A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids

Mateusz Cholewski, Monika Tomczykowa, Michał Tomczyk, Mateusz Cholewski, Monika Tomczykowa, Michał Tomczyk

Abstract

Omega-3 fatty acids, one of the key building blocks of cell membranes, have been of particular interest to scientists for many years. However, only a small group of the most important omega-3 polyunsaturated fatty acids are considered. This full-length review presents a broad and relatively complete cross-section of knowledge about omega-3 monounsaturated fatty acids, polyunsaturates, and an outline of their modifications. This is important because all these subgroups undoubtedly play an important role in the function of organisms. Some monounsaturated omega-3s are pheromone precursors in insects. Polyunsaturates with a very long chain are commonly found in the central nervous system and mammalian testes, in sponge organisms, and are also immunomodulating agents. Numerous modifications of omega-3 acids are plant hormones. Their chemical structure, chemical binding (in triacylglycerols, phospholipids, and ethyl esters) and bioavailability have been widely discussed indicating a correlation between the last two. Particular attention is paid to the effective methods of supplementation, and a detailed list of sources of omega-3 acids is presented, with meticulous reference to the generally available food. Both the oral and parenteral routes of administration are taken into account, and the omega-3 transport through the blood-brain barrier is mentioned. Having different eating habits in mind, the interactions between food fatty acids intake are discussed. Omega-3 acids are very susceptible to oxidation, and storage conditions often lead to a dramatic increase in this exposure. Therefore, the effect of oxidation on their bioavailability is briefly outlined.

Keywords: Omega-3 fatty acids; bioavailability; chemistry; sources.

Conflict of interest statement

The authors declare no conflict of interest, financial or otherwise.

References

    1. Nagao K., Yanagita T. Conjugated fatty acids in food and their health benefits. J. Biosci. Bioeng. 2005;100:152–157. doi: 10.1263/jbb.100.152.
    1. Scorletti E., Byrne C.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu. Rev. Nutr. 2013;33:231–248. doi: 10.1146/annurev-nutr-071812-161230.
    1. Chatgilialoglu C., Ferreri C., Melchiorre M., Sansone A., Torreggiani A. Lipid geometrical isomerism: From chemistry to biology and diagnostics. Chem. Rev. 2014;114:255–284. doi: 10.1021/cr4002287.
    1. IUPAC . Compendium of Chemical Terminology—The “Gold Book”. 2nd ed. Blackwell Scientific Publications; Oxford, UK: 1997. [(accessed on 10 December 2017)]. cis-trans isomers. Available online: .
    1. IUPAC . Compendium of Chemical Terminology—The “Gold Book”. 2nd ed. Blackwell Scientific Publications; Oxford, UK: 1997. [(accessed on 10 December 2017)]. E, Z . Available online: .
    1. IUPAC . Compendium of Chemical Terminology—The “Gold Book”. 2nd ed. Blackwell Scientific Publications; Oxford, UK: 1997. [(accessed on 10 December 2017)]. Fatty Acids. Available online: .
    1. Poulos A., Sharp P., Johnson D., White I., Fellenberg A. The occurrence of polyenoic fatty acids with greater than 22 carbon atoms in mammalian spermatozoa. Biochem. J. 1986;240:891–895. doi: 10.1042/bj2400891.
    1. Aveldaño M.I., Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J. Biol. Chem. 1987;262:1180–1186.
    1. Rombeau J.L., Kripke S.A., Settle R.G. Short-chain fatty acids production, absorption, metabolism, and intestinal effects. In: Kritchevsky D., Bonfield C., Anderson J.W., editors. Dietary Fiber. Chemistry, Physiology, and Health Effects. 1st ed. Springer; New York, NY, USA: 1990. pp. 317–337.
    1. Schönfeld P., Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016;57:943–954. doi: 10.1194/jlr.R067629.
    1. Beermann C., Jelinek J., Reinecker T., Hauenschild A., Boehm G., Klör H.U. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids Health Dis. 2003;2:10. doi: 10.1186/1476-511X-2-10.
    1. Braverman N., Eichler F. Peroxisomal Disorders and Neurological Disease. In: Squire L.R., editor. Encyclopedia of Neuroscience. Volume 7. Academic Press; Oxford, UK: 2009. pp. 579–588.
    1. Sassa T., Kihara A. Metabolism of very long-chain fatty acids: Genes and pathophysiology. Biomol. Ther. (Seoul) 2014;22:83–92. doi: 10.4062/biomolther.2014.017.
    1. Poulos A., Johnson D.W., Beckman K., White I.G., Easton C. Occurrence of unusual molecular species of sphingomyelin containing 28-34-carbon polyenoic fatty acids in ram spermatozoa. Biochem. J. 1987;248:961–964. doi: 10.1042/bj2480961.
    1. Hardy S.J., Ferrante A., Poulos A., Robinson B.S., Johnson D.W., Murray A.W. Effect of exogenous fatty acids with greater than 22 carbon atoms (very long chain fatty acids) on superoxide production by human neutrophils. J. Immunol. 1994;153:1754–1761.
    1. Hardy S.J., Ferrante A., Robinson B.S., Johnson D.W., Poulos A., Clark K.J., Murray A.W. In vitro activation of rat brain protein kinase C by polyenoic very-long-chain fatty acids. J. Neurochem. 1994;62:1546–1551. doi: 10.1046/j.1471-4159.1994.62041546.x.
    1. Singh M. Essential fatty acids, DHA and human brain. Indian J. Pediatr. 2005;72:239–242. doi: 10.1007/BF02859265.
    1. Arts M.T., Ackman R.G., Holub B.J. “Essential fatty acids” in aquatic ecosystems: A crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 2001;58:122–137. doi: 10.1139/f00-224.
    1. Osborne T.B., Mendel L.B. Growth on diets poor in true fats. J. Biol. Chem. 1920;45:145–152.
    1. Burr G.O., Burr M.M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J. Biol. Chem. 1929;82:345–367. doi: 10.1111/j.1753-4887.1973.tb06008.x.
    1. Holman R.T. Essential fatty acids. Nutr. Rev. 1958;16:33–35. doi: 10.1111/j.1753-4887.1958.tb00660.x.
    1. Das U. Essential Fatty Acids—Biochemistry, Physiology and Clinical Significance. In: Das U., editor. Molecular Basis of Health and Disease. 1st ed. Springer; Dordrecht, The Netherlands: 2011. pp. 101–151.
    1. Semba R.D. Essential Fatty Acids and Visual Development in Infants. In: Semba R.D., editor. Nutrition & Health: Handbook of Nutrition and Ophtalmology. 1st ed. Humana Press; Totowa, NJ, USA: 2007. pp. 415–441.
    1. van Goor S.A., Dijck-Brouwer D.A.J., Muskiet F.A.J. Mother–Child Long Chain Polyunsaturated Fatty Acid Relationships: Implications for Diet and Behavior. In: Preedy V.R., Watson R.R., Martin C.R., editors. Handbook of Behavior, Food and Nutrition. 1st ed. Volume 2. Springer; New York, NY, USA: 2011. pp. 1139–1156.
    1. Parrish C.C. Essential fatty acids in aquatic food webs. In: Arts M.T., Brett M.T., Kainz M., editors. Lipids in Aquatic Ecosystems. 1st ed. Springer; New York, NY, USA: 2009. pp. 309–326.
    1. Nakamura M.T., Nara T.Y. Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot. Essent. Fat. Acids. 2003;68:145–150. doi: 10.1016/S0952-3278(02)00264-8.
    1. Gurr M.I., Harwood J.L. Lipid Biochemistry. An Introduction. 4th ed. Chapman and Hall; London, UK: 1991. p. 406.
    1. Cunnane S.C., Likhodii S.S. 13C NMR spectroscopy and gas chromatograph–combustion–isotope ratio mass spectrometry: Complementary applications in monitoring the metabolism of 13C-labelled polyunsaturated fatty acids. Can. J. Physiol. Pharmacol. 1996;74:761–768. doi: 10.1139/y96-071.
    1. Dunstan G.A., Volkman J.K., Jeffrey S.W., Barrett S.M. Biochemical composition of microalgae from green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J. Exp. Mar. Biol. Ecol. 1992;16:115–134. doi: 10.1016/0022-0981(92)90193-E.
    1. Viso C.A., Marty J.-C. Fatty acids from 28 marine microalgae. Phytochemistry. 1993;34:1521–1533. doi: 10.1016/S0031-9422(00)90839-2.
    1. Nanton D.A., Castell J.D. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp., for use as a live food for marine fish larvae. Aquaculture. 1998;163:251–261. doi: 10.1016/S0044-8486(98)00236-1.
    1. Cunnane S.C. The Canadian Society for Nutritional Sciences 1995 Young Scientist Award Lecture. Recent studies on the synthesis, β-oxidation and deficiency of linoleate and α-linolenate: Are essential fatty acids more aptly named indispensable or conditionally dispensable fatty acids? Can. J. Physiol. Pharmacol. 1996;74:629–639. doi: 10.1139/y96-089.
    1. Cunnane S.C. The conditional nature of the dietary need for a polyunsturates: A proposal to reclassify ‘essential fatty acids’ as ‘conditionally-indispensable’ or ‘conditionally-dispensable’ fatty acids. Br. J. Nutr. 2000;84:803–812. doi: 10.1017/S0007114500002415.
    1. Cunnane S.C. Problems with essential fatty acids: Time for a new paradigm? Prog. Lipid Res. 2003;42:544–568. doi: 10.1016/S0163-7827(03)00038-9.
    1. Algarra M., Sánchez C., Esteves da Silva J.C.G., Jiménez-Jiménez J. Fatty acid and cholesterol content of Manchego type cheese prepared with incorporated avocado oil. Int. J. Food Prop. 2012;15:796–808. doi: 10.1080/10942912.2010.503358.
    1. Clément M., Tremblay J., Lange M., Thibodeau J., Belhumeur P. Purification and identification of bovine cheese whey fatty acids exhibiting in vitro antifungal activity. J. Dairy Sci. 2008;91:2535–2544. doi: 10.3168/jds.2007-0806.
    1. Moussa T.A., Almaghrabi O.A. Fatty acid constituents of Peganum harmala plant using gas chromatography-mass spectroscopy. Saudi J. Biol. Sci. 2016;23:397–403. doi: 10.1016/j.sjbs.2015.04.013.
    1. Antony B., Fujii T., Moto K., Matsumoto S., Fukuzawa M., Nakano R., Tatsuki S., Ishikawa Y. Pheromone-gland-specific fatty-acyl reductase in the adzuki bean borer, Ostrinia scapulalis (Lepidoptera: Crambidae) Insect Biochem. Mol. Biol. 2009;39:90–95. doi: 10.1016/j.ibmb.2008.10.008.
    1. Bhuiyan M.N.I., Begum J., Sultana M. Chemical composition of leaf and seed essential oil of Coriandrum sativum L. from Bangladesh. Bangladesh J. Pharmacol. 2009;4:150–153. doi: 10.3329/bjp.v4i2.2800.
    1. Abad J.L., Camps F., Fabriàs G. Stereospecificity of the (Z)-9 desaturase that converts (E)-11-tetradecenoic acid into (Z,E)-9,11-tetradecadienoic acid in the biosynthesis of Spodoptera littoralis sex pheromone. Insect Biochem. Mol. Biol. 2001;31:799–803. doi: 10.1016/S0965-1748(00)00185-5.
    1. Frolov A.V., Pankov S.L. The reproduction strategy of oyster Ostrea edulis L. from the biochemical point of view. Comp. Biochem. Physiol. B. 1992;103:161–182. doi: 10.1016/0305-0491(92)90428-T.
    1. Aziz A., Larher F. Osmotic stress induced changes in lipid composition and peroxidation in leaf discs of Brassica napus L. J. Plant Physiol. 1998;153:754–762. doi: 10.1016/S0176-1617(98)80231-9.
    1. Rodriguez S., Hao G., Liu W., Pina B., Rooney A.P., Camps F., Roelofs W.L., Fabrias G. Expression and evolution of Δ9 and Δ11 desaturase genes in the moth Spodoptera littoralis. Insect Biochem. Mol. Biol. 2004;34:1315–1328. doi: 10.1016/j.ibmb.2004.09.003.
    1. Keusgen M., Curtis J.M., Ayer S.W. The use of nicotinates and sulfoquinovosyl monoacylglycerols in the analysis of monounsaturated n-3 fatty acids by mass spectrometry. Lipids. 1996;31:231–238. doi: 10.1007/BF02522625.
    1. Bragagnolo N., Rodriguez-Amaya D.B. Simultaneous determination of total lipid, cholesterol and fatty acids in meat and backfat of suckling and adult pigs. Food Chem. 2002;79:255–260. doi: 10.1016/S0308-8146(02)00136-X.
    1. Leheska J.M., Thompson L.D., Howe J.C., Hentges E., Boyce J., Brooks J.C., Shriver B., Hoover L., Miller M.F. Effects of conventional and grass-feeding systems on the nutrient composition of beef. J. Anim. Sci. 2008;86:3575–3585. doi: 10.2527/jas.2007-0565.
    1. Couvreur S., Hurtaud C., Lopez C., Delaby L., Peyraud J.L. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 2006;89:1956–1969. doi: 10.3168/jds.S0022-0302(06)72263-9.
    1. Bicalho B., David F., Rumplel K., Kindt E., Sandra P. Creating a fatty acid methyl ester database for lipid profiling in a single drop of human blood using high resolution capillary gas chromatography and mass spectrometry. J. Chromatogr. A. 2008;1211:120–128. doi: 10.1016/j.chroma.2008.09.066.
    1. Li J., Fan Y., Zhang Z., Yu H., An Y., Kramer J.K., Deng Z. Evaluating the trans fatty acid, CLA, PUFA and erucic acid diversity in human milk from five regions in China. Lipids. 2009;44:257–271. doi: 10.1007/s11745-009-3282-x.
    1. Mosley E.E., Wright A.L., McGuire M.K., McGuire M.A. trans Fatty acids in milk produced by women in the United States. Am. J. Clin. Nutr. 2005;82:1292–1297. doi: 10.1093/ajcn/82.6.1292.
    1. Wang H.L., Zhao C.H., Millar J.G., Cardé R.T., Löfstedt C. Biosynthesis of unusual moth pheromone components involves two different pathways in the navel orangeworm, Amyelois transitella. J. Chem. Ecol. 2010;36:535–547. doi: 10.1007/s10886-010-9777-3.
    1. Hădărugă D.I., Birău Mitroi C.L., Gruia A.T., Păunescu V., Bandur G.N., Hădărugă N.G. Moisture evaluation of β-cyclodextrin/fish oils complexes by thermal analyses: A data review on common barbel (Barbus barbus L.), Pontic shad (Alosa immaculata Bennett), European wels catfish (Silurus glanis L.), and common bleak (Alburnus alburnus L.) living in Danube river. Food Chem. 2017;236:49–58. doi: 10.1016/j.foodchem.2017.03.093.
    1. Nasirullah, Werner G., Seher A. Fatty acid composition of lipids from edible parts and seeds of vegetables. Eur. J. Lipid Sci. Technol. 1984;86:264–268. doi: 10.1002/lipi.19840860702.
    1. Jamieson G.R., Reid E.H. The leaf lipids of some conifer species. Phytochemistry. 1972;11:269–275. doi: 10.1016/S0031-9422(00)90002-5.
    1. Bohannon M.B., Kleiman R. Unsaturated C18 α-hydroxy acids in Salvia nilotica. Lipids. 1975;10:703–706. doi: 10.1007/BF02532764.
    1. Amin S., Mir S.R., Kohli K., Ali B., Ali M. A study of the chemical composition of black cumin oil and its effect on penetration enhancement from transdermal formulations. Nat. Prod. Res. 2010;24:1151–1157. doi: 10.1080/14786410902940909.
    1. Chisholm M.J., Hopkins C.Y. Fatty acids of filbert oil and Nasturtium seed oil. Can. J. Chem. 1953;31:1131–1137. doi: 10.1139/v53-146.
    1. Memon N.N., Talpur F.N., Bhanger M.I., Balouch A. Changes in fatty acid composition in muscle of three farmed carp fish species (Labeo rohita, Cirrhinus mrigala, Catla catla) raised under the same conditions. Food Chem. 2011;126:405–410. doi: 10.1016/j.foodchem.2010.10.107.
    1. Shirai N., Higuchi T., Suzuki H. Analysis of lipid classes and the fatty acid composition of the salted fish roe food products, Ikura, Tarako, Tobiko and Kazunoko. Food Chem. 2006;94:61–67. doi: 10.1016/j.foodchem.2004.10.050.
    1. Pickova J., Kiessling A., Pettersson A., Dutta P.C. Comparison of fatty acid composition and astaxanthin content in healthy and by M74 affected salmon eggs from three Swedish river stocks. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1998;120:265–271. doi: 10.1016/S0305-0491(98)10016-0.
    1. Bandarra N.M., Marçalo A., Cordeiro A.R., Pousão-Ferreira P. Sardine (Sardina pilchardus) lipid composition: Does it change after one year in captivity? Food Chem. 2018;244:408–413. doi: 10.1016/j.foodchem.2017.09.147.
    1. Ackman R.G., Epstein S., Eaton C.A. Differences in the fatty acid compositions of blubber fats from northwestern Atlantic finwhales (Balaenoptera physalus) and harp seals (Pagophilus groenlandica) Comp. Biochem. Physiol. B. 1971;40:683–697. doi: 10.1016/0305-0491(71)90143-X.
    1. Mu H., Jin J., Xie D., Zou X., Wang X., Wang X., Jin Q. Combined urea complexation and argentated silica gel column chromatography for concentration and separation of PUFAs from tuna oil: Based on improved DPA level. J. Am. Oil Chem. Soc. 2016;93:1157–1167. doi: 10.1007/s11746-016-2842-5.
    1. Saito H., Aono H. Characteristics of lipid and fatty acid of marine gastropod Turbo cornutus: High levels of arachidonic and n-3 docosapentaenoic acid. Food Chem. 2014;145:135–144. doi: 10.1016/j.foodchem.2013.08.011.
    1. Jin F., Nieman D.C., Sha W., Xie G., Qiu Y., Jia W. Supplementation of milled chia seeds increases plasma ALA and EPA in postmenopausal women. Plant Foods Hum. Nutr. 2012;67:105–110. doi: 10.1007/s11130-012-0286-0.
    1. Madkour H.M.F., Ghareeb M.A., Abdel-Aziz M.S., Khalaf O.M., Saad A.M., El-Ziaty A.K., Abdel-Mogib M. Gas chromatography-mass spectrometry analysis, antimicrobial, anticancer and antioxidant activities of n-hexane and methylene chloride extracts of Senna italica. J. Appl. Pharm. Sci. 2017;7:23–32. doi: 10.7324/japs.2017.70604.
    1. Wolff R.L., Pédrono F., Marpeau A.M. Fokienia hodginsii seed oil, another source of all-cis 5,9,12,15-18:4 (coniferonic) acid. J. Am. Oil Chem. Soc. 1999;76:535–536. doi: 10.1007/s11746-999-0037-z.
    1. Souza A.L., Martinez F.P., Ferreira S.B., Kaiser C.R. A complete evaluation of thermal and oxidative stability of chia oil. The richest natural source of a-linolenic acid. J. Therm. Anal. Calorim. 2017;130:1307–1315. doi: 10.1007/s10973-017-6106-x.
    1. Gómez-Cortés P., Tyburczy C., Brenna J.T., Juárez M., de la Fuente M.A. Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J. Lipid Res. 2009;50:2412–2420. doi: 10.1194/jlr.M800662-JLR200.
    1. Yang J., Zhou C., Yuan G., Li D. Effects of geographical origin on the conjugated linolenic acid of Trichosanthes kirilowii Maxim seed oil. J. Am. Oil Chem. Soc. 2012;89:401–407. doi: 10.1007/s11746-011-1928-3.
    1. Bjelková M., Nôžková J., Fatrcová-Šramková K., Tejklová E. Comparison of linseed (Linum usitatissimum L.) genotypes with respect to the content of polyunsaturated fatty acids. Chem. Pap. 2012;66:972–976. doi: 10.2478/s11696-012-0209-4.
    1. Pérez-Gálveza A., Garrido-Fernándeza J., Mínguez-Mosqueraa M.I., Lozano-Ruizb M., Montero-de-Espinosab V. Fatty acid composition of two new pepper varieties (Capsicum annuum L. cv. Jaranda and Jariza). Effect of drying process and nutritional aspects. J. Am. Oil Chem. Soc. 1999;76:205–208. doi: 10.1007/s11746-999-0219-8.
    1. Goren A.C., Kilic T., Dirmenci T., Bilsel G. Chemotaxonomic evaluation of Turkish species of Salvia: Fatty acid compositions of seed oils. Biochem. Syst. Ecol. 2006;34:160–164. doi: 10.1016/j.bse.2005.09.002.
    1. Giannelos P.N., Zannikos F., Stournas S., Lois E., Anastopoulos G. Tobacco seed oil as an alternative diesel fuel: Physical and chemical properties. Ind. Crop. Prod. 2002;16:1–9. doi: 10.1016/S0926-6690(02)00002-X.
    1. Alves S.P., Bessa R.J.B. Identification of cis-12, cis-15 octadecadienoic acid and other minor polyenoic fatty acids in ruminant fat. Eur. J. Lipid Sci. Technol. 2007;109:879–883. doi: 10.1002/ejlt.200700035.
    1. Wolff R.L., Lavialle O., Pédrono F., Pasquier E., Destaillats F., Marpeau A.M., Angers P., Aitzetmüller K. Abietoid seed fatty acid compositions—A review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae. Lipids. 2002;37:17–26. doi: 10.1007/s11745-002-0859-5.
    1. Mongrand S., Badoc A., Patouille B., Lacomblez C., Chavent M., Cassagne C., Bessoule J.J. Taxonomy of Gymnospermae: Multivariate analyses of leaf fatty acid composition. Phytochemistry. 2001;58:101–115. doi: 10.1016/S0031-9422(01)00139-X.
    1. Kuhnt K., Degen C., Jaudszus A., Jahreis G. Searching for health beneficial n-3 and n-6 fatty acids in plant seeds. Eur. J. Lipid Sci. Technol. 2012;114:153–160. doi: 10.1002/ejlt.201100008.
    1. Guil-Guerrero J.L., López-Martínez J.C., Gómez-Mercado F., Campra-Madrid P. Gamma-linolenic and stearidonic acids from Moroccan Boraginaceae. Eur. J. Lipid Sci. Technol. 2006;108:43–47. doi: 10.1002/ejlt.200500251.
    1. Khalid M.N., Shameel M. Studies on the phycochemistry and biological activity of Spirogyra rhizoides (Chlorophycota) Pak. J. Bot. 2012;44:1815–1820.
    1. Gunstone F.D., Subbarao R. New tropical seed oils. Part I. Conjugated trienoic and tetraenoic acids and their oxo derivatives in the seed oils of Chrysobalanus icaco and Parinarium laurinum. Chem. Phys. Lipids. 1967;1:349–359. doi: 10.1016/0009-3084(67)90012-6.
    1. Heintz M., Gregoire J., Lefort D. Chromatographie en phase gazeuse et lipochemie, 11. Contribution a l’etude de la composition en acides gras des huiles de Sideroxylon argania, Balanites aegyptiaca et Parinarium macrophyllum. Oleagineux. 1965;20:603–608.
    1. Werdelmann B.W., Schmid R.D. The biotechnology of fats—A challenge and an opportunity. J. Lipid Sci. Technol. 1982;84:436–443. doi: 10.1002/lipi.19820841104.
    1. Kaufmann H.P., Sud R.K. Die Papier-Chromatographie auf dem Fettgebiet XLI: Uber die Fettsaure-Zusammensetzung einiger Konjuenole. Eur. J. Lipid Sci. Technol. 1960;62:160–164. doi: 10.1002/lipi.19600620302.
    1. Spitzer V., Tomberg W., Zucolotto M. Identification of α-parinaric acid in the seed oil of Sebastiana brasiliensis Sprengel (Euphorbiaceae) J. Am. Oil Chem. Soc. 1996;73:569–573. doi: 10.1007/BF02518109.
    1. Tulloch A.P. 13C nuclear magnetic resonance spectroscopic analysis of seed oils containing conjugated unsaturated acids. Lipids. 1982;17:544–550. doi: 10.1007/BF02535382.
    1. Riley J.P. The seed fat of Parinarium laurinum. Part I. Component acids of the seed fat. J. Chem. Soc. 1950:12–18. doi: 10.1039/jr9500000012.
    1. Schroeder F., Holland J.F., Vagelos P.R. Use of β-parinaric acid, a novel fluorimetric probe, to determine characteristic temperatures of membranes and membrane lipids from cultured animal cells. J. Biol. Chem. 1976;251:6739–6746.
    1. Kaufmann H.P., Keller M.C. Konjugiert-ungesattigte Verbindungen in der Fettchemie VI: Uber das Vorkommen von Parinarsaure in den Samenfetten der Balsaminaceen. Eur. J. Lipid Sci. Technol. 1950;52:389–398. doi: 10.1002/lipi.19500520702.
    1. Shibahara A., Yamamoto K., Shinkai K., Nakayama T., Kajimoto G. cis-9, cis-15-Octadecadienoic acid: A novel fatty acid found in higher plants. Biochim. Biophys. Acta. 1993;1170:245–252. doi: 10.1016/0005-2760(93)90006-U.
    1. Galla N.R., Pamidighantam P.R., Satyanarayana A. Chemical, amino acid and fatty acid composition of Sterculia urens L. seed. Food Hydrocoll. 2012;28:320–324. doi: 10.1016/j.foodhyd.2012.01.003.
    1. Hoffmann G., Meijboom P.W. Identification of 11,15-octadecadienoic acid from beef and mutton tallow. J. Am. Oil Chem. Soc. 1969;46:620–622. doi: 10.1007/BF02544981.
    1. Akinoso R., Suleiman A. Heat treatment effects on extraction of roselle (Hibiscus sabdariffa L.) seed oil. Eur. J. Lipid Sci. Technol. 2011;113:1527–1532. doi: 10.1002/ejlt.201100067.
    1. Huang J.J., Cheung P.C. Enhancement of polyunsaturated fatty acids and total carotenoid production in microalgae by ultraviolet band A (UVA, 365 nm) radiation. J. Agric. Food Chem. 2011;59:4629–4636. doi: 10.1021/jf200910p.
    1. Kahraman A. Nutritional value and foliar fertilization in soybean. J. Elem. 2017;22:55–66. doi: 10.5601/jelem.2016.21.1.1106.
    1. He Z., Zhu H., Li W., Zeng M., Wua S., Chen S., Qin F., Chen J. Chemical components of cold pressed kernel oils from different Torreya grandis cultivars. Food Chem. 2016;209:196–202. doi: 10.1016/j.foodchem.2016.04.053.
    1. Kobelnik M., Fontanari G.G., Ribeiro C.A., Crespi M.S. Evaluation of thermal behavior and chromatographic characterization of oil extracted from seed of Pittosporum undulatum. J. Therm. Anal. Calorim. 2017;131:371–378. doi: 10.1007/s10973-017-6763-9.
    1. Kemertelidze E.P., Dalakishvili T.M., Bitadze M.A., Khatiashvili N.S. Lipids of Phellodendron lavalei seeds. Chem. Nat. Compd. 2000;36:272–275. doi: 10.1007/BF02238333.
    1. Cheikh-Rouhou S., Hentai B., Besbes S., Blecker C., Deroanne C., Attia H. Chemical composition and lipid fraction characteristics of aleppo pine (Pinus halepensis Mill.) seeds cultivated in Tunisia. Food Sci. Technol. Int. 2006;15:407–415. doi: 10.1177/1082013206069910.
    1. Aitzetmüller K., Vosmann K. Cyclopropenoic fatty acids in gymnosperms: The seed oil of Welwitschia. J. Am. Oil Chem. Soc. 1998;75:1761–1765. doi: 10.1007/s11746-998-0329-8.
    1. Pintea A., Dulf F.V., Bunea A., Matea C., Andrei S. Comparative analysis of lipophilic compounds in eggs of organically raised ISA Brown and Araucana hens. Chem. Pap. 2012;66:955–963. doi: 10.2478/s11696-012-0219-2.
    1. Samel N., Järving I., Lõhmus M., Lopp A., Kobzar G., Sadovskaya V., Välimäe T., Lille U. Identification and biological activity of a novel natural prostaglandin, 5,6-dihydro-prostaglandin E3. Prostaglandins. 1987;33:137–146. doi: 10.1016/0090-6980(87)90311-X.
    1. Moffat C.F., McGill A.S. Variability of the composition of fish oils: Significance for the diet. Proc. Nutr. Soc. 1993;52:441–456. doi: 10.1079/PNS19930085.
    1. Ikeda I., Oka T., Koba K., Sugano M., Lie Ken Jie M.S. 5c,11c,14c-eicosatrienoic acid and 5c,11c,14c,17c-eicosatetraenoic acid of Biota orientalis seed oil affect lipid metabolism in the rat. Lipids. 1992;27:500–504. doi: 10.1007/BF02536130.
    1. Kim G.-W., Itabashi Y. Non-methylene-interrupted fatty acids with Δ5 unsaturation in Sargassum species. J. Oleo Sci. 2012;61:311–319. doi: 10.5650/jos.61.311.
    1. Smith C.R., Jr., Kleiman R., Wolff I.A. Caltha palustris L. seed oil. A source of four fatty acids with cis-5-unsaturation. Lipids. 1968;3:37–42. doi: 10.1007/BF02530966.
    1. Kang J.-Y., Chun B.-S., Lee M.-C., Choi J.-S., Choi I.S., Hong Y.-K. Anti-inflammatory activity and chemical composition of essential oil extracted with supercritical CO2 from the brown seaweed Undaria pinnatifida. J. Essent. Oil Bear. Plants. 2016;19:46–51. doi: 10.1080/0972060X.2014.989181.
    1. Carballeira N.M., Cartagena M., Tasdemir D. Fatty acid composition of Turkish Rhododendron species. J. Am. Oil Chem. Soc. 2008;85:605–611. doi: 10.1007/s11746-008-1233-y.
    1. Mayzaud P., Ackman R.G. The 6,9,12,15,18-heneicosapentaenoic acid of seal oil. Lipids. 1978;13:24–28. doi: 10.1007/BF02533362.
    1. Solomon G., Aman D., Bachheti R.K. Fatty acids, metal composition, nutritional value and physicochemical parameters of Lepidium sativium seed oil collected from Ethiopia. Int. Food Res. J. 2016;23:827–831.
    1. Hoffman W.H., Zuckerman A., Grace N.H. Canadian erucic acid oils. VIII. Component fatty acids of the oil from weed seed screenings, largely charlock. J. Am. Oil Chem. Soc. 1951;28:522–524. doi: 10.1007/BF02645834.
    1. Kallio H., Lehtinen T., Laakso P., Tahvonen R. Fatty acids of a salami-type sausage made of Baltic herring fillets, pork and lard. Zeitschrift für Lebensmitteluntersuchung und-Forschung A. 1998;207:276–280. doi: 10.1007/s002170050333.
    1. Narsing Rao G., Prabhakara Rao P.G., Satyanarayana A. Chemical, fatty acid, volatile oil composition and antioxidant activity of shade dried neem (Azadirachta indica L.) flower powder. Int. Food Res. J. 2014;21:807–813.
    1. Zengin H., Vural N., Çelik V.K. Comparison of changes in fatty acid composition of starved and fed rainbow trout, (Oncorhynchus mykiss) larvae. Turk. J. Fish. Aquat. Sci. 2013;13:397–405. doi: 10.4194/1303-2712-v13_3_02.
    1. Varljen J., Baticic L., Sincic-Modric G., Varljen N., Kapovic M. Liver and muscle tissue fatty acid composition of the lipid fractions of Diplodus vulgaris from the north Adriatic Sea, Croatia. J. Food Lipids. 2005;12:286–298. doi: 10.1111/j.1745-4522.2005.00024.x.
    1. Flakemore A.R., Malau-Aduli B.S., Nichols P.D., Malau-Aduli A.E.O. Degummed crude canola oil, sire breed and gender effects on intramuscular long-chain omega-3 fatty acid properties of raw and cooked lamb meat. J. Anim. Sci. Technol. 2017;59:17. doi: 10.1186/s40781-017-0143-7.
    1. Johns R.B., Nichols P.D., Perry G.J. Fatty acid composition of ten marine algae from Australian waters. Phytochemistry. 1979;18:799–802. doi: 10.1016/0031-9422(79)80018-7.
    1. Linko R.R., Karinkanta H. Fatty acids of long chain length in baltic herring lipids. J. Am. Oil Chem. Soc. 1970;47:42–46. doi: 10.1007/BF02541455.
    1. Litchfield C., Tyszkiewicz J., Marcantonio E.E., Note G. 15,18,21,24-triacontatetraenoic and 15,18,21,24,27-triacontapentaenoic acids: New C30 fatty acids from the marine sponge Cliona celata. Lipids. 1979;14:619–622. doi: 10.1007/BF02533446.
    1. Carballeira N.M., Reyes E.D. Novel very long chain fatty acids from the sponge Petrosia pellasarca. J. Nat. Prod. 1990;53:836–840. doi: 10.1021/np50070a010.
    1. Zhang H.Y., Yamakawa Y., Matsuya Y., Toyooka N., Tohda C., Awale S., Li F., Kadota S., Tezuka Y. Synthesis of long-chain fatty acid derivatives as a novel anti-Alzheimer’s agent. Bioorg. Med. Chem. Lett. 2014;24:604–608. doi: 10.1016/j.bmcl.2013.12.008.
    1. Poulos A., Sharp P., Johnson D., Easton C. The occurrence of polyenoic very long chain fatty acids with greater than 32 carbon atoms in molecular species of phosphatidylcholine in normal and peroxisome-deficient (Zellweger’s syndrome) brain. Biochem. J. 1988;253:645–650. doi: 10.1042/bj2530645.
    1. Yae E., Yahara S., El-Aasr M., Ikeda T., Yoshimitsu H., Masuoka C., Ono M., Hide I., Nakata Y., Nohara T. Studies on the constituents of whole plants of Youngia japonica. Chem. Pharm. Bull. 2009;57:719–723. doi: 10.1248/cpb.57.719.
    1. Olias J.M., Rios J.J., Valle M., Zamora R., Sanz L.C., Axelrod B. Fatty acid hydroperoxide lyase in germinating soybean seedlings. J. Agric. Food Chem. 1990;38:624–630. doi: 10.1021/jf00093a009.
    1. Matsui K. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 2006;9:274–280. doi: 10.1016/j.pbi.2006.03.002.
    1. Tarchevsky I.A., Karimova F.G., Grechkin A.N., Moukhametchina N.U. Influence of (9Z)-12-hydroxy-9-dodecenoic acid and methyl jasmonate on plant protein phosphorylation. Biochem. Soc. Trans. 2000;28:870–871. doi: 10.1042/bst0280870.
    1. Grechkin A.N. Hydroperoxide lyase and divinyl ether synthase. Prostaglandins Other Lipid Mediat. 2002;68–69:457–470. doi: 10.1016/S0090-6980(02)00048-5.
    1. Kallenbach M., Gilardoni P.A., Allmann S., Baldwin I.T., Bonaventure G. C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves. New Phytol. 2011;191:1054–1068. doi: 10.1111/j.1469-8137.2011.03767.x.
    1. Schreier P., Lorenz G. Separation, partial purification and characterization of a fatty acid hydroperoxide cleaving enzyme from apple and tomato fruits. Z. Naturforsch. C. 1982;37:165–173. doi: 10.1515/znc-1982-3-405.
    1. Kleiman R., Spencer G.F., Earle F.R., Nieshlag H.J., Barclay A.S. Tetra-acid triglycerides containing a new hydroxy eicosadienoyl moiety in Lesquerella auriculata seed oil. Lipids. 1972;7:660–665. doi: 10.1007/BF02533073.
    1. Jenderek M.M., Dierig D.A., Isbell T.A. Fatty-acid profile of Lesquerella germplasm in the National Plant Germplasm System collection. Ind. Crop. Prod. 2009;29:154–164. doi: 10.1016/j.indcrop.2008.04.019.
    1. Reed D.W., Taylor D.C., Covello P.S. Metabolism of hydroxy fatty acids in developing seeds in the genera Lesquerella (Brassicaceae) and Linum (Linaceae) Plant Physiol. 1997;114:63–68. doi: 10.1104/pp.114.1.63.
    1. Rodé-Gowal H., Abbott S., Meyer D., Röller H., Dahm K.H. Propionate as a precursor of Juvenile Hormone in the Cecropia moth. Z. Naturforsch. C. 1975;30:392–397. doi: 10.1515/znc-1975-5-615.
    1. Richter C.K., Bowen K.J., Mozaffarian D., Kris-Etherton P.M., Skulas-Ray A.C. Total long-chain n-3 fatty acid intake and food sources in the United States compared to recommended intakes: NHANES 2003–2008. Lipids. 2017;52:917–927. doi: 10.1007/s11745-017-4297-3.
    1. Mori T.A. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease. Fitoterapia. 2017;123:51–58. doi: 10.1016/j.fitote.2017.09.015.
    1. Fialkow J. Omega-3 fatty acid formulations in cardiovascular disease: Dietary supplements are not substitutes for prescription products. Am. J. Cardiovasc. Drugs. 2016;16:229–239. doi: 10.1007/s40256-016-0170-7.
    1. Monroig Ó., Tocher D.R., Navarro J.C. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar. Drugs. 2013;11:3998–4018. doi: 10.3390/md11103998.
    1. Puri R., Mahajan M., Sahajpal N.S., Singh H., Singh H., Jain S.K. Self-nanoemulsifying drug delivery system of docosahexanoic acid: Development, in vitro, in vivo characterization. Drug Dev. Ind. Pharm. 2016;42:1032–1041. doi: 10.3109/03639045.2015.1107089.
    1. Ezeagua I.E., Petzkeb K.J., Langeb E., Metges C.C. Fat content and fatty acid composition of oils extracted from selected wild-gathered tropical plant seeds from Nigeria. J. Am. Oil Chem. Soc. 1998;75:1031–1035. doi: 10.1007/s11746-998-0282-6.
    1. Yang N., Sampathkumar K., Loo S.C.J. Recent advances in complementary and replacement therapy with nutraceuticals in combating gastrointestinal illnesses. Clin. Nutr. 2017;36:968–979. doi: 10.1016/j.clnu.2016.08.020.
    1. Abedi E., Sahari M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014;2:443–463. doi: 10.1002/fsn3.121.
    1. Martin J., Stapleton R.D. Parenteral and Enteral Nutrition with Omega-3 Fatty Acids. In: Rajendram R., Preedy V.R., Patel V.B., editors. Diet and Nutrition in Critical Care. 1st ed. Volume 2. Springer; New York, NY, USA: 2015. pp. 1695–1710.
    1. Couëdelo L., Amara S., Lecomte M., Meugnier E., Monteil J., Fonseca L., Pineau G., Cansell M., Carrière F., Michalski M.C., et al. Impact of various emulsifiers on ALA bioavailability and chylomicron synthesis through changes in gastrointestinal lipolysis. Food Funct. 2015;6:1726–1735. doi: 10.1039/C5FO00070J.
    1. Osipova E.V., Lantsova N.V., Chechetkin I.R., Mukhitova F.K., Hamberg M., Grechkin A.N. Hexadecanoid pathway in plants: Lipoxygenase dioxygenation of (7Z,10Z,13Z)-hexadecatrienoic acid. Biochemistry. 2010;75:708–716. doi: 10.1134/S0006297910060052.
    1. Belury M.A. Conjugated dienoic linoleate: A polyunsaturated fatty acid with unique chemoprotective properties. Nutr. Rev. 1995;53:83–89. doi: 10.1111/j.1753-4887.1995.tb01525.x.
    1. Cahoon E.B., Carlson T.J., Ripp K.G., Schweiger B.J., Cook G.A., Hall S.E., Kinney A.J. Biosynthetic origin of conjugated double bonds: Production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc. Natl. Acad. Sci. USA. 1999;96:12935–12940. doi: 10.1073/pnas.96.22.12935.
    1. Tecoma E.S., Sklar L.A., Simoni R.D., Hudson B.S. Conjugated polyene fatty acids as fluorescent probes: Biosynthetic incorporation of parinaric acid by Escherichia coli and studies of phase transitions. Biochemistry. 1977;16:829–835. doi: 10.1021/bi00624a003.
    1. Haldar S., Jena N., Croce C.M. Inactivation of Bcl-2 by phosphorylation. Proc. Natl. Acad. Sci. USA. 1995;92:4507–4511. doi: 10.1073/pnas.92.10.4507.
    1. Soares J.R., Dinis T.C., Cunha A.P., Almeida L.M. Antioxidant activities of some extracts of Thymus zygis. Free Radic. Res. 1997;26:469–478. doi: 10.3109/10715769709084484.
    1. Drummen G.P., Op den Kamp J.A., Post J.A. Validation of the peroxidative indicators, cis-parinaric acid and parinaroyl-phospholipids, in a model system and cultured cardiac myocytes. Biochim. Biophys. Acta. 1999;1436:370–382. doi: 10.1016/S0005-2760(98)00142-8.
    1. Steenbergen R.H., Drummen G.P., Op den Kamp J.A., Post J.A. The use of cis-parinaric acid to measure lipid peroxidation in cardiomyocytes during ischemia and reperfusion. Biochim. Biophys. Acta. 1997;1330:127–137. doi: 10.1016/S0005-2736(97)00144-2.
    1. Hedley D., Chow S. Flow cytometric measurement of lipid peroxidation in vital cells using parinaric acid. Cytometry. 1992;13:686–692. doi: 10.1002/cyto.990130704.
    1. Kuypers F.A., van den Berg J.J., Schalkwijk C., Roelofsen B., Op den Kamp J.A. Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim. Biophys. Acta. 1987;921:266–274. doi: 10.1016/0005-2760(87)90027-0.
    1. Zsila F., Bikádi Z. trans-Parinaric acid as a versatile spectroscopic label to study ligand binding properties of bovine β-lactoglobulin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005;62:666–672. doi: 10.1016/j.saa.2005.02.037.
    1. Terzaghi W.B., Fork D.C., Berry J.A., Field C.B. Low and high temperature limits to PSII: A survey using trans-parinaric acid, delayed light emission, and Fo chlorophyll fluorescence. Plant Physiol. 1989;91:1494–1500. doi: 10.1104/pp.91.4.1494.
    1. Polidori P., Vincenzetti S., Pucciarelli S., Polzonetti V. CLAs in Animal Source Foods: Healthy Benefits for Consumers. In: Mérillon J.M., Ramawat K., editors. Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer; Cham, Switzerland: 2018. pp. 1–32.
    1. Warnaar F. Deca-2,4,6-trienoic acid, a new conjugated fatty acid, isolated from the latex of Euphorbia pulcherrima Willd. Lipids. 1977;12:707–710. doi: 10.1007/BF02570899.
    1. Sharp P., Poulos A., Fellenberg A., Johnson D. Structure and lipid distribution of polyenoic very-long-chain fatty acids in the brain of peroxisome-deficient patients (Zellweger syndrome) Biochem. J. 1987;248:61–67. doi: 10.1042/bj2480061.
    1. Sharp P., Johnson D., Poulos A. Molecular species of phosphatidylcholine containing very long chain fatty acids in human brain: Enrichment in X-linked adrenoleukodystrophy brain and diseases of peroxisome biogenesis brain. J. Neurochem. 1991;56:30–37. doi: 10.1111/j.1471-4159.1991.tb02558.x.
    1. Bridges R.B., Coniglio J.G. The biosynthesis of Δ9,12,15,18-tetracosatetraenoic and of Δ6,9,12,15,18-tetracosapentaenoic acids by rat testes. J. Biol. Chem. 1970;245:46–49.
    1. Grogan W.M., Huth E.G. Biosynthesis of long-chain polyenoic acids from arachidonic acid in cultures of enriched spermatocytes and spermatids from mouse testis. Lipids. 1983;18:275–284. doi: 10.1007/BF02534702.
    1. Rosenthal M.D., Hill J.R. Human vascular endothelial cells synthesize and release 24- and 26-carbon polyunsaturated fatty acids. Biochim. Biophys. Acta. 1984;795:171–178. doi: 10.1016/0005-2760(84)90063-8.
    1. Salywon A.M., Dierig D.A., Rebman J.P., de Rodríguez D.J. Evaluation of new Lesquerella and Physaria (Brassicaceae) oilseed germplasm. Am. J. Bot. 2005;92:53–62. doi: 10.3732/ajb.92.1.53.
    1. Smith C.R., Wilson T.L., Bates R.B., Scholfield C.R. Densipolic acid: A unique hydroxydienoid acid from Lesquerella densipila seed oil. J. Org. Chem. 1962;27:3112–3117. doi: 10.1021/jo01056a031.
    1. Engeseth N., Stymne S. Desaturation of oxygenated fatty acids in Lesquerella and other oil seeds. Planta. 1996;198:238–245. doi: 10.1007/BF00206249.
    1. Hayes D.G., Kleiman R., Phillips B.S. The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species. J. Am. Oil Chem. Soc. 1995;72:559–569. doi: 10.1007/BF02638857.
    1. Schuchardt J.P., Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot. Essent. Fat. Acids. 2013;89:1–8. doi: 10.1016/j.plefa.2013.03.010.
    1. Maki K.C., Johns C., Harris W.S., Puder M., Freedman S.D., Thorsteinsson T., Daak A., Rabinowicz A.L., Sancilio F.D. Bioequivalence Demonstration for Ω-3 Acid Ethyl Ester Formulations: Rationale for Modification of Current Guidance. Clin. Ther. 2017;39:652–658. doi: 10.1016/j.clinthera.2017.01.019.
    1. Köhler A., Sarkkinen E., Tapola N., Niskanen T., Bruheim I. Bioavailability of fatty acids from krill oil, krill meal and fish oil in healthy subjects—A randomized, single-dose, cross-over trial. Lipids Health Dis. 2015;14 doi: 10.1186/s12944-015-0015-4.
    1. Cicero A.F.G., Colletti A. Krill oil: Evidence of a new source of polyunsaturated fatty acids with high bioavailability. Clin. Lipidol. 2015;10:1–4. doi: 10.2217/clp.14.67.
    1. Castro-Gómez M.P., Holgado F., Rodríguez-Alcalá L.M., Montero O., Fontecha J. Comprehensive Study of the Lipid Classes of Krill Oil by Fractionation and Identification of Triacylglycerols, Diacylglycerols, and Phospholipid Molecular Species by Using UPLC/QToF-MS. Food Anal. Methods. 2015;8:2568–2580. doi: 10.1007/s12161-015-0150-6.
    1. Davidson M.H., Johnson J., Rooney M.W., Kyle M.L., Kling D.F. A novel omega-3 free fatty acid formulation has dramatically improved bioavailability during a low-fat diet compared with omega-3-acid ethyl esters: The ECLIPSE (Epanova® compared to Lovaza® in a pharmacokinetic single-dose evaluation) study. J. Clin. Lipidol. 2012;6:573–584. doi: 10.1016/j.jacl.2012.01.002.
    1. Dyerberg J., Madsen P., Møller J.M., Aardestrup I., Schmidt E.B. Bioavailability of marine n−3 fatty acid formulations. Prostaglandins Leukot. Essent. Fat. Acids. 2010;83:137–141. doi: 10.1016/j.plefa.2010.06.007.
    1. Bandarra N.M., Lopes P.A., Martins S.V., Ferreira J., Alfaia C.M., Rolo E.A., Correia J.J., Pinto R.M., Ramos-Bueno R.P., Batista I., et al. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters. Nutr. Res. 2016;36:452–463. doi: 10.1016/j.nutres.2015.12.015.
    1. Miura K., Hughes M.C., Ungerer J.P., Smith D.D., Green A.C. Absolute versus relative measures of plasma fatty acids and health outcomes: Example of phospholipid omega-3 and omega-6 fatty acids and all-cause mortality in women. Eur. J. Nutr. 2018;52:713–722. doi: 10.1007/s00394-016-1358-y.
    1. Fekete K., Marosvölgyi T., Jakobik V., Decsi T. Methods of assessment of n-3 long-chain polyunsaturated fatty acid status in humans: A systematic review. Am. J. Clin. Nutr. 2009;89:2070S–2084S. doi: 10.3945/ajcn.2009.27230I.
    1. Browning L.M., Walker C.G., Mander A.P., West A.L., Madden J., Gambell J.M., Young S., Wang L., Jebb S.A., Calder P.C. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish. Am. J. Clin. Nutr. 2012;96:748–758. doi: 10.3945/ajcn.112.041343.
    1. Köhler A., Heinrich J., von Schacky C. Bioavailability of dietary omega-3 fatty acids added to a variety of sausages in healthy individuals. Nutrients. 2017;9:629. doi: 10.3390/nu9060629.
    1. Tero-Vescan A., Vancea S., Hutanu A., Borka-Balas R., Dobreanu M. Concordance and controversy in determining the omega-3 index in plasma and red blood cells membrane. Farmacia. 2015;63:504–509.
    1. Gurzell E.A., Wiesinger J.A., Morkam C., Hemmrich S., Harris W.S., Fenton J.I. Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content? Prostaglandins Leukot. Essent. Fat. Acids. 2014;91:87–96. doi: 10.1016/j.plefa.2014.04.001.
    1. Sanguansri L., Augustin M.A., Lockett T.J., Abeywardena M.Y., Royle P.J., Mano M.T., Patten G.S. Bioequivalence of n-3 fatty acids from microencapsulated fish oil formulations in human subjects. Br. J. Nutr. 2015;113:822–831. doi: 10.1017/S000711451400436X.
    1. Cook C.M., Hallaråker H., Sæbø P.C., Innis S.M., Kelley K.M., Sanoshy K.D., Berger A., Maki K.C. Bioavailability of long chain omega-3 polyunsaturated fatty acids from phospholipid-rich herring roe oil in men and women with mildly elevated triacylglycerols. Prostaglandins Leukot. Essent. Fat. Acids. 2016;111:17–24. doi: 10.1016/j.plefa.2016.01.007.
    1. Offman E., Davidson M., Abu-Rashid M., Chai P., Nilsson C. Systemic bioavailability and dose proportionality of omega-3 administered in free fatty acid form compared with ethyl ester form: Results of a phase 1 study in healthy volunteers. Eur. J. Drug Metab. Pharmacokinet. 2017;42:815–825. doi: 10.1007/s13318-016-0398-2.
    1. Yurko-Mauro K., Kralovec J., Bailey-Hall E., Smeberg V., Stark J.G., Salem N., Jr. Similar eicosapentaenoic acid and docosahexaenoic acid plasma levels achieved with fish oil or krill oil in a randomized double-blind four-week bioavailability study. Lipids Health Dis. 2015;14:99. doi: 10.1186/s12944-015-0109-z.
    1. Wood K.E., Mantzioris E., Gibson R.A., Ramsden C.E., Muhlhausler B.S. The effect of modifying dietary LA and ALA intakes on omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) status in human adults: A systematic review and commentary. Prostaglandins Leukot. Essent. Fat. Acids. 2015;95:47–55. doi: 10.1016/j.plefa.2015.01.001.
    1. Nordøy A., Barstad L., Connor W.E., Hatcher L. Absorption of the n-3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans. Am. J. Clin. Nutr. 1991;53:1185–1190. doi: 10.1093/ajcn/53.5.1185.
    1. Schuchardt J.P., Schneider I., Meyer H., Neubronner J., von Schacky C., Hahn A. Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations—A comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis. 2011;10:145. doi: 10.1186/1476-511X-10-145.
    1. Ramprasath V.R., Eyal I., Zchut S., Shafat I., Jones P.J. Supplementation of krill oil with high phospholipid content increases sum of EPA and DHA in erythrocytes compared with low phospholipid krill oil. Lipids Health Dis. 2015;14:142. doi: 10.1186/s12944-015-0142-y.
    1. Ghasemifard S., Hermon K., Turchini G.M., Sinclair A.J. Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat. Br. J. Nutr. 2015;114:684–692. doi: 10.1017/S0007114515002457.
    1. Freund Levi Y., Vedin I., Cederholm T., Basun H., Faxén Irving G., Eriksdotter M., Hjorth E., Schultzberg M., Vessby B., Wahlund L.O., et al. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: The OmegAD study. J. Intern. Med. 2014;275:428–436. doi: 10.1111/joim.12166.
    1. Hachem M., Géloën A., Van A.L., Foumaux B., Fenart L., Gosselet F., Da Silva P., Breton G., Lagarde M., Picq M., et al. Efficient docosahexaenoic acid uptake by the brain from a structured phospholipid. Mol. Neurobiol. 2016;53:3205–3215. doi: 10.1007/s12035-015-9228-9.
    1. Kalder P.C., Jensen G.L., Koletzko B.V., Singer P., Wanten G.J.A. Lipid emulsions in parenteral nutrition of intensive care patients: Current thinking and future directions. Intensive Care Med. 2010;36:735–749. doi: 10.1007/s00134-009-1744-5.
    1. Vlaardingerbroek H., Vermeulen M.J., Carnielli V.P., Vaz F.M., van den Akker C.H., van Goudoever J.B. Growth and fatty acid profiles of VLBW infants receiving a multicomponent lipid emulsion from birth. J. Pediatr. Gastroenterol. Nutr. 2014;58:417–427. doi: 10.1097/MPG.0000000000000280.
    1. Kyrana E., Dhawan A. Omega-3 fatty acid-rich parenteral nutrition: Is it a double-edged sword? J. Pediatr. Gastroenterol. Nutr. 2015;61:469–471. doi: 10.1097/MPG.0000000000000863.
    1. Al-Taan O., Stephenson J.A., Spencer L., Pollard C., West A.L., Calder P.C., Metcalfe M., Dennison A.R. Changes in plasma and erythrocyte omega-6 and omega-3 fatty acids in response to intravenous supply of omega-3 fatty acids in patients with hepatic colorectal metastases. Lipids Health Dis. 2013;12:64. doi: 10.1186/1476-511X-12-64.
    1. Qin Y., Nyheim H., Haram E.M., Moritz J.M., Hustvedt S.O. A novel self-micro-emulsifying delivery system (SMEDS) formulation significantly improves the fasting absorption of EPA and DHA from a single dose of an omega-3 ethyl ester concentrate. Lipids Health Dis. 2017;16:204. doi: 10.1186/s12944-017-0589-0.
    1. U.S. Department of Agriculture, Agricultural Research Service . What We Eat in America, NHANES 2013–2014. Food Surveys Research Group; Beltsville, MD, USA: 2016. [(accessed on 20 January 2018)]. Breakfast: Percentages of Selected Nutrients Contributed by Food and Beverages Consumed at Breakfast, by Gender and Age, in the United States, 2013–2014. Available online: .
    1. Orishadipe A.T., Ibekwe N.N., Adesomoju A.A., Okogun J.I. Chemical composition and antimicrobial activity of the seed oil of Entandrophragma angolense (Welw) C.DC. Afr. J. Pure Appl. Chem. 2012;6:184–187. doi: 10.5897/AJPAC12.028.
    1. Deol P., Fahrmann J., Yang J., Evans J.R., Rizo A., Grapov D., Salemi M., Wanichthanarak K., Fiehn O., Phinney B., et al. Omega-6 and omega-3 oxylipins are implicated in soybean oil-induced obesity in mice. Sci. Rep. 2017;7:12488. doi: 10.1038/s41598-017-12624-9.
    1. Cavazos-Garduño A., Flores A.A.O., Serrano-Niño J.C., Martínez-Sanchez C.E., Beristain C.I., García H.S. Preparation of betulinic acid nanoemulsions stabilized by x-3 enriched phosphatidylcholine. Ultrason. Sonochem. 2015;24:204–213. doi: 10.1016/j.ultsonch.2014.12.007.
    1. Lopez-Toledano M.A., Thorsteinsson T., Daak A., Maki K.C., Johns C., Rabinowicz A.L., Sancilio F.D. A Novel ω-3 acid ethyl ester formulation incorporating Advanced Lipid Technologies™ (ALT®) improves docosahexaenoic acid and eicosapentaenoic acid bioavailability compared with Lovaza®. Clin. Ther. 2017;39:581–591. doi: 10.1016/j.clinthera.2017.01.020.
    1. Gumus C.E., Decker E.A., McClements D.J. Formation and stability of ω-3 oil emulsion-based delivery systems using plant proteins as emulsifiers: Lentil, pea, and faba bean proteins. Food Biophys. 2017;12:186–197. doi: 10.1007/s11483-017-9475-6.
    1. Lane K.E., Li W., Smith C.J., Derbyshire E.J. The development of vegetarian omega-3 oil in water nanoemulsions suitable for integration into functional food products. J. Funct. Foods. 2016;23:306–314. doi: 10.1016/j.jff.2016.02.043.
    1. Walker R., Decker E.A., McClements D.J. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: Opportunities and obstacles in the food industry. Food Funct. 2015;6:41–54. doi: 10.1039/C4FO00723A.
    1. Hinriksdottir H.H., Jonsdottir V.L., Sveinsdottir K., Martinsdottir E., Ramel A. Bioavailability of long-chain n-3 fatty acids from enriched meals and from microencapsulated powder. Eur. J. Clin. Nutr. 2015;69:344–348. doi: 10.1038/ejcn.2014.250.
    1. Ottestad I., Nordvi B., Vogt G., Holck M., Halvorsen B., Brønner K.W., Retterstøl K., Holven K.B., Nilsson A., Ulven S.M. Bioavailability of n-3 fatty acids from n-3-enriched foods and fish oil with different oxidative quality in healthy human subjects: A randomised single-meal cross-over study. J. Nutr. Sci. 2016;5:e43. doi: 10.1017/jns.2016.34.
    1. Garaiova I., Guschina I.A., Plummer S.F., Tang J., Wang D., Plummer N.T. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr. J. 2007;6:4. doi: 10.1186/1475-2891-6-4.
    1. Raatz S.K., Redmon J.B., Wimmergren N., Donadio J.V., Bibus D.M. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil. J. Am. Diet. Assoc. 2009;109:1076–1081. doi: 10.1016/j.jada.2009.03.006.
    1. Taha A.Y., Cheon Y., Faurot K.F., Macintosh B., Majchrzak-Hong S.F., Mann J.D., Hibbeln J.R., Ringel A., Ramsden C.E. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools. Prostaglandins Leukot. Essent. Fat. Acids. 2014;90:151–157. doi: 10.1016/j.plefa.2014.02.003.
    1. Arsic A., Prekajski N., Vucic V., Tepsic J., Popovic T., Vrvic M., Glibetic M. Milk in human nutrition: Comparison of fatty acid profiles. Acta Vet.-Beograd. 2009;59:569–578. doi: 10.2298/avb0906569a.
    1. Gerster H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 1998;68:159–173.
    1. Simopoulos A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002;56:365–379. doi: 10.1016/S0753-3322(02)00253-6.
    1. Russo G.L. Dietary n − 6 and n − 3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009;77:937–946. doi: 10.1016/j.bcp.2008.10.020.
    1. Berger M.E., Smesny S., Kim S.-W., Davey C.G., Rice S., Sarnyai Z., Schlögelhofer M., Schäfer M.R., Berk M., McGorry P.D., et al. Omega-6 to omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: A 7-year longitudinal study. Transl. Psychiatry. 2017;7:e1220. doi: 10.1038/tp.2017.190.
    1. Simopoulos A.P. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol. Neurobiol. 2011;44:203–215. doi: 10.1007/s12035-010-8162-0.
    1. Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O’Keefe J.H., Brand-Miller J. Origins and evolution of the western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005;81:341–354. doi: 10.1093/ajcn.81.2.341.
    1. Yehuda S. Omega-6/omega-3 ratio and brain-related functions. In: Simopoulos A.P., Cleland L.G., editors. Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence. Volume 92. Karger; Basel, Switzerland: 2003. pp. 37–56.
    1. Wainwright P.E., Huang Y.S., Bulman-Fleming B., Dalby D., Mills D.E., Redden P.R., McCutcheon D. The effects of dietary n-3/n-6 ratio on brain development in the mouse: A dose response study with long-chain n-3 fatty acids. Lipids. 1999;27:98–103. doi: 10.1007/BF02535807.
    1. Bartram H.P., Gostner A., Scheppach W., Reddy B.S., Rao C.V., Dusel G., Richter F., Richter A., Kasper H. Effects of fish oil on rectal cell proliferation, mucosal fatty acids, and prostaglandin E2 release in healthy subjects. Gastroenterology. 1993;105:1317–1322. doi: 10.1016/0016-5085(93)90135-Y.
    1. Sheppard K.W., Cheatham C.L. Omega-6/omega-3 fatty acid intake of children and older adults in the U.S.: Dietary intake in comparison to current dietary recommendations and the Healthy Eating Index. Lipids Health Dis. 2018;17:43. doi: 10.1186/s12944-018-0693-9.
    1. Eratte D., Wang B., Dowling K., Barrow C.J., Adhikari B.P. Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Funct. 2014;5:2743–2750. doi: 10.1039/C4FO00296B.
    1. Us-Medina U., Ruiz-Ruiz J.C., Quintana-Owen P., Segura-Campos M.R. Salvia hispanica mucilage-alginate properties and performance as an encapsulation matrix for chia seed oil. J. Food Process. Preserv. 2017;41:e13270. doi: 10.1111/jfpp.13270.
    1. Staprãns I., Rapp J.H., Pan X.M., Kim K.Y., Feingold K.R. Oxidized lipids in the diet are a source of oxidized lipid in chylomicrons of human serum. Arterioscler. Thromb. 1994;14:1900–1905. doi: 10.1161/01.ATV.14.12.1900.
    1. Naruszewicz M., Woźny E., Mirkiewicz E., Nowicka G., Szostak W.B. The effect of thermally oxidized soya bean oil on metabolism of chylomicrons. Increased uptake and degradation of oxidized chylomicrons in cultured mouse macrophages. Atherosclerosis. 1987;66:45–53. doi: 10.1016/0021-9150(87)90178-X.

Source: PubMed

3
Abonner