Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice

Mette Simone Aae Madsen, Jacob Bak Holm, Albert Pallejà, Pernille Wismann, Katrine Fabricius, Kristoffer Rigbolt, Martin Mikkelsen, Morten Sommer, Jacob Jelsing, Henrik Bjørn Nielsen, Niels Vrang, Henrik H Hansen, Mette Simone Aae Madsen, Jacob Bak Holm, Albert Pallejà, Pernille Wismann, Katrine Fabricius, Kristoffer Rigbolt, Martin Mikkelsen, Morten Sommer, Jacob Jelsing, Henrik Bjørn Nielsen, Niels Vrang, Henrik H Hansen

Abstract

Enteroendocrine L-cell derived peptide hormones, notably glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2), have become important targets in the treatment of type 2 diabetes, obesity and intestinal diseases. As gut microbial imbalances and maladaptive host responses have been implicated in the pathology of obesity and diabetes, this study aimed to determine the effects of pharmacologically stimulated GLP-1 and GLP-2 receptor function on the gut microbiome composition in diet-induced obese (DIO) mice. DIO mice received treatment with a selective GLP-1 receptor agonist (liraglutide, 0.2 mg/kg, BID) or dual GLP-1/GLP-2 receptor agonist (GUB09-145, 0.04 mg/kg, BID) for 4 weeks. Both compounds suppressed caloric intake, promoted a marked weight loss, improved glucose tolerance and reduced plasma cholesterol levels. 16S rDNA sequencing and deep-sequencing shotgun metagenomics was applied for comprehensive within-subject profiling of changes in gut microbiome signatures. Compared to baseline, DIO mice assumed phylogenetically similar gut bacterial compositional changes following liraglutide and GUB09-145 treatment, characterized by discrete shifts in low-abundant species and related bacterial metabolic pathways. The microbiome alterations may potentially associate to the converging biological actions of GLP-1 and GLP-2 receptor signaling on caloric intake, glucose metabolism and lipid handling.

Conflict of interest statement

M.S.M., P.W., K.F., K.R., M.M. and H.H.H. are employed by Gubra; J.B.H., A.P. and H.B.N. are employed by Clinical Microbiomics; N.V. and J.J. are owners of Gubra.

Figures

Figure 1
Figure 1
Liraglutide and GUB09-145 improve metabolic parameters in DIO mice. (A) Absolute body weight (g), (B) Body weight gain (%) relative to treatment start; (C) Daily food intake (g); (D) Cumulative energy intake (kcal/day); (E) Oral glucose tolerance test (OGTT) on treatment day 27, (F) Glucose area-under the-curve (glucose AUC0-240 min); (G) Fasting blood glucose concentrations (mmol/L) on treatment day 14; (H) Fasting plasma insulin levels (pg/ml) on treatment day 28; (I) Plasma total triglycerides (TG, mmol/L) on treatment day 28; (J) Plasma total cholesterol (TC, mmol/L) on treatment day 28. *p < 0.05, **p < 0.01, ***p < 0.001 compared to DIO vehicle controls.
Figure 2
Figure 2
16S rDNA sequencing. Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity between all samples (panels A,B). PCoA plots show pre- and post-treatment gut microbiome signatures in all individual mice, group means are indicated by a large point. Microbial diversity analysis at genus level, including sample (OTU) richness (C) and Shannon alpha diversity (D). *p < 0.05, **p < 0.01, ***p < 0.001 vs. corresponding sampling time in DIO vehicle mice; #p < 0.05, ##p < 0.01 vs. corresponding baseline.
Figure 3
Figure 3
Taxonomic summary at phylum and family level. Mean values per group are illustrated of the nine detected phyla (panel A) and the 15 most abundant families (panel B) across all samples. The phyla and families are sorted with the highest abundance across all samples in the top. For panel B, note that bar height for liraglutide and GUB09-145 (endpoint data) is slightly lower compared to baseline, reflecting that terminal samples showed a relatively higher proportion of reads not mapping to the top-15 most abundant families.
Figure 4
Figure 4
Shotgun metagenomics. Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity between all samples calculated using species relative abundances (panels A,B). PCoA plots demonstrate pre- and post-treatment gut microbiome signatures in all individual mice, group means are indicated by a large point. Microbial diversity analysis at species level, including gene richness (C) and Shannon alpha diversity (D). ***p < 0.001 vs. corresponding sampling time in DIO vehicle mice.
Figure 5
Figure 5
Correlation of metagenomic species abundance to changes in metabolic parameters. Overview of metagenomic species significantly changing in abundance over the course of liraglutide and GUB09-145 treatment. Hierarchical clustering analysis yielded four individual species categories: (Cluster 1) species with reduced abundance after liraglutide or GUB09-145 treatment; (Cluster 2) species with increased abundance primarily after liraglutide treatment; (Cluster 3) species with abundance change specific to one drug treatment group only; (Cluster 4) species with increased abundance after both liraglutide and GUB09-145 treatment, and no differences between the two vehicle groups. Left heatmap: Spearman correlations between change in individual species abundance and various metabolic parameters affected by treatment, including plasma total cholesterol (TC), fasting glucose level on treatment day 14 (Fasting glucose), fasting terminal insulin levels (fasting insulin), glucose area-under the curve in an oral glucose tolerance test on treatment day 27 (AUC glucose OGTT), terminal plasma total triglycerides (TG), endpoint body weight loss relative to baseline (Body weight loss), and total energy intake during the treatment period (Total caloric intake). Asterisks denote significant correlation (FDR-corrected, p < 0.05) between individual species and relevant metabolic parameter. Right heatmap: Fold change (log2 transformed) in species abundance in individual mice as compared to baseline.
Figure 6
Figure 6
Bacterial KEGG metabolic pathways affected by treatment with liraglutide and GUB09-145. Heatmap depicting bacterial KEGG modules with changes over the course of liraglutide and GUB09-145 treatment. Left heatmap: Spearman correlations between change in individual species abundance and various metabolic parameters affected by treatment, including plasma total cholesterol (TC), fasting glucose level on treatment day 14 (Fasting glucose), fasting terminal insulin levels (fasting insulin), glucose area-under the curve in an oral glucose tolerance test on treatment day 27 (AUC glucose OGTT), terminal plasma total triglycerides (TG), endpoint body weight loss relative to baseline (Body weight loss), and total caloric intake during the treatment period (Total caloric intake). Asterisks denote significant correlation (FDR-corrected, p < 0.05) between species and relevant metabolic parameter. Right heatmap: Fold change (log2 transformed) in species abundance in individual mice as compared to baseline.

References

    1. Lascar N, et al. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2017;6:69–80. doi: 10.1016/S2213-8587(17)30186-9.
    1. Edelstein SL, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46:701–10. doi: 10.2337/diab.46.4.701.
    1. Oussaada SM, et al. The pathogenesis of obesity. Metabolism. 2019;92:26–36. doi: 10.1016/j.metabol.2018.12.012.
    1. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 2014;15:367–378. doi: 10.1038/nrn3745.
    1. Beaumont M, et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol. 2016;17:189. doi: 10.1186/s13059-016-1052-7.
    1. Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Menni C, et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. (Lond). 2017;41:1099–1105. doi: 10.1038/ijo.2017.66.
    1. Schwiertz A, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18:190–5. doi: 10.1038/oby.2009.167.
    1. Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031.
    1. Ussar S, et al. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab. 2015;22:516–30. doi: 10.1016/j.cmet.2015.07.007.
    1. Cani PD, et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes. 2007;56:1761–1772. doi: 10.2337/db06-1491.
    1. Kübeck R, et al. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol. Metab. 2016;5:1162–1174. doi: 10.1016/j.molmet.2016.10.001.
    1. Fayfman M, Flint K, Srinivasan S. Obesity, Motility, Diet, and Intestinal Microbiota-Connecting the Dots. Curr. Gastroenterol. Rep. 2019;21:15. doi: 10.1007/s11894-019-0680-y.
    1. Ridaura VK, et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice Gut Microbiota from Twins Metabolism in Mice. Science (80-.). 2013;341:1241214. doi: 10.1126/science.1241214.
    1. Bäckhed F, et al. The gut microbiota as an environmental factor that regulates fat storage. PNAS. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Andersen A, Lund A, Knop FK, Vilsbøll T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 2018;14:390–403. doi: 10.1038/s41574-018-0016-2.
    1. Burcelin R, Gourdy P. Harnessing glucagon-like peptide-1 receptor agonists for the pharmacological treatment of overweight and obesity. Obes. Rev. 2017;18:86–98. doi: 10.1111/obr.12465.
    1. Yusta B, et al. GLP-1R Agonists Modulate Enteric Immune Responses Through the Intestinal Intraepithelial Lymphocyte GLP-1R. Diabetes. 2015;64:2537–49. doi: 10.2337/db14-1577.
    1. Koehler JA, et al. GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7. Cell Metab. 2015;21:379–91. doi: 10.1016/j.cmet.2015.02.005.
    1. Wismann P, et al. The endogenous preproglucagon system is not essential for gut growth homeostasis in mice. Mol. Metab. 2017;6:681–692. doi: 10.1016/j.molmet.2017.04.007.
    1. Bang-Berthelsen CH, et al. GLP-1 Induces Barrier Protective Expression in Brunner’s Glands and Regulates Colonic Inflammation. Inflamm. Bowel Dis. 2016;22:2078–2097. doi: 10.1097/MIB.0000000000000847.
    1. Anbazhagan AN, et al. GLP-1 nanomedicine alleviates gut inflammation. Nanomedicine Nanotechnology, Biol. Med. 2017;13:659–665. doi: 10.1016/j.nano.2016.08.004.
    1. Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc. Natl. Acad. Sci. 1996;93:7911–7916. doi: 10.1073/pnas.93.15.7911.
    1. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am. J. Physiol. Metab. 1997;273:E77–E84. doi: 10.1152/ajpcell.1997.273.1.C77.
    1. Cani PD, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103. doi: 10.1136/gut.2008.165886.
    1. Wismann P, et al. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol. Behav. 2018;192:72–81. doi: 10.1016/j.physbeh.2018.03.004.
    1. Covasa M, Stephens RW, Toderean R, Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut. Peptides. Front. Endocrinol. (Lausanne). 2019;10:82. doi: 10.3389/fendo.2019.00082.
    1. Chambers ES, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64:1744–1754. doi: 10.1136/gutjnl-2014-307913.
    1. Tolhurst G, et al. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein – Coupled Receptor FFAR2. Diabetes. 2012;61:364–371. doi: 10.2337/db11-1019.
    1. Psichas A, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. (Lond). 2015;39:424–9. doi: 10.1038/ijo.2014.153.
    1. Wang L, Li P, Tang Z, Yan X, Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Nat. Publ. Gr. 2016;6:1–10. doi: 10.12677/NAT.2016.61001.
    1. Zhao L, et al. A glucagon-like peptide-1 receptor agonist lowers weight by modulating the structure of gut microbiota. Front. Endocrinol. (Lausanne). 2018;9:1–13. doi: 10.3389/fendo.2018.00001.
    1. Zhang Q, et al. Structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Exp. Biol. Med. 2018;243:34–44. doi: 10.1177/1535370217743765.
    1. Wang Z, et al. Gut microbiome differences between metformin- and liraglutide-treated T2DM subjects. Endocrinol. diabetes Metab. 2018;1:e00009. doi: 10.1002/edm2.9.
    1. Wu J, et al. Effect of Aging and Glucagon-like Peptide 2 on Intestinal Microbiota in SD Rats. Aging Dis. 2018;9:566. doi: 10.14336/AD.2017.1001.
    1. D’Argenio V. Human Microbiome Acquisition and Bioinformatic Challenges in Metagenomic Studies. Int. J. Mol. Sci. 2018;19:383. doi: 10.3390/ijms19020383.
    1. Nielsen HB, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 2014;32:822–8. doi: 10.1038/nbt.2939.
    1. Palleja A, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 2018;3:1255–1265. doi: 10.1038/s41564-018-0257-9.
    1. Larsen, I. S. et al. Human Paneth cell α-defensin 5 treatment reverses dyslipidemia and improves glucoregulatory capacity in diet-induced obese mice. Am. J. Physiol. Metab. ajpendo. 00019.2019, 10.1152/ajpendo.00019.2019 (2019).
    1. Tølbøl KS, et al. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis. World J. Gastroenterol. 2018;24:179–194. doi: 10.3748/wjg.v24.i2.179.
    1. Henderson SJ, et al. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes. Obes. Metab. 2016;18:1176–1190. doi: 10.1111/dom.12735.
    1. Barreto-Vianna ARC, Aguila MB, Mandarim-de-Lacerda CA. Effects of liraglutide in hypothalamic arcuate nucleus of obese mice. Obesity. 2016;24:626–633. doi: 10.1002/oby.21387.
    1. Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604.
    1. Schloss PD, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09.
    1. Cole JR, et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:633–642. doi: 10.1093/nar/gkt1244.
    1. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07.
    1. Morris EK, et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014;4:3514–3524. doi: 10.1002/ece3.1155.
    1. Bray JR, Curtis JT. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957;27:326–349. doi: 10.2307/1942268.
    1. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170.
    1. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2013;9:357–359. doi: 10.1038/nmeth.1923.
    1. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–1676. doi: 10.1093/bioinformatics/btv033.
    1. Hyatt D, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. doi: 10.1186/1471-2105-11-119.
    1. Xiao L, et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 2015;33:1103–1108. doi: 10.1038/nbt.3353.
    1. Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389.
    1. Bates D, Mächler M, Bolker BM, Walker SC. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:251–264. doi: 10.18637/jss.v067.i01.
    1. Kaufman, L. & Rousseeuw, P. J. Clustering by Means of Medoids. in 1–12 (1987).
    1. Huerta-Cepas J, et al. EGGNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–D293. doi: 10.1093/nar/gkv1248.
    1. Kultima JR, et al. MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit. PLoS One. 2012;7:1–6. doi: 10.1371/journal.pone.0047656.
    1. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34. doi: 10.1093/nar/27.1.29.
    1. Greiner TU, Bäckhed F. Microbial regulation of GLP-1 and L-cell biology. Mol. Metab. 2016;5:753–758. doi: 10.1016/j.molmet.2016.05.012.
    1. Drucker DJ, Habener JF, Holst JJ. Discovery, characterization, and clinical development of the glucagon-like peptides. J. Clin. Invest. 2017;127:4217–4227. doi: 10.1172/JCI97233.
    1. Hildebrandt MA, et al. High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Gastroenterology. 2009;137:1716–1724. e2. doi: 10.1053/j.gastro.2009.08.042.
    1. Ley RE, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102.
    1. Ley R, Turnbaugh P, Klein S, Gordon J. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One. 2014;9:e84689. doi: 10.1371/journal.pone.0084689.
    1. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe. 2008;3:213–223. doi: 10.1016/j.chom.2008.02.015.
    1. Duncan SH, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 2008;32:1720–1724. doi: 10.1038/ijo.2008.155.
    1. Moreira G, et al. Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J. Nutr. Biochem. 2018;62:143–154. doi: 10.1016/j.jnutbio.2018.07.009.
    1. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 2017;106:171–181. doi: 10.1016/j.micpath.2016.02.005.
    1. Everard A, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS Microbiol. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Shin N, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727–735. doi: 10.1136/gutjnl-2012-303839.
    1. Sommer MO. Advancing gut microbiome research using cultivation. Curr. Opin. Microbiol. 2015;27:127–132. doi: 10.1016/j.mib.2015.08.004.
    1. Jelsing J, et al. Liraglutide: short-lived effect on gastric emptying–long lasting effects on body weight. Diabetes. Obes. Metab. 2012;14:531–538. doi: 10.1111/j.1463-1326.2012.01557.x.
    1. Gérard P. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens. 2013;3:14–24. doi: 10.3390/pathogens3010014.
    1. Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease. Mol. Aspects Med. 2017;56:54–65. doi: 10.1016/j.mam.2017.06.002.
    1. Just S, et al. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome. 2018;6:134. doi: 10.1186/s40168-018-0510-8.
    1. Linden DR. Hydrogen Sulfide Signaling in the Gastrointestinal Tract. Antioxid. Redox Signal. 2014;20:818–830. doi: 10.1089/ars.2013.5312.
    1. den Hartigh LJ, et al. Obese Mice Losing Weight Due to trans-10,cis-12 Conjugated Linoleic Acid Supplementation or Food Restriction Harbor Distinct Gut Microbiota. J. Nutr. 2018;148:562–572. doi: 10.1093/jn/nxy011.
    1. Speakman JR, Mitchell SE. Caloric restriction. Mol. Aspects Med. 2011;32:159–221. doi: 10.1016/j.mam.2011.07.001.
    1. Overton JM, Williams TD. Behavioral and physiologic responses to caloric restriction in mice. Physiol. Behav. 2004;81:749–54. doi: 10.1016/j.physbeh.2004.04.025.
    1. Drucker DJ. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat. Clin. Pract. Endocrinol. Metab. 2005;1:22–31. doi: 10.1038/ncpendmet0017.

Source: PubMed

3
Abonner