the National Academy of Sciences of the United States of America).
Fig. 3
Fig. 3
Greater amygdala activity in humans and mice following early-life stress. (A) Human participants were instructed to detect frequently presented neutral targets embedded among rare threat non-target cues. Mice were trained where to obtain sweetened milk in their home cage for 3 consecutive days and then latency to approach the milk was measured in the home cage on the 4th day, and in an odorless, brightly lit novel cage on the 5th day. (B) Stressed preadolescent humans and mice take longer than their standard-reared counterparts to approach targets in the context of potential threat. (C) Amygdala activity in response to threat was greater in stressed preadolescent humans and mice than their standard-reared counterparts. Error bars = +/− 1 SEM. Data are reproduced with permission from Malter Cohen et al., 2013a, Malter Cohen et al., 2013b (Copyright 2013 Proceedings of the National Academy of Sciences of the United States of America).
Fig. 4
Fig. 4
c-Fos activity by group and age. (A) The density of c-Fos protein in the amygdala following exposure to the threatening context (i.e. novel cage) was elevated in stressed mice across development relative to nonstressed animals. (B) The density of c-Fos protein in the infralimbic PFC increases with age regardless of stress history. Error bars = +/− 1 SEM; *p Proceedings of the National Academy of Sciences of the United States of America).
Fig. 5
Fig. 5
Maternal buffering of amygdala reactivity and mature-like connectivity in childhood. (A) Presence of the maternal stimulus phasically buffered right amygdala reactivity in children but not adolescents (p = 0.049). Specifically, children showed lower activation of the right amygdala to their mother compared with a stranger (i.e., the mother of another youth). (B) The psychophysiological interaction analysis of amygdala–mPFC functional connectivity revealed an interaction between age group and the maternal stimulus manipulation (p = 0.034). Specifically, adolescents showed a mature pattern of inverse amygdala–mPFC functional connectivity to both their mother and the stranger. In contrast, children exhibited a mature-like, inverse pattern of functional connectivity to their mother (p = 0.019). However, functional connectivity to the stranger did not differ from implicit baseline in children, suggesting that the phasic presence of the maternal stimulus may induce a more mature-like pattern of amygdala–prefrontal interaction in childhood. *p Psychological Science).
Fig. 6
Fig. 6
Stress effects on human PFC function (Bottom) are consistent with those observed in a rodent model of chronic stress (Top). (A) Chronic stress disrupted dorsolateral PFC functional connectivity in human participants (t = 5.74, p The Journal of Neuroscience). Data from the human study are reproduced with permission from Liston et al., 2009 (Copyright 2009 Proceedings of the National Academy of Sciences of the United States of America).

References

    1. Adamec R.E., Blundell J., Burton P. Neural circuit changes mediating lasting brain and behavioral response to predator stress. Neurosci. Biobehav. Rev. 2005;29(8):1225–1241.
    1. Arnsten A.F., Goldman-Rakic P.S. Analysis of alpha-2 adrenergic agonist effects on the delayed non match-to-sample performance of aged rhesus monkeys. Neurobiol. Aging. 1990;11(6):583–590.
    1. Arnsten A.F., Goldman-Rakic P.S. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch. Gen. Psychiat. 1998;55(4):362–368.
    1. Banks S.J., Eddy K.T., Angstadt M., Nathan P.J., Phan K.L. Amygdala–frontal connectivity during emotion regulation. Soc. Cognitive Affect. Neurosci. 2007;2(4):303–312.
    1. Bavelier D., Levi D.M., Li R.W., Dan Y., Hensch T.K. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J. Neurosci. Off. J. Soc. Neurosci. 2010;30(45):14964–14971.
    1. Benes F.M., Turtle M., Khan Y., Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch. Gen. Psychiatry. 1994;51:477–484.
    1. Bourgeois J.P., Rakic P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 1993;13:2801–2820.
    1. Brody B.A., Kinney H.C., Kloman A.S., Gilles F.H. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 1987;46:283–301.
    1. Callaghan B.L., Richardson R. Maternal separation results in early emergence of adult-like fear and extinction learning in infant rats. Behav. Neurosci. 2011;125(1):20–28.
    1. Cameron J.L. Critical periods for social attachment: deprivation and neural systems in rhesus monkeys. Soc. Res. Child. Dev. 2001 Abstr 2–054.
    1. Campos J.J., Emde R.N., Gaensbauer T., Henderson C. Cardiac and behavioral interrelationships in the reactions of infants to strangers. Dev. Psychol. 1975;11(5):589–601.
    1. Casey B.J., Duhoux S., Malter Cohen M. Adolescence: what do transmission, transition, and translation have to do with it? Neuron. 2010;67(5):749–760.
    1. Cook S.C., Wellman C.L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J. Neurobiol. 2004;60(2):236–248.
    1. Davidson R.J., McEwen B.S. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat. Neurosci. 2012;15(5):689–695.
    1. De Kloet E.R., Vreugdenhil E., Oitzl M.S., Joëls M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998;19(3):269–301.
    1. Diorio D., Viau V., Meaney M.J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. Off. J. Soc. Neurosci. 1993;13(9):3839–3847.
    1. Dunn J.D., Whitener J. Plasma corticosterone responses to electrical stimulation of the amygdaloid complex: cytoarchitectural specificity. Neuroendocrinology. 1986;42(3):211–217.
    1. Eiland L., Romeo R.D. Stress and the developing adolescent brain. Neuroscience. 2013;249:162–171.
    1. Feldman S., Conforti N., Weidenfeld J. Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neurosci. Biobehav. Rev. 1995;19(2):235–240.
    1. Finlay B.L. Endless minds most beautiful. Dev. Sci. 2007;10(1):30–34.
    1. Folib A.R., Lui P., Romeo R.D. The transformation of hormonal stress responses throughout puberty and adolescence. J. Endocrinol. 2011;210(3):391–398.
    1. Galvan A., Hare T.A., Parra C.E., Penn J., Voss H., Glover G., Casey B.J. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J. Neurosci. 2006;26:6885–6892.
    1. Ganzel B., Casey B.J., Glover G., Voss H.U., Temple E. The aftermath of 9/11: effect of intensity and recency of trauma on outcome. Emotion Washington. D.C. 2007;7(2):227–238.
    1. Ganzel B.L., Kim P., Glover G.H., Temple E. Resilience after 9/11: multimodal neuroimaging evidence for stress-related change in the healthy adult brain. NeuroImage. 2008;40(2):788–795.
    1. Gee D.G., Gabard-Durnam L.J., Flannery J., Goff B., Humphreys K.L., Telzer E.H., Tottenham N. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc. Natl. Acad. Sci. U. S. A. 2013;110(39):15638–15643.
    1. Gee D.G., Humphreys K.L., Flannery J., Goff B., Telzer E.H., Shapiro M., Tottenham N. A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. J. Neurosci. 2013;33(10):4584–4593.
    1. Gee D.G., Gabard-Durnam L., Telzer E.H., Humphreys K.L., Goff B., Flannery J., Shapiro M., Lumian D.S., Fareri D.S., Caldera C., Tottenham N. Maternal buffering of amygdala-prefrontal circuitry during childhood but not adolescence. Psychol. Sci. 2014;25(11):2067–2078.
    1. Giedd J.N., Blumenthal J., Jeffries N.O., Castellanos F.X., Liu H., Zijdenbos A. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 1999;2:861–863.
    1. Gilles E.E., Schultz L., Baram T.Z. Abnormal corticosterone regulation in an immature rat model of continuous chronic stress. Pediatr. Neurol. 1996;15(2):114–119.
    1. Gogtay N., Giedd J.N., Lusk L., Hayashi K.M., Greenstein D., Vaituzis A.C. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl Acad. Sci. 2004;101:8174–8179.
    1. Green J.G., McLaughlin K.A., Berglund P.A., Gruber M.J., Sampson N.A., Zaslavsky A.M., Kessler R.C. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch. Gen. Psychiatry. 2010;67(2):113–123.
    1. Gunnar M.R., Donzella B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology. 2002;27(1–2):199–220.
    1. Gunnar M.R., Bruce J., Grotevant H.D. International adoption of institutionally reared children: research and policy. Dev. Psychopathol. 2000;12(4):677–693.
    1. Gunnar M.R., Frenn K., Wewerka S.S., Van Ryzin M.J. Moderate versus severe early life stress: associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology. 2009;34(1):62–75.
    1. Hagan M.J., Roubinov D.S., Purdom Marreiro C.L., Luecken L.J. Childhood interparental conflict and HPA axis activity in young adulthood: examining nonlinear relations. Dev. Psychobiol. 2014;56(4):871–880.
    1. Harauzov A., Spolidoro M., DiCristo G., De Pasquale R., Cancedda L., Pizzorusso T., Maffei L. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J. Neurosci. Off. J. Soc. Neurosci. 2010;30(1):361–371.
    1. Hare T.A., Tottenham N., Galvan A., Voss H.U., Glover G.H., Casey B.J. Biological substrates of emotional reactivity and regulation in adolescence during an emotional Go-Nogo task. Biol. Psychiatry. 2008;63(10):927–934.
    1. Hariri A.R., Mattay V.S., Tessitore A., Fera F., Weinberger D.R. Neocortical modulation of the amygdala response to fearful stimuli. Biol. Psychiatry. 2003;53(6):494–501.
    1. He H.-Y., Ray B., Dennis K., Quinlan E.M. Experience-dependent recovery of vision following chronic deprivation amblyopia. Nat. Neurosci. 2007;10(9):1134–1136.
    1. Hofer M.A. Early relationships as regulators of infant physiology and behavior. Acta Paediatr. 1994;83:9–18.
    1. Hostinar C.E., Sullivan R.M., Gunnar M.R. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development. Psychol. Bull. 2014;140(1):256–282.
    1. Huttenlocher P.R. Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Res. 1979;163:195–205.
    1. Huttenlocher P.R., De Courten C., Garey L.J., van der Loos H. Synaptic development in human cerebral cortex. Int. J. Neurol. 1982;16–17:144–154.
    1. Ivy A.S., Brunson K.L., Sandman C., Baram T.Z. Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience. 2008;154(3):1132–1142.
    1. Jacobson L., Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev. 1991;12(2):118–134.
    1. Katz M., Liu C., Schaer M., Parker K.J., Ottet M.-C., Epps A., Lyons D.M. Prefrontal plasticity and stress inoculation-induced resilience. Dev. Neurosci. 2009;31(4):293–299.
    1. Kessler R.C., Demler O., Frank R.G., Olfson M., Pincus H.A., Walters E.E., Zaslavsky A.M. Prevalence and treatment of mental disorders, 1990 to 2003. N. Engl. J. Med. 2005;352(24):2515–2523.
    1. Kikusui T., Mori Y. Behavioural and neurochemical consequences of early weaning in rodents. J. Neuroendocrinol. 2009;21(4):427–431.
    1. Kim H., Somerville L.H., Johnstone T., Alexander A.L., Whalen P.J. Inverse amygdala and medial prefrontal cortex responses to surprised faces. Neuroreport. 2003;14(18):2317–2322.
    1. Kim J.H., Li S., Richardson R. Immunohistochemical analyses of long-term extinction of conditioned fear in adolescent rats. Cereb. Cortex. 2011;21(3):530–538.
    1. Kim-Cohen J., Caspi A., Moffitt T.E., Harrington H., Milne B.J., Poulton R. Prior juvenile diagnoses in adults with mental disorder: developmental follow-back of a prospective-longitudinal cohort. Arch. Gen. Psychiatry. 2003;60(7):709–717.
    1. Lee F.S., Heimer H., Giedd J.N., Lein E.S., Sestan N., Weinberger D., Casey B. Adolescent mental health: an opportunity and an obligation. Science. 2014;346:547–549.
    1. Liston C., Miller M.M., Goldwater D.S., Radley J.J., Rocher A.B., Hof P.R., McEwen B.S. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. Off. J. Soc. Neurosci. 2006;26(30):7870–7874.
    1. Liston C., McEwen B.S., Casey B.J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl. Acad. Sci. U. S. A. 2009;106(3):912–917.
    1. Liston C.L., Cichon J.M., Jeanneteau F., Jia Z., Chao M.V., Gan W. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat. Neurosci. 2013;16:698–705.
    1. Lupien S.J., King S., Meaney M.J., McEwen B.S. Child's stress hormone levels correlate with mother's socioeconomic status and depressive state. Biol. Psychiatry. 2000;48(10):976–980.
    1. Lupien S.J., McEwen B.S., Gunnar M.R., Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009;10(6):434–445.
    1. Lupien S.J., Parent S., Evans A.C., Tremblay R.E., Zelazo P.D., Corbo V., Séguin J.R. Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc. Natl. Acad. Sci. U. S. A. 2011;108(34):14324–14329.
    1. Magariños A.M., Verdugo J.M., McEwen B.S. Chronic stress alters synaptic terminal structure in hippocampus. Proc. Natl. Acad. Sci. U. S. A. 1997;94(25):14002–14008.
    1. Malter Cohen M., Jing D., Yang R.R., Tottenham N., Lee F.S., Casey B.J. Early-life stress has persistent effects on amygdala function and development in mice and humans. Proc. Natl. Acad. Sci. U. S. A. 2013;110(45):18274–18278.
    1. Malter Cohen M., Tottenham N., Casey B.J. Translational developmental studies of stress on brain and behavior: implications for adolescent mental health and illness? Neuroscience. 2013;249:53–62.
    1. Masten A.S., Cicchetti D. Developmental cascades. Dev. Psychopathol. 2010;22:491–495.
    1. McCallum J., Kim J.H., Richardson R. Impaired extinction retention in adolescent rats: effects of D-cycloserine. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2010;35(10):2134–2142.
    1. McCormick K., Gualano M.F., Kerr D., Rockcastle N., Cameron J.L. Social bond disruption in early life has behavioral consequences which remain evident through puberty. Soc. Neurosci. 2005 Abstr. 31:873.9.
    1. McCoy C.L., Masters J.C. The development of children's strategies for the social control of emotion. Child Dev. 1985;56(5):1214–1222.
    1. McEwen B.S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 1999;22:105–122.
    1. McEwen B.S. Brain on stress: how the social environment gets under the skin. Proc. Natl. Acad. Sci. U. S. A. 2012;109(Suppl. 2):17180–17185.
    1. McEwen B.S., Sapolsky R.M. Stress and cognitive function. Curr. Opin. Neurobiol. 1995;5(2):205–216.
    1. Mehta M.A., Golembo N.I., Nosarti C., Colvert E., Mota A., Williams S.C.R., Sonuga-Barke E.J.S. Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian Adoptees study pilot. J. Child Psychol. Psychiatry Allied Discip. 2009;50(8):943–951.
    1. Mitra R., Jadhav S., McEwen B.S., Vyas A., Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl. Acad. Sci. U. S. A. 2005;102(26):9371–9376.
    1. Monk C.S. The development of emotion-related neural circuitry in health and psychopathology. Dev. Psychopathol. 2008;20(Special Issue 04):1231–1250.
    1. Monk C.S., Pine D.S., Charney D.S. A developmental and neurobiological approach to early trauma research. Seminars Clin. Neuropsychiatry. 2002;7(2):137–146.
    1. Moriceau S., Sullivan R.M. Maternal presence serves as a switch between learning fear and attraction in infancy. Nat. Neurosci. 2006;9(8):1004–1006.
    1. Moriceau S., Roth T.L., Sullivan R.M. Rodent model of infant attachment learning and stress. Dev. Psychobiol. 2010;52(7):651–660.
    1. Newman D.L., Moffitt T.E., Caspi A., Magdol L., Silva P.A., Stanton W.R. Psychiatric disorder in a birth cohort of young adults: prevalence, comorbidity, clinical significance, and new case incidence from ages 11 to 21. J. Consult. Clin. Psychol. 1996;64(3):552–562.
    1. Ono M., Kikusui T., Sasaki N., Ichikawa M., Mori Y., Murakami-Murofushi K. Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice. Neuroscience. 2008;156(4):1103–1110.
    1. Parker K.J., Buckmaster C.L., Schatzberg A.F., Lyons D.M. Prospective investigation of stress inoculation in young monkeys. Arch. Gen. Psychiatry. 2004;61(9):933–941.
    1. Parker K.J., Buckmaster C.L., Justus K.R., Schatzberg A.F., Lyons D.M. Mild early life stress enhances prefrontal-dependent response inhibition in monkeys. Biol. Psychiatry. 2005;57(8):848–855.
    1. Pattwell S.S., Duhoux S., Hartley C.A., Johnson D.C., Jing D., Elliott M.D., Lee F.S. Altered fear learning across development in both mouse and human. Proc. Natl. Acad. Sci. 2012;109(40):16318–16323.
    1. Pechtel P., Pizzagalli D.A. Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology. 2011;214(1):55–70.
    1. Plotsky P.M., Thrivikraman K.V., Nemeroff C.B., Caldji C., Sharma S., Meaney M.J. Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2005;30(12):2192–2204.
    1. Pollak S.D. Mechanisms linking early experience and the emergence of emotions: illustrations from the study of maltreated children. Curr. Dir. Psychol. Sci. 2008;17(6):370–375.
    1. Radley J.J., Sisti H.M., Hao J., Rocher A.B., McCall T., Hof P.R., Morrison J.H. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience. 2004;125(1):1–6.
    1. Radley J.J., Rocher A.B., Janssen W.G.M., Hof P.R., McEwen B.S., Morrison J.H. Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. Exp. Neurol. 2005;196(1):199–203.
    1. Radley J.J., Arias C.M., Sawchenko P.E. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J. Neurosci. Off. J. Soc. Neurosci. 2006;26(50):12967–12976.
    1. Raineki C., Cortés M.R., Belnoue L., Sullivan R.M. Effects of early-life abuse differ across development: infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala. J. Neurosci. Off. J. Soc. Neurosci. 2012;32(22):7758–7765.
    1. Redgate E.S., Fahringer E.E. A comparison of the pituitary adrenal activity elicited by electrical stimulation of preoptic, amygdaloid and hypothalamic sites in the rat brain. Neuroendocrinology. 1973;12(6):334–343.
    1. Rice C.J., Sandman C.A., Lenjavi M.R., Baram T.Z. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology. 2008;149(10):4892–4900.
    1. Rincón-Cortés M., Sullivan R.M. Early life trauma and attachment: immediate and enduring effects on neurobehavioral and stress axis development. Front. Endocrinol. 2014;5:33.
    1. Romeo R.D. Adolescence: a central event in shaping stress reactivity. Dev. Psychobiol. 2010;52(3):244–253.
    1. Romeo R.D., Mueller A., Sisti H.M., Ogawa S., McEwen B.S., Brake W.G. Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation. Hormones Behav. 2003;43(5):561–567.
    1. Romeo R.D., Bellani R., Karatsoreos I.N., Chhua N., Vernov M., Conrad C.D., McEwen B.S. Stress history and pubertal development interact to shape hypothalamic-pituitary-adrenal axis plasticity. Endocrinology. 2006;147(4):1664–1674.
    1. Rothbaum B.O., Davis M. Applying learning principles to the treatment of post-trauma reactions. Ann. N. Y. Acad. Sci. 2003;1008:112–121.
    1. Rutter M. Developmental catch-up, and deficit, following adoption after severe global early privation. J. Child Psychol. Psychiatry Allied Discip. 1998;39(04):465–476.
    1. Sabatini M.J., Ebert P., Lewis D.A., Levitt P., Cameron J.L., Mirnics K. Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. J. Neurosci. Off. J. Soc. Neurosci. 2007;27(12):3295–3304.
    1. Sapolsky R.M. Glucocorticoid toxicity in the hippocampus: reversal by supplementation with brain fuels. J. Neurosci. Official J. Soc. Neurosci. 1986;6(8):2240–2244.
    1. Sheridan M.A., Fox N.A., Zeanah C.H., McLaughlin K.A., Nelson C.A. Variation in neural development as a result of exposure to institutionalization early in childhood. Proc. Natl. Acad. Sci. U. S. A. 2012;109(32):12927–12932.
    1. Sheridan M.A., Sarsour K., Jutte D., D'Esposito M., Boyce W.T. The impact of social disparity on prefrontal function in childhood. PloS One. 2012;7(4) e35744.
    1. Sheridan M.A., How J., Araujo M., Schamberg M.A., Nelson C.A. What are the links between maternal social status, hippocampal function, and HPA axis function in children? Dev. Sci. 2013;16(5):665–675.
    1. Smith M.A., Makino S., Kvetnansky R., Post R.M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. Off. J. Soc. Neurosci. 1995;15(3):1768–1777.
    1. Sowell E.R., Thompson P.M., Holmes C.J., Jernigan T.L., Toga A.W. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat. Neurosci. 1999;2:859–861.
    1. Sowell E.R., Thompson P.M., Tessner K.D., Toga A.W. Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J. Neurosci. 2001;21:8819–8829.
    1. Spear L. W. W. Norton & Company; 2010. The Behavioral Neuroscience of Adolescence.
    1. Sugiyama S., Di Nardo A.A., Aizawa S., Matsuo I., Volovitch M., Prochiantz A., Hensch T.K. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell. 2008;134(3):508–520.
    1. Teicher M.H., Samson J.A., Polcari A., McGreenery C.E. Sticks, stones, and hurtful words: relative effects of various forms of childhood maltreatment. Am. J. Psychiatry. 2006;163(6):993–1000.
    1. Thompson J.V., Sullivan R.M., Wilson D.A. Developmental emergence of fear learning corresponds with changes in amygdala synaptic plasticity. Brain Res. 2008;1200:58–65.
    1. Tottenham N. Human amygdala development in the absence of species-expected caregiving. Dev. Psychobiol. 2012;54(6):598–611.
    1. Tottenham N., Sheridan M. A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front. Hum. Neurosci. 2009;3:68.
    1. Tottenham N., Hare T.A., Quinn B.T., McCarry T.W., Nurse M., Gilhooly T., Casey B.J. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev. Sci. 2010;13(1):46–61.
    1. Tottenham N., Hare T.A., Millner A., Gilhooly T., Zevin J.D., Casey B.J. Elevated amygdala response to faces following early deprivation. Dev. Sci. 2011;14(2):190–204.
    1. Vetencourt Maya, Sale J.F., Viegi A., Baroncelli A., De Pasquale L., O'Leary OF R., Maffei L. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Sci. (New York, N.Y.) 2008;320(5874):385–388.
    1. Vyas A., Mitra R., Shankaranarayana Rao B.S., Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. Off. J. Soc. Neurosci. 2002;22(15):6810–6818. doi:20026655.
    1. Vyas A., Bernal S., Chattarji S. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res. 2003;965(1–2):290–294.
    1. Vyas A., Pillai A.G., Chattarji S. Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience. 2004;128(4):667–673.
    1. Yang E.-J., Lin E.W., Hensch T.K. Critical period for acoustic preference in mice. Proc. Natl. Acad. Sci. U. S. A. 2012;109(Suppl. 2):17213–17220.
    1. Yakovlev P.I., Lecours A.R. The myelogenetic cycles of regional maturation of the brain. In: Minkowski A., editor. Regional Development of the Brain in Early Life. Blackwell Scientific; Oxford: 1967. pp. 3–70.
    1. Zeanah M.D., Egger M.D., Smyke P.D., Nelson P.D., Fox P.D., Marshall P.D., Guthrie P.D. Institutional rearing and psychiatric disorders in Romanian preschool children. Am. J. Psychiatry. 2009;166(7):777–785.

Source: PubMed

3
Abonner