Therapeutic strategies for preventing skeletal muscle fibrosis after injury

Koyal Garg, Benjamin T Corona, Thomas J Walters, Koyal Garg, Benjamin T Corona, Thomas J Walters

Abstract

Skeletal muscle repair after injury includes a complex and well-coordinated regenerative response. However, fibrosis often manifests, leading to aberrant regeneration and incomplete functional recovery. Research efforts have focused on the use of anti-fibrotic agents aimed at reducing the fibrotic response and improving functional recovery. While there are a number of mediators involved in the development of post-injury fibrosis, TGF-β1 is the primary pro-fibrogenic growth factor and several agents that inactivate TGF-β1 signaling cascade have emerged as promising anti-fibrotic therapies. A number of these agents are FDA approved for other conditions, clearing the way for rapid translation into clinical treatment. In this article, we provide an overview of muscle's host response to injury with special emphasis on the cellular and non-cellular mediators involved in the development of fibrosis. This article also reviews the findings of several pre-clinical studies that have utilized anti-fibrotic agents to improve muscle healing following most common forms of muscle injuries. Although some studies have shown positive results with anti-fibrotic treatment, others have indicated adverse outcomes. Some concerns and questions regarding the clinical potential of these anti-fibrotic agents have also been presented.

Keywords: TGF-ß1; extracellular matrix; fibrosis; muscle injury; muscle regeneration.

Figures

Figure 1
Figure 1
Illustration of the TGF-β1 signaling pathways and the mechanism of therapeutics. ERK, Extracellular signal regulated kinase; JNK, c-Jun N-terminal kinase; LTBP, Latent transforming growth factor binding proteins; MAPKs, Mitogen-activated protein kinase; TSP-1, Thrombospondin-1.

References

    1. A.F.H.S. Center. (2011). Brief Report: Morbidity Burden to Attributable to Illnesses and Injuries in Deployed (per Theater Medical Data Store TMDS) Compared to Nondeployed (per Defense Medical Surveillance System DMSS) Settings, Active Component, Vol. 18 Silver Spring, MD: U.S. Armed Forces. MSMR.
    1. Allen R. E., Boxhorn L. K. (1989). Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J. Cell. Physiol. 138, 311–315. 10.1002/jcp.1041380213
    1. Andreetta F., Bernasconi P., Baggi F., Ferro P., Oliva L., Arnoldi E., et al. . (2006). Immunomodulation of TGF-beta 1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: implications for antifibrotic therapy. J. Neuroimmunol. 175, 77–86. 10.1016/j.jneuroim.2006.03.005
    1. Arnold L., Henry A., Poron F., Baba-Amer Y., van Rooijen N., Plonquet A., et al. . (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069. 10.1084/jem.20070075
    1. Aronson J. K. (2009). Meyler's Side Effects of Cardiovascular Drugs. San Diego, CA: Elsevier.
    1. Aurora A., Garg K., Corona B. T., Walters T. J. (2014). Physical rehabilitation improves muscle function following volumetric muscle loss injury. BMC Sports Sci. Med. Rehabil. 6:41. 10.1186/2052-1847-6-41
    1. Bedair H. S., Karthikeyan T., Quintero A., Li Y., Huard J. (2008). Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am. J. Sports Med. 36, 1548–1554 10.1177/0363546508315470
    1. Burks T. N., Cohn R. D. (2011). Role of TGF-beta signaling in inherited and acquired myopathies. Skelet. Muscle 1:19. 10.1186/2044-5040-1-19
    1. Carlson B. M. (1986). Regeneration of entire skeletal muscles. Fed. Proc. 45, 1456–1460.
    1. Chamberlain J. S. (2007). ACE inhibitor bulks up muscle. Nat. Med. 13, 125–126. 10.1038/nm0207-125
    1. Chan Y. S., Li Y., Foster W., Fu F. H., Huard J. (2005). The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am. J. Sports Med. 33, 43–51. 10.1177/0363546504265190
    1. Chan Y. S., Li Y., Foster W., Horaguchi T., Somogyi G., Fu F. H., et al. . (2003). Antifibrotic effects of suramin in injured skeletal muscle after laceration. J. Appl. Physiol. 95, 771–780. 10.1152/japplphysiol.00915.2002
    1. Chapman M. A., Zhang J., Banerjee I., Guo L. T., Zhang Z., Shelton G. D., et al. . (2014). Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum. Mol. Genet. 23, 5879–5892. 10.1093/hmg/ddu310
    1. Chen X., Li Y. (2009). Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh. Migr. 3, 337–341. 10.4161/cam.3.4.9338
    1. Chen X. K., Walters T. J. (2013). Muscle-derived decellularised extracellular matrix improves functional recovery in a rat latissimus dorsi muscle defect model. J. Plast. Reconst. Aesthet. Surg. 66, 1750–1758. 10.1016/j.bjps.2013.07.037
    1. Ciciliot S., Schiaffino S. (2010). Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr. Pharm. Des. 16, 906–914. 10.2174/138161210790883453
    1. Cohn R. D., van Erp C., Habashi J. P., Soleimani A. A., Klein E. C., Lisi M. T., et al. . (2007). Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13, 204–210. 10.1038/nm1536
    1. Cornelison D. D. (2008). Context matters: in vivo and in vitro influences on muscle satellite cell activity. J. Cell. Biochem. 105, 663–669. 10.1002/jcb.21892
    1. Corona B. T., Wu X., Ward C. L., McDaniel J. S., Rathbone C. R., Walters T. J. (2013). The promotion of a functional fibrosis in skeletal muscle with volumetric muscle loss injury following the transplantation of muscle-ECM. Biomaterials 34, 3324–3335. 10.1016/j.biomaterials.2013.01.061
    1. Darby I., Skalli O., Gabbiani G. (1990). Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Laboratory investigation. J. Tech. Methods Pathol. 63, 21–29.
    1. Desmouliere A., Chaponnier C., Gabbiani G. (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 13, 7–12. 10.1111/j.1067-1927.2005.130102.x
    1. Desmoulière A., Darby I. A., Gabbiani G. (2003). Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab. Invest. 83, 1689–1707. 10.1097/01.LAB.0000101911.53973.90
    1. Dreher K. L., Asundi V., Matzura D., Cowan K. (1990). Vascular smooth muscle biglycan represents a highly conserved proteoglycan within the arterial wall. Eur. J. Cell Biol. 53, 296–304.
    1. Foster W., Li Y., Usas A., Somogyi G., Huard J. (2003). Gamma interferon as an antifibrosis agent in skeletal muscle. J. Orthop. Res. 21, 798–804. 10.1016/S0736-0266(03)00059-7
    1. Friedlander L., van Thiel D. H., Faruki H., Molloy P. J., Kania R. J., Hassanein T. (1996). New approach to HCV treatment. Recognition of disease process as systemic viral infection rather than as liver disease. Dig. Dis. Sci. 41, 1678–1681. 10.1007/BF02087924
    1. Fukushima K., Badlani N., Usas A., Riano F., Fu F., Huard J. (2001). The use of an antifibrosis agent to improve muscle recovery after laceration. Am. J. Sports Med. 29, 394–402. 10.1177/03635465010290040201
    1. Furochi H., Tamura S., Takeshima K., Hirasaka K., Nakao R., Kishi K., et al. . (2007). Overexpression of osteoactivin protects skeletal muscle from severe degeneration caused by long-term denervation in mice. J. Med. Invest. 54, 248–254. 10.2152/jmi.54.248
    1. Garg K., Corona B. T., Walters T. J. (2014). Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury. J. Appl. Physiol. 117, 1120–1131. 10.1152/japplphysiol.00689.2014
    1. Garrett W. E., Jr. (1996). Muscle strain injuries. Am. J. Sports Med. 24, S2–S8.
    1. Gharaibeh B., Chun-Lansinger Y., Hagen T., Ingham S. J., Wright V., Fu F., et al. . (2012). Biological approaches to improve skeletal muscle healing after injury and disease. Birth Defects Res. C Embryo Today 96, 82–94. 10.1002/bdrc.21005
    1. Gillies A. R., Lieber R. L. (2011). Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44, 318–331. 10.1002/mus.22094
    1. Giri S. N., Hyde D. M., Braun R. K., Gaarde W., Harper J. R., Pierschbacher M. D. (1997). Antifibrotic effect of decorin in a bleomycin hamster model of lung fibrosis. Biochem. Pharmacol. 54, 1205–1216. 10.1016/S0006-2952(97)00343-2
    1. Goldstein J. A., Kelly S. M., LoPresti P. P., Heydemann A., Earley J. U., Ferguson E. L., et al. . (2011). SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy. Hum. Mol. Genet. 20, 894–904. 10.1093/hmg/ddq528
    1. Gosselin L. E., Williams J. E., Deering M., Brazeau D., Koury S., Martinez D. A. (2004). Localization and early time course of TGF-beta 1 mRNA expression in dystrophic muscle. Muscle Nerve 30, 645–653. 10.1002/mus.20150
    1. Gosselin L. E., Williams J. E., Personius K., Farkas G. A. (2007). A comparison of factors associated with collagen metabolism in different skeletal muscles from dystrophic (mdx) mice: impact of pirfenidone. Muscle Nerve 35, 208–216. 10.1002/mus.20681
    1. Grogan B. F., Hsu J. R. (2011). Volumetric muscle loss. J. Am. Acad. Orthop. Surg. 19(Suppl. 1), S35–S37.
    1. Gumucio J. P., Flood M. D., Phan A. C., Brooks S. V., Mendias C. L. (2013). Targeted inhibition of TGF-beta results in an initial improvement but long-term deficit in force production after contraction-induced skeletal muscle injury. J. Appl. Physiol. 115, 539–545. 10.1152/japplphysiol.00374.2013
    1. Hanamura N., Yoshida T., Matsumoto E., Kawarada Y., Sakakura T. (1997). Expression of fibronectin and tenascin-C mRNA by myofibroblasts, vascular cells and epithelial cells in human colon adenomas and carcinomas. Int. J. Cancer 73, 10–15.
    1. Heinemeier K. M., Olesen J. L., Haddad F., Langberg H., Kjaer M., Baldwin K. M., et al. . (2007). Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J. Physiol. 582, 1303–1316. 10.1113/jphysiol.2007.127639
    1. Huard J., Li Y., Fu F. H. (2002). Muscle injuries and repair: current trends in research. J. Bone Joint Surg. Am. 84-A, 822–832.
    1. Huebner K. D., Jassal D. S., Halevy O., Pines M., Anderson J. E. (2008). Functional resolution of fibrosis in mdx mouse dystrophic heart and skeletal muscle by halofuginone. Am. J. Physiol. Heart Circ. Physiol. 294, H1550–H1561. 10.1152/ajpheart.01253.2007
    1. Isaka Y., Brees D. K., Ikegaya K., Kaneda Y., Imai E., Noble N. A., et al. . (1996). Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat. Med. 2, 418–423. 10.1038/nm0496-418
    1. Jaalouk D. E., Lammerding J. (2009). Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73. 10.1038/nrm2597
    1. Jarvinen M. J., Lehto M. U. (1993). The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med. 15, 78–89. 10.2165/00007256-199315020-00002
    1. Jarvinen T. A., Jarvinen T. L., Kaariainen M., Aarimaa V., Vaittinen S., Kalimo H., et al. . (2007). Muscle injuries: optimising recovery. Best Pract. Res. Clin. Rheumatol. 21, 317–331. 10.1016/j.berh.2006.12.004
    1. Jarvinen T. A., Jarvinen T. L., Kaariainen M., Kalimo H., Jarvinen M. (2005). Muscle injuries: biology and treatment. Am. J. Sports Med. 33, 745–764. 10.1177/0363546505274714
    1. Jiang C., Huang H., Liu J., Wang Y., Lu Z., Xu Z. (2012). Adverse events of pirfenidone for the treatment of pulmonary fibrosis: a meta-analysis of randomized controlled trials. PLoS ONE 7:e47024. 10.1371/journal.pone.0047024
    1. Johnson S. E., Allen R. E. (1990). The effects of bFGF, IGF-I, and TGF-beta on RMo skeletal muscle cell proliferation and differentiation. Exp. Cell Res. 187, 250–254. 10.1016/0014-4827(90)90088-R
    1. Kaar J. L., Li Y., Blair H. C., Asche G., Koepsel R. R., Huard J., et al. . (2008). Matrix metalloproteinase-1 treatment of muscle fibrosis. Acta Biomater. 4, 1411–1420. 10.1016/j.actbio.2008.03.010
    1. Kaariainen M., Kaariainen J., Jarvinen T. L., Sievanen H., Kalimo H., Jarvinen M. (1998). Correlation between biomechanical and structural changes during the regeneration of skeletal muscle after laceration injury. J. Orthop. Res. 16, 197–206. 10.1002/jor.1100160207
    1. Kherif S., Lafuma C., Dehaupas M., Lachkar S., Fournier J. G., Verdiere-Sahuque M., et al. . (1999). Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev. Biol. 205, 158–170. 10.1006/dbio.1998.9107
    1. Kjaer M. (2004). Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84, 649–698. 10.1152/physrev.00031.2003
    1. Kjaer M., Magnusson P., Krogsgaard M., Boysen Moller J., Olesen J., Heinemeier K., et al. . (2006). Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J. Anat. 208, 445–450. 10.1111/j.1469-7580.2006.00549.x
    1. Kobayashi T., Uehara K., Ota S., Tobita K., Ambrosio F., Cummins J. H., et al. . (2013). The timing of administration of a clinically relevant dose of losartan influences the healing process after contusion induced muscle injury. J. Appl. Physiol. 114, 262–273. 10.1152/japplphysiol.00140.2011
    1. Kulkarni A. B., Huh C. G., Becker D., Geiser A., Lyght M., Flanders K. C., et al. . (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. U.S.A. 90, 770–774. 10.1073/pnas.90.2.770
    1. Le Grand F., Rudnicki M. A. (2007). Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19, 628–633. 10.1016/j.ceb.2007.09.012
    1. Li X., McFarland D. C., Velleman S. G. (2008). Effect of Smad3-mediated transforming growth factor-beta1 signaling on satellite cell proliferation and differentiation in chickens. Poult. Sci. 87, 1823–1833. 10.3382/ps.2008-00133
    1. Li Y., Foster W., Deasy B. M., Chan Y., Prisk V., Tang Y., et al. . (2004). Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am. J. Pathol. 164, 1007–1019. 10.1016/S0002-9440(10)63188-4
    1. Lieber R. L., Ward S. R. (2013). Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am. J. Physiol. Cell Physiol. 305, C241–C252. 10.1152/ajpcell.00173.2013
    1. Light N., Champion A. E. (1984). Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem. J. 219, 1017–1026.
    1. Lluis F., Perdiguero E., Nebreda A. R., Munoz-Canoves P. (2006). Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol. 16, 36–44. 10.1016/j.tcb.2005.11.002
    1. Lolmede K., Campana L., Vezzoli M., Bosurgi L., Tonlorenzi R., Clementi E., et al. . (2009). Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J. Leukoc. Biol. 85, 779–787. 10.1189/jlb.0908579
    1. Mann C. J., Perdiguero E., Kharraz Y., Aguilar S., Pessina P., Serrano A. L., et al. . (2011). Aberrant repair and fibrosis development in skeletal muscle. Skelet. Muscle 1:21. 10.1186/2044-5040-1-21
    1. Meyer G. A., Lieber R. L. (2012). Skeletal muscle fibrosis develops in response to desmin deletion. Am. J. Physiol. Cell Physiol. 302, C1609–C1620. 10.1152/ajpcell.00441.2011
    1. Middleton S., Smith J. (2007). Muscle injuries. Trauma 9, 5–11 10.1177/1460408607081918
    1. Miller B. F., Olesen J. L., Hansen M., Dossing S., Crameri R. M., Welling R. J., et al. . (2005). Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J. Physiol. 567, 1021–1033. 10.1113/jphysiol.2005.093690
    1. Moore D. R., Phillips S. M., Babraj J. A., Smith K., Rennie M. J. (2005). Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am. J. Physiol. Endocrinol. Metab. 288, E1153–E1159. 10.1152/ajpendo.00387.2004
    1. Moulin V., Larochelle S., Langlois C., Thibault I., Lopez-Valle C. A., Roy M. (2004). Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J. Cell. Physiol. 198, 350–358. 10.1002/jcp.10415
    1. Mu X., Bellayr I., Walters T., Li Y. (2010). Mediators leading to fibrosis - how to measure and control them in tissue engineering. Oper. Tech. Orthop. 20, 110–118. 10.1053/j.oto.2009.10.003
    1. Murray P. J., Wynn T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737. 10.1038/nri3073
    1. Nikolaou S., Liangjun H., Tuttle L. J., Weekley H., Christopher W., Lieber R. L., et al. . (2014). Contribution of denervated muscle to contractures after neonatal brachial plexus injury: not just muscle fibrosis. Muscle Nerve 49, 398–404. 10.1002/mus.23927
    1. Novak M. L., Weinheimer-Haus E. M., Koh T. J. (2014). Macrophage activation and skeletal muscle healing following traumatic injury. J. Pathol. 232, 344–355. 10.1002/path.4301
    1. Nozaki M., Li Y., Zhu J., Ambrosio F., Uehara K., Fu F. H., et al. . (2008). Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am. J. Sports Med. 36, 2354–2362. 10.1177/0363546508322886
    1. Nozaki M., Ota S., Terada S., Li Y., Uehara K., Gharaibeh B., et al. . (2012). Timing of the administration of suramin treatment after muscle injury. Muscle Nerve 46, 70–79. 10.1002/mus.23280
    1. Owens B. D., Kragh J. F., Jr., Wenke J. C., Macaitis J., Wade C. E., Holcomb J. B. (2008). Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J. Trauma 64, 295–299. 10.1097/TA.0b013e318163b875
    1. Park J. K., Ki M. R., Lee E. M., Kim A. Y., You S. Y., Han S. Y., et al. . (2012). Losartan improves adipose tissue-derived stem cell niche by inhibiting transforming growth factor-beta and fibrosis in skeletal muscle injury. Cell Transplant. 21, 2407–2424. 10.3727/096368912X637055
    1. Pesce J. T., Ramalingam T. R., Mentink-Kane M. M., Wilson M. S., El Kasmi K. C., Smith A. M., et al. . (2009). Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5:e1000371. 10.1371/journal.ppat.1000371
    1. Pohlers D., Brenmoehl J., Loffler I., Muller C. K., Leipner C., Schultze-Mosgau S., et al. . (2009). TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim. Biophys. Acta 1792, 746–756. 10.1016/j.bbadis.2009.06.004
    1. Quan T. E., Cowper S., Wu S. P., Bockenstedt L. K., Bucala R. (2004). Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell Biol. 36, 598–606. 10.1016/j.biocel.2003.10.005
    1. Reilly G. C., Engler A. J. (2010). Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43, 55–62. 10.1016/j.jbiomech.2009.09.009
    1. Robi K., Matjaz V. (2014). Concerns about fibrosis development after scaffolded PRP therapy of muscle injuries: commentary on an article by Sanchez et al.: “Muscle repair: Platelet-rich plasma derivates as a bridge from spontaneity to intervention.” Injury 46, 428 10.1016/j.injury.2014.12.010
    1. Rodriguez-Vita J., Sanchez-Lopez E., Esteban V., Ruperez M., Egido J., Ruiz-Ortega M. (2005). Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 111, 2509–2517. 10.1161/01.CIR.0000165133.84978.E2
    1. Roffe S., Hagai Y., Pines M., Halevy O. (2010). Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: effect on myotube fusion. Exp. Cell Res. 316, 1061–1069. 10.1016/j.yexcr.2010.01.003
    1. Rudnicki M. A., Le Grand F., McKinnell I., Kuang S. (2008). The molecular regulation of muscle stem cell function. Cold Spring Harb. Symp. Quant. Biol. 73, 323–331. 10.1101/sqb.2008.73.064
    1. Sanchez M., Anitua E., Delgado D., Sanchez P., Orive G., Padilla S. (2014). Muscle repair: platelet-rich plasma derivates as a bridge from spontaneity to intervention. Injury 45(Suppl. 4), S7–S14. 10.1016/S0020-1383(14)70004-X
    1. Sanes J. R. (2003). The basement membrane/basal lamina of skeletal muscle. J. Biol. Chem. 278, 12601–12604. 10.1074/jbc.R200027200
    1. Sarrazy V., Billet F., Micallef L., Coulomb B., Desmoulière A. (2011). Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen. 19, S10–S15. 10.1111/j.1524-475X.2011.00708.x
    1. Sato K., Li Y., Foster W., Fukushima K., Badlani N., Adachi N., et al. . (2003). Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 28, 365–372. 10.1002/mus.10436
    1. Serrano A. L., Munoz-Canoves P. (2010). Regulation and dysregulation of fibrosis in skeletal muscle. Exp. Cell Res. 316, 3050–3058. 10.1016/j.yexcr.2010.05.035
    1. Serrano A. L., Mann C. J., Vidal B., Ardite E., Perdiguero E., Munoz-Canoves P. (2011). Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr. Top Dev. Biol. 96, 167–201. 10.1016/B978-0-12-385940-2.00007-3
    1. Sheppard D. (2006). Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. Proc. Am. Thorac. Soc. 3, 413–417. 10.1513/pats.200601-008AW
    1. Smith C., Kruger M. J., Smith R. M., Myburgh K. H. (2008). The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med. 38, 947–969. 10.2165/00007256-200838110-00005
    1. Spurney C. F., Sali A., Guerron A. D., Iantorno M., Yu Q., Gordish-Dressman H., et al. . (2011). Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice. J. Cardiovasc. Pharmacol. Ther. 16, 87–95. 10.1177/1074248410381757
    1. Stauber W. T., Knack K. K., Miller G. R., Grimmett J. G. (1996). Fibrosis and intercellular collagen connections from four weeks of muscle strains. Muscle Nerve 19, 423–430. 10.1002/mus.880190402
    1. Street S. F., Ramsey R. W. (1965). Sarcolemma: transmitter of active tension in frog skeletal muscle. Science 149, 1379–1380. 10.1126/science.149.3690.1379
    1. Taniguti A. P., Pertille A., Matsumura C. Y., Santo Neto H., Marques M. J. (2011). Prevention of muscle fibrosis and myonecrosis in mdx mice by suramin, a TGF-beta1 blocker. Muscle Nerve 43, 82–87. 10.1002/mus.21869
    1. Terada S., Ota S., Kobayashi M., Kobayashi T., Mifune Y., Takayama K., et al. . (2013). Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J. Bone Joint Surg. Am. 95, 980–988. 10.2106/JBJS.L.00266
    1. Tidball J. G. (2005). Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R345–R353. 10.1152/ajpregu.00454.2004
    1. Tidball J. G., Villalta S. A. (2010). Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1173–R1187. 10.1152/ajpregu.00735.2009
    1. Tonogai I., Takahashi M., Yukata K., Sato R., Nikawa T., Yasui N., et al. . (2014). Osteoactivin attenuates skeletal muscle fibrosis after distraction osteogenesis by promoting extracellular matrix degradation/remodeling. J. Pediatr. Orthop. B 24, 162–169. 10.1097/BPB.0000000000000117
    1. Torrente Y., El Fahime E., Caron N. J., Del Bo R., Belicchi M., Pisati F., et al. . (2003). Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells. Cell Transplant. 12, 91–100. 10.3727/000000003783985115
    1. Tuxhorn J. A., Ayala G. E., Smith M. J., Smith V. C., Dang T. D., Rowley D. R. (2002). Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin. Cancer Res. 8, 2912–2923.
    1. Vaday G. G., Schor H., Rahat M. A., Lahat N., Lider O. (2001). Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9 expression in monocytes. J. Leukoc. Biol. 69, 613–621.
    1. Van Erp C., Irwin N. G., Hoey A. J. (2006). Long-term administration of pirfenidone improves cardiac function in mdx mice. Muscle Nerve 34, 327–334. 10.1002/mus.20590
    1. Wehling-Henricks M., Jordan M. C., Gotoh T., Grody W. W., Roos K. P., Tidball J. G. (2010). Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS ONE 5:e10763. 10.1371/journal.pone.0010763
    1. Wynn T. A. (2004). Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4, 583–594. 10.1038/nri1412
    1. Wynn T. A., Ramalingam T. R. (2012). Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040. 10.1038/nm.2807
    1. Wynn T., Barron L. (2010). Macrophages: master regulators of inflammation and fibrosis. Semin. Liver Dis. 30, 245–257. 10.1055/s-0030-1255354
    1. Yan Z., Choi S., Liu X., Zhang M., Schageman J. J., Lee S. Y., et al. . (2003). Highly coordinated gene regulation in mouse skeletal muscle regeneration. J. Biol. Chem. 278, 8826–8836. 10.1074/jbc.M209879200
    1. Yuan W., Varga J. (2001). Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J. Biol. Chem. 276, 38502–38510. 10.1074/jbc.M107081200
    1. Zambraski E. J., Yancosek K. E. (2012). Prevention and rehabilitation of musculoskeletal injuries during military operations and training. J. Strength Cond. Res. 26(Suppl. 2), S101–S106. 10.1519/JSC.0b013e31825cf03b

Source: PubMed

3
Abonner