Lateral Sinus Floor Elevation Performed with Trapezoidal and Modified Triangular Flap Designs: A Randomized Pilot Study of Post-Operative Pain Using Thermal Infrared Imaging

Antonio Scarano, Felice Lorusso, Merla Arcangelo, Camillo D'Arcangelo, Renato Celletti, Pablo Santos de Oliveira, Antonio Scarano, Felice Lorusso, Merla Arcangelo, Camillo D'Arcangelo, Renato Celletti, Pablo Santos de Oliveira

Abstract

Purpose: Post-operative pain and swelling are frequently observed after sinus lift procedures. The aim of the present study was the clinical evaluation of swelling and pain of two different sinus flap lift techniques using a visual analogue scale (VAS), verbal rating scale (VRS), and infrared thermal imaging (i.e., thermography). Materials Methods: A randomized controlled trial was conducted with 15 patients (30 sinuses in total) randomly allocated into two groups. For the sinuses of Group I a trapezoidal flap was used, while for Group II a modified triangular flap without anterior release was utilized. Postoperative pain was scored by means of a 100-mm VAS ranging from 0 (no pain) to 100 (worst pain imaginable), and was recorded at 2, 4, 6 and 14 days after surgery. Swelling was recorded by a verbal rating scale (VRS) and was classified into four categories: a score of 1 referred the absence of swelling, patients with intra-oral swelling in the surgical zone scored 2, any extra-oral swelling in the surgical zone scored 3, and intense swelling exhibited by extra-oral swelling extending beyond the surgical zone scored 4. The facial temperature was recorded before and after sinus augmentation, and at 2, 4, 6, and 14 days post-surgery to check the course of healing. Results: In Group I pain intensity was recorded at 2 days after surgery with a mean score of 38.67 ± 6.4 mm. Swelling was greater at 2 and 4 days, and was absent at day 6. The facial temperature difference before and after the procedure was 4.737 &deg;C ± 0.37. In Group II the pain score were lower than in Group I (p < 0.05). The score for swelling was 2 on the first and second days, and was reduced on day 4. After the second day the difference in temperature was significantly reduced as compared to the day of surgery (0.77 &deg;C); at 2 and 4 days no difference was registered. Conclusions: The results of this clinical study show the significant effectiveness of the modified triangular flap in the sinus lift procedure for reducing pain and swelling.

Keywords: VAS; VRS; modified triangular flap; sinus augmentation; thermal infrared imaging; trapezoidal flap.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The trapezoidal flap with a relieving incision in the mesial and distal regions (arrows).
Figure 2
Figure 2
(A) The modified triangular flap with a relieving incision in the distal region without a mesial relieving incision (arrows). Flap in the case of an edentulous patient. (B) Flap elevated without difficulty.
Figure 3
Figure 3
(A) Antrostomy access after dissection and elevation of the sinus membrane. (B) Flaps were carefully sutured while the distal relieving incision was left without suture as passive drains (arrows).
Figure 4
Figure 4
(A) Modified triangular technique. Flap in case of a partially edentulous patient. (B) The incision was continued by a sulcular incision starting near the mesialbuccal edge of the teeth. (C) The flap was elevated and the maxillary sinus lateral wall was exposed. (D) A bone window was created.
Figure 5
Figure 5
Pain measurements based on the VAS scores.
Figure 6
Figure 6
Swelling measurements based on the verbal rating scale.
Figure 7
Figure 7
Facial temperature measurement before the procedure and after sinus augmentation.
Figure 8
Figure 8
Thermographic scan of face after 2 days. (A,B) Trapezoidal flap. Measurements were taken ipsilateral to the side of sinus lifting. (C,D) Modified triangular technique. The surface temperature was lower than that using the trapezoidal flap.

References

    1. Zucoloto M.L., Maroco J., Campos J.A.D.B. Impact of oral health on health-related quality of life: A cross-sectional study. BMC Oral Health. 2016;16:55. doi: 10.1186/s12903-016-0211-2.
    1. Wallace S.S., Froum S.J. Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann. Periodontol. 2003;8:328–343. doi: 10.1902/annals.2003.8.1.328.
    1. Ersanli S., Arısan V., Bedeloğlu E. Evaluation of the autogenous bone block transfer for dental implant placement: Symphysal or ramus harvesting? BMC Oral Health. 2016;16:4. doi: 10.1186/s12903-016-0161-8.
    1. Piattelli M., Favero G.A., Scarano A., Orsini G., Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: A histologic long-term report of 20 cases in humans. Int. J. Oral Maxillofac. Implants. 1999;14:835–840.
    1. Landi L., Pretel R.W., Hakimi N.M., Setayesh R. Maxillary sinus floor elevation using a combination of DFDBA and bovine-derived porous hydroxyapatite: A preliminary histologic and histomorphometric report. Int. J. Periodontics Restor. Dent. 2000;20:574–583.
    1. Mangano C., Scarano A., Perrotti V., Iezzi G., Piattelli A. Maxillary sinus augmentation with a porous synthetic hydroxyapatite and bovine-derived hydroxyapatite: A comparative clinical and histologic study. Int. J. Oral Maxillofac. Implants. 2007;22:980–986.
    1. Scarano A., Degidi M., Iezzi G., Pecora G., Piattelli M., Orsini G., Caputi S., Perrotti V., Mangano C., Piattelli A. Maxillary sinus augmentation with different biomaterials: A comparative histologic and histomorphometric study in man. Implant Dent. 2006;15:197–207. doi: 10.1097/01.id.0000220120.54308.f3.
    1. Jacobs R., Salmon B., Codari M., Hassan B., Bornstein M.M. Cone beam computed tomography in implant dentistry: Recommendations for clinical use. BMC Oral Health. 2018;18:88. doi: 10.1186/s12903-018-0523-5.
    1. Kang Y.-H., Kim H.-M., Byun J.-H., Kim U.-K., Sung I.-Y., Cho Y.-C., Park B.-W. Stability of simultaneously placed dental implants with autologous bone grafts harvested from the iliac crest or intraoral jaw bone. BMC Oral Health. 2015;15:172. doi: 10.1186/s12903-015-0156-x.
    1. Stacchi C., Lombardi T., Ottonelli R., Berton F., Perinetti G., Traini T. New bone formation after transcrestal sinus floor elevation was influenced by sinus cavity dimensions: A prospective histologic and histomorphometric study. Clin. Oral Implants Res. 2018;29:465–479. doi: 10.1111/clr.13144.
    1. Lombardi T., Stacchi C., Berton F., Traini T., Torelli L., Di Lenarda R. Influence of Maxillary Sinus Width on New Bone Formation After Transcrestal Sinus Floor Elevation: A Proof-of-Concept Prospective Cohort Study. Implant Dent. 2017;26:209–216. doi: 10.1097/ID.0000000000000554.
    1. Scala A., Botticelli D., Rangel I.G., De Oliveira J.A., Okamoto R., Lang N.P. Early healing after elevation of the maxillary sinus floor applying a lateral access: A histological study in monkeys. Clin. Oral Implants Res. 2010;21:1320–1326. doi: 10.1111/j.1600-0501.2010.01964.x.
    1. Avila-Ortiz G., Wang H.-L., Galindo-Moreno P., Misch C.E., Rudek I., Neiva R. Influence of lateral window dimensions on vital bone formation following maxillary sinus augmentation. Int. J. Oral Maxillofac. Implants. 2012;27:1230–1238.
    1. Maria Soardi C., Spinato S., Zaffe D., Wang H.-L. Atrophic maxillary floor augmentation by mineralized human bone allograft in sinuses of different size: An histologic and histomorphometric analysis. Clin. Oral Implants Res. 2011;22:560–566. doi: 10.1111/j.1600-0501.2010.02034.x.
    1. Fenner M., Vairaktaris E., Stockmann P., Schlegel K.A., Neukam F.W., Nkenke E. Influence of residual alveolar bone height on implant stability in the maxilla: An experimental animal study. Clin. Oral Implants Res. 2009;20:751–755. doi: 10.1111/j.1600-0501.2009.01570.x.
    1. Busenlechner D., Huber C.D., Vasak C., Dobsak A., Gruber R., Watzek G. Sinus augmentation analysis revised: The gradient of graft consolidation. Clin. Oral Implants Res. 2009;20:1078–1083. doi: 10.1111/j.1600-0501.2009.01733.x.
    1. Valentini P., Abensur D. Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone (Bio-Oss): A clinical study of 20 patients. Int. J. Periodontics Restor. Dent. 1997;17:232–241.
    1. Valentini P., Abensur D., Wenz B., Peetz M., Schenk R. Sinus grafting with porous bone mineral (Bio-Oss) for implant placement: A 5-year study on 15 patients. Int. J. Periodontics Restor. Dent. 2000;20:245–253.
    1. Yildirim M., Spiekermann H., Biesterfeld S., Edelhoff D. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin. Oral Implants Res. 2000;11:217–229. doi: 10.1034/j.1600-0501.2000.011003217.x.
    1. Hallman M., Sennerby L., Lundgren S. A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. Int. J. Oral Maxillofac. Implants. 2002;17:635–643.
    1. Karabuda C., Ozdemir O., Tosun T., Anil A., Olgaç V. Histological and clinical evaluation of 3 different grafting materials for sinus lifting procedure based on 8 cases. J. Periodontol. 2001;72:1436–1442. doi: 10.1902/jop.2001.72.10.1436.
    1. Miser A.W., Dothage J.A., Wesley R.A., Miser J.S. The prevalence of pain in a pediatric and young adult cancer population. Pain. 1987;29:73–83. doi: 10.1016/0304-3959(87)90180-1.
    1. Danesh-Sani S.A., Engebretson S.P., Janal M.N. Histomorphometric results of different grafting materials and effect of healing time on bone maturation after sinus floor augmentation: A systematic review and meta-analysis. J. Periodontal Res. 2017;52:301–312. doi: 10.1111/jre.12402.
    1. Aludden H.C., Mordenfeld A., Hallman M., Dahlin C., Jensen T. Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: A systematic review. Int. J. Oral Maxillofac. Surg. 2017;46:1030–1038. doi: 10.1016/j.ijom.2017.03.008.
    1. Stacchi C., Lombardi T., Oreglia F., Alberghini Maltoni A., Traini T. Histologic and histomorphometric comparison between sintered nanohydroxyapatite and anorganic bovine xenograft in maxillary sinus grafting: A split-mouth randomized controlled Clinical Trial. BioMed Res. Int. 2017;2017:9489825. doi: 10.1155/2017/9489825.
    1. Galindo-Moreno P., de Buitrago J.G., Padial-Molina M., Fernández-Barbero J.E., Ata-Ali J., O′ Valle F. Histopathological comparison of healing after maxillary sinus augmentation using xenograft mixed with autogenous bone versus allograft mixed with autogenous bone. Clin. Oral Implants Res. 2018;29:192–201. doi: 10.1111/clr.13098.
    1. Dursun C.K., Dursun E., Eratalay K., Orhan K., Tatar I., Baris E., Tözüm T.F. Effect of porous titanium granules on bone regeneration and primary stability in maxillary sinus: A human clinical, histomorphometric, and microcomputed tomography analyses. J. Craniofacial Surg. 2016;27:391–397. doi: 10.1097/SCS.0000000000002421.
    1. Franceschetti G., Rizzi A., Minenna L., Pramstraller M., Trombelli L., Farina R. Patient-reported outcomes of implant placement performed concomitantly with transcrestal sinus floor elevation or entirely in native bone. Clin. Oral Implants Res. 2017;28:156–162. doi: 10.1111/clr.12774.
    1. Nickenig H.-J., Wichmann M., Zöller J.E., Eitner S. 3-D based minimally invasive one-stage lateral sinus elevation—A prospective randomized clinical pilot study with blinded assessment of postoperative visible facial soft tissue volume changes. J. Cranio-Maxillo-Facial Surg. 2014;42:890–895. doi: 10.1016/j.jcms.2014.01.006.
    1. Trombelli L., Franceschetti G., Stacchi C., Minenna L., Riccardi O., Di Raimondo R., Rizzi A., Farina R. Minimally invasive transcrestal sinus floor elevation with deproteinized bovine bone or β-tricalcium phosphate: A multicenter, double-blind, randomized, controlled clinical trial. J. Clin. Periodontol. 2014;41:311–319. doi: 10.1111/jcpe.12210.
    1. Al-Samman A.A., Othman H.A. Facial expression drawings and the full cup test: Valid tools for the measurement of swelling after dental surgery. Br. J. Oral Maxillofac. Surg. 2017;55:22–25. doi: 10.1016/j.bjoms.2016.08.015.
    1. Scarano A., Inchingolo F., Murmura G., Traini T., Piattelli A., Lorusso F. Three-Dimensional Architecture and Mechanical Properties of Bovine Bone Mixed with Autologous Platelet Liquid, Blood, or Physiological Water: An In Vitro Study. Int. J. Mol. Sci. 2018;19:1230. doi: 10.3390/ijms19041230.
    1. Giuliani A., Manescu A., Larsson E., Tromba G., Luongo G., Piattelli A., Mangano F., Iezzi G., Mangano C. In Vivo Regenerative Properties of Coralline-Derived (Biocoral) Scaffold Grafts in Human Maxillary Defects: Demonstrative and Comparative Study with Beta-Tricalcium Phosphate and Biphasic Calcium Phosphate by Synchrotron Radiation X-Ray Microtomography. Clin. Implant Dent. Relat. Res. 2014;16:736–750. doi: 10.1111/cid.12039.
    1. Scarano A., Lorusso F., Staiti G., Sinjari B., Tampieri A., Mortellaro C. Sinus Augmentation with Biomimetic Nanostructured Matrix: Tomographic, Radiological, Histological and Histomorphometrical Results after 6 Months in Humans. Front. Physiol. 2017;8:565. doi: 10.3389/fphys.2017.00565.
    1. Crellin D., Sullivan T.P., Babl F.E., O’Sullivan R., Hutchinson A. Analysis of the validation of existing behavioral pain and distress scales for use in the procedural setting. Paediatr. Anaesth. 2007;17:720–733. doi: 10.1111/j.1460-9592.2007.02218.x.
    1. Mangano F., Macchi A., Shibli J.A., Luongo G., Iezzi G., Piattelli A., Caprioglio A., Mangano C. Maxillary ridge augmentation with custom-made CAD/CAM scaffolds. A 1-year prospective study on 10 patients. J. Oral Implantol. 2014;40:561–569. doi: 10.1563/AAID-JOI-D-12-00122.
    1. UStün Y., Erdogan O., Esen E., Karsli E.D. Comparison of the effects of 2 doses of methylprednisolone on pain, swelling, and trismus after third molar surgery. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003;96:535–539. doi: 10.1016/S1079-2104(03)00464-5.
    1. Amin M.M., Laskin D.M. Prophylactic use of indomethacin for prevention of postsurgical complications after removal of impacted third molars. Oral Surg. Oral Med. Oral Pathol. 1983;55:448–451. doi: 10.1016/0030-4220(83)90227-X.
    1. Scarano A., Piattelli A., Assenza B., Carinci F., Di Donato L., Romani G.L., Merla A. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills. Clin. Implant Dent. Relat. Res. 2011;13:319–323. doi: 10.1111/j.1708-8208.2009.00209.x.
    1. Graff-Radford S.B., Ketelaer M.C., Gratt B.M., Solberg W.K. Thermographic assessment of neuropathic facial pain. J. Orofac. Pain. 1995;9:138–146.
    1. Merla A., Mattei P.A., Di Donato L., Romani G.L. Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann. Biomed. Eng. 2010;38:158–163. doi: 10.1007/s10439-009-9809-8.
    1. Cardone D., Pinti P., Merla A. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics. Comput. Math. Methods Med. 2015;2015:984353. doi: 10.1155/2015/984353.
    1. Weisensee W., Scheer M., Müller L., Rothamel D., Kistler F., Bayer G., Jöhren P., Neugebauer J. Impact of anxiety parameters on prospective and experienced pain intensity in implant surgery. Implant Dent. 2012;21:502–506. doi: 10.1097/ID.0b013e3182703a44.
    1. Scarano A., Sinjari B., Lorusso F., Mortellaro C., D’Ovidio C., Carinci F. Intense, Instantaneous, and Shooting Pain during Local Anesthesia for Implant Surgery. J. Craniofac. Surg. 2018 doi: 10.1097/SCS.0000000000004575.
    1. Rosano G., Taschieri S., Gaudy J.-F., Weinstein T., Del Fabbro M. Maxillary sinus vascular anatomy and its relation to sinus lift surgery. Clin. Oral Implants Res. 2011;22:711–715. doi: 10.1111/j.1600-0501.2010.02045.x.
    1. Bergh J., Bruggenkate C.M., Disch F.J., Tuinzing D.B. Anatomical aspects of sinus floor elevations. Clin. Oral Implants Res. 2000;11:256–265. doi: 10.1034/j.1600-0501.2000.011003256.x.
    1. Venet L., Perriat M., Mangano F.G., Fortin T. Horizontal ridge reconstruction of the anterior maxilla using customized allogeneic bone blocks with a minimally invasive technique—A case series. BMC Oral Health. 2017;17:146. doi: 10.1186/s12903-017-0423-0.

Source: PubMed

3
Abonner