Hesitate between confocal laser endomicroscopy and narrow-band imaging: how to choose a better method in the detection of focal precancerous state of gastric cancer

Yi-Wen Zhou, Le-Yin Zhang, Shu-Ning Ding, An-Lai Zhang, Ying Zhu, Yu-Xuan Chen, Qi-Chen Zhang, Lei-Tao Sun, Jie-Ru Yu, Yi-Wen Zhou, Le-Yin Zhang, Shu-Ning Ding, An-Lai Zhang, Ying Zhu, Yu-Xuan Chen, Qi-Chen Zhang, Lei-Tao Sun, Jie-Ru Yu

Abstract

Background: With a high incidence globally, deaths form gastric cancer (GC) are not rare. Early diagnosis is crucial to ameliorate its prognosis. Confocal laser endomicroscopy (CLE) and narrow band imaging (NBI) have been extensively applied in gastroscopy, particularly when it comes to the detection and management of premalignant gastric lesion. Our meta-analysis intends to appraise the diagnostic capability and compare the efficacy of NBI and CLE for focal precancerous state of gastric cancer.

Methods: We performed a literature search up to November 5, 2020 in online databases and major conferences. Two investigators assessed the methodological bias by QUADAS-2, followed by sophisticated study selection and data exaction to make a comparison between sensitivity, specificity, positive and negative likelihood values, and diagnostic odds ratio. A symmetric summary receiver-operating curve (sROC) and its area under the curve (AUC) were used to estimate threshold effect. Additionally, we evaluated the publication bias by Deeks' asymmetry test.

Results and conclusions: Four studies involved 248 patients and 526 lesions. In analysis drawn from every lesion, the NBI's pooled sensitivity and specificity were 87% (95% CI: 0.80-0.92) and 85% (95% CI: 0.75-0.91), and those of CLE were 90% (95% CI: 0.85-0.91) and 87% (95% CI: 0.83-0.91). CLE illustrated that the pooled two were slightly higher than NBI when compared at the level of every lesion. The AUC for NBI and CLE was 0.92 (0.90-0.94) and 0.95 (0.92-0.96), and there might be a threshold effect, according to the shoulder-like distribution of scatter points in the sROC. We did not find obvious publication bias in our meta-analysis.

Keywords: Focal precancerous state of gastric cancer; confocal laser endomicroscopy; early diagnosis; meta-analysis; narrow-band imaging.

Conflict of interest statement

None.

AJTR Copyright © 2022.

Figures

Figure 1
Figure 1
Flow diagram of the studies identified in the meta-analysis.
Figure 2
Figure 2
Forest plot of diagnostic performance of NBI (A) and CLE (B) for focal precancerous state of gastric cancer in a per-lesion analysis.
Figure 3
Figure 3
Forest diagnostic odds ratio (DOR) of NBI (A) and CLE (B).
Figure 4
Figure 4
The summary receiver operating characteristic (sROC) with 95% confidence interval of NBI (A) and CLE (B) in a per-lesion analysis. AUC, area under the curve.

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
    1. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, Bonaventure A, Valkov M, Johnson CJ, Esteve J, Ogunbiyi OJ, Azevedo ESG, Chen WQ, Eser S, Engholm G, Stiller CA, Monnereau A, Woods RR, Visser O, Lim GH, Aitken J, Weir HK, Coleman MP CONCORD Working Group. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023–1075.
    1. Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol. 2017;39:1010428317714626.
    1. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on cancer epidemiology and prevention. Cancer Res. 1992;52:6735–6740.
    1. Santaballa A, Pinto A, Balanya RP, Ramirez Merino N, Martin IR, Grau SS, Fombella JPB, Cano JM, Gonzalez CH, Bayo J. SEOM clinical guideline for secondary prevention (2019) Clin Transl Oncol. 2020;22:187–192.
    1. Wang FH, Shen L, Li J, Zhou ZW, Liang H, Zhang XT, Tang L, Xin Y, Jin J, Zhang YJ, Yuan XL, Liu TS, Li GX, Wu Q, Xu HM, Ji JF, Li YF, Wang X, Yu S, Liu H, Guan WL, Xu RH. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun (Lond) 2019;39:10.
    1. Horiguchi N, Tahara T, Kawamura T, Okubo M, Tahara S, Nagasaka M, Nakagawa Y, Shibata T, Ohmiya N. A comparative study of white light endoscopy, chromoendoscopy and magnifying endoscopy with narrow band imaging in the diagnosis of early gastric cancer after helicobacter pylori eradication. J Gastrointestin Liver Dis. 2017;26:357–362.
    1. Ezoe Y, Muto M, Uedo N, Doyama H, Yao K, Oda I, Kaneko K, Kawahara Y, Yokoi C, Sugiura Y, Ishikawa H, Takeuchi Y, Kaneko Y, Saito Y. Magnifying narrowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology. 2011;141:2017–2025. e2013.
    1. Tao G, Xing-Hua L, Ai-Ming Y, Wei-Xun Z, Fang Y, Xi W, Li-Yin W, Chong-Mei L, Gui-Jun F, Hui-Jun S, Dong-Sheng W, Yue L, Xiao-Qing L, Jia-Ming Q. Enhanced magnifying endoscopy for differential diagnosis of superficial gastric lesions identified with white-light endoscopy. Gastric Cancer. 2014;17:122–129.
    1. Maki S, Yao K, Nagahama T, Beppu T, Hisabe T, Takaki Y, Hirai F, Matsui T, Tanabe H, Iwashita A. Magnifying endoscopy with narrow-band imaging is useful in the differential diagnosis between low-grade adenoma and early cancer of superficial elevated gastric lesions. Gastric Cancer. 2013;16:140–146.
    1. Miwa K, Doyama H, Ito R, Nakanishi H, Hirano K, Inagaki S, Tominaga K, Yoshida N, Takemura K, Yamada S, Kaneko Y, Katayanagi K, Kurumaya H, Okada T, Yamagishi M. Can magnifying endoscopy with narrow band imaging be useful for low grade adenomas in preoperative biopsy specimens? Gastric Cancer. 2012;15:170–178.
    1. Ezoe Y, Muto M, Horimatsu T, Minashi K, Yano T, Sano Y, Chiba T, Ohtsu A. Magnifying narrow-band imaging versus magnifying white-light imaging for the differential diagnosis of gastric small depressive lesions: a prospective study. Gastrointest Endosc. 2010;71:477–484.
    1. Kato M, Kaise M, Yonezawa J, Toyoizumi H, Yoshimura N, Yoshida Y, Kawamura M, Tajiri H. Magnifying endoscopy with narrow-band imaging achieves superior accuracy in the differential diagnosis of superficial gastric lesions identified with white-light endoscopy: a prospective study. Gastrointest Endosc. 2010;72:523–529.
    1. Buxbaum JL, Hormozdi D, Dinis-Ribeiro M, Lane C, Dias-Silva D, Sahakian A, Jayaram P, Pimentel-Nunes P, Shue D, Pepper M, Cho D, Laine L. Narrow-band imaging versus white light versus mapping biopsy for gastric intestinal metaplasia: a prospective blinded trial. Gastrointest Endosc. 2017;86:857–865.
    1. Pimentel-Nunes P, Libanio D, Lage J, Abrantes D, Coimbra M, Esposito G, Hormozdi D, Pepper M, Drasovean S, White JR, Dobru D, Buxbaum J, Ragunath K, Annibale B, Dinis-Ribeiro M. A multicenter prospective study of the real-time use of narrow-band imaging in the diagnosis of premalignant gastric conditions and lesions. Endoscopy. 2016;48:723–730.
    1. Nagahama T, Yao K, Uedo N, Doyama H, Ueo T, Uchita K, Ishikawa H, Kanesaka T, Takeda Y, Wada K, Imamura K, Arima H, Shimokawa T. Delineation of the extent of early gastric cancer by magnifying narrow-band imaging and chromoendoscopy: a multicenter randomized controlled trial. Endoscopy. 2018;50:566–576.
    1. Yoshimizu S, Yamamoto Y, Horiuchi Y, Omae M, Yoshio T, Ishiyama A, Hirasawa T, Tsuchida T, Fujisaki J. Diagnostic performance of routine esophagogastroduodenoscopy using magnifying endoscope with narrow-band imaging for gastric cancer. Dig Endosc. 2018;30:71–78.
    1. Li Z, Zuo XL, Yu T, Gu XM, Zhou CJ, Li CQ, Ji R, Li YQ. Confocal laser endomicroscopy for in vivo detection of gastric intestinal metaplasia: a randomized controlled trial. Endoscopy. 2014;46:282–290.
    1. Horiguchi N, Tahara T, Yamada H, Yoshida D, Okubo M, Nagasaka M, Nakagawa Y, Shibata T, Tsukamoto T, Kuroda M, Ohmiya N. In vivo diagnosis of early-stage gastric cancer found after Helicobacter pylori eradication using probe-based confocal laser endomicroscopy. Dig Endosc. 2018;30:219–227.
    1. Goetz M. Characterization of lesions in the stomach: will confocal laser endomicroscopy replace the pathologist? Best Pract Res Clin Gastroenterol. 2015;29:589–599.
    1. Zhang HP, Yang S, Chen WH, Hu TT, Lin J. The diagnostic value of confocal laser endomicroscopy for gastric cancer and precancerous lesions among Asian population: a system review and meta-analysis. Scand J Gastroenterol. 2017;52:382–388.
    1. Zuo XL, Li Z, Li CQ, Zheng YY, Xu LD, Chen J, Lin R, Song J, Yu CH, Yue M, Zhou Q, Liu ZY, Li YQ. Probe-based endomicroscopy for in vivo detection of gastric intestinal metaplasia and neoplasia: a multicenter randomized controlled trial. Endoscopy. 2017;49:1033–1042.
    1. Yu H, Yang AM, Lu XH, Zhou WX, Yao F, Fei GJ, Guo T, Yao LQ, He LP, Wang BM. Magnifying narrow-band imaging endoscopy is superior in diagnosis of early gastric cancer. World J Gastroenterol. 2015;21:9156–9162.
    1. Lim LG, Yeoh KG, Srivastava S, Chan YH, Teh M, Ho KY. Comparison of probe-based confocal endomicroscopy with virtual chromoendoscopy and white-light endoscopy for diagnosis of gastric intestinal metaplasia. Surg Endosc. 2013;27:4649–4655.
    1. Wang SF, Yang YS, Wei LX, Lu ZS, Guo MZ, Huang J, Peng LH, Sun G, Ling-Hu EQ, Meng JY. Diagnosis of gastric intraepithelial neoplasia by narrow-band imaging and confocal laser endomicroscopy. World J Gastroenterol. 2012;18:4771–4780.
    1. Gong S, Xue HB, Ge ZZ, Dai J, Li XB, Zhao YJ, Zhang Y, Gao YJ, Song Y. Value of magnifying endoscopy with narrow-band imaging and confocal laser endomicroscopy in detecting gastric cancerous lesions. Medicine (Baltimore) 2015;94:e1930.
    1. Liu T, Zheng H, Gong W, Chen C, Jiang B. The accuracy of confocal laser endomicroscopy, narrow band imaging, and chromoendoscopy for the detection of atrophic gastritis. J Clin Gastroenterol. 2015;49:379–386.
    1. Correa P. Gastric cancer: overview. Gastroenterol Clin North Am. 2013;42:211–217.
    1. Rugge M, Meggio A, Pravadelli C, Barbareschi M, Fassan M, Gentilini M, Zorzi M, Pretis G, Graham DY, Genta RM. Gastritis staging in the endoscopic follow-up for the secondary prevention of gastric cancer: a 5-year prospective study of 1755 patients. Gut. 2019;68:11–17.
    1. Menon S, Trudgill N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis. Endosc Int Open. 2014;2:E46–50.
    1. Banks M, Graham D, Jansen M, Gotoda T, Coda S, di Pietro M, Uedo N, Bhandari P, Pritchard DM, Kuipers EJ, Rodriguez-Justo M, Novelli MR, Ragunath K, Shepherd N, Dinis-Ribeiro M. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut. 2019;68:1545–1575.
    1. Gono K. Narrow band imaging: technology basis and research and development history. Clin Endosc. 2015;48:476–480.
    1. Barbeiro S, Libanio D, Castro R, Dinis-Ribeiro M, Pimentel-Nunes P. Narrow-band imaging: clinical application in gastrointestinal endoscopy. GE Port J Gastroenterol. 2018;26:40–53.
    1. Yao K, Doyama H, Gotoda T, Ishikawa H, Nagahama T, Yokoi C, Oda I, Machida H, Uchita K, Tabuchi M. Diagnostic performance and limitations of magnifying narrow-band imaging in screening endoscopy of early gastric cancer: a prospective multicenter feasibility study. Gastric Cancer. 2014;17:669–679.
    1. Lee SK. Usefulness and future prospects of confocal laser endomicroscopy for gastric premalignant and malignant lesions. Clin Endosc. 2015;48:511–515.
    1. Park CH, Kim H, Jo JH, Hahn KY, Yoon JH, Kim SY, Lee YC, Noh SH, Chung HC, Lee SK. Role of probe-based confocal laser endomicroscopy-targeted biopsy in the molecular and histopathological study of gastric cancer. J Gastroenterol Hepatol. 2019;34:84–91.
    1. Park JC, Park Y, Kim HK, Jo JH, Park CH, Kim EH, Jung DH, Chung H, Shin SK, Lee SK, Lee YC. Probe-based confocal laser endomicroscopy in the margin delineation of early gastric cancer for endoscopic submucosal dissection. J Gastroenterol Hepatol. 2017;32:1046–1054.
    1. Song J, Zhang J, Wang J, Guo X, Wang J, Liu Y, Dong W. Meta-analysis: narrow band imaging for diagnosis of gastric intestinal metaplasia. PLoS One. 2014;9:e94869.
    1. Hu YY, Lian QW, Lin ZH, Zhong J, Xue M, Wang LJ. Diagnostic performance of magnifying narrow-band imaging for early gastric cancer: a meta-analysis. World J Gastroenterol. 2015;21:7884–7894.
    1. Li WB, Zuo XL, Li CQ, Zuo F, Gu XM, Yu T, Chu CL, Zhang TG, Li YQ. Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions. Gut. 2011;60:299–306.
    1. Li Z, Zuo XL, Li CQ, Liu ZY, Ji R, Liu J, Guo J, Li YQ. New classification of gastric pit patterns and vessel architecture using probe-based confocal laser endomicroscopy. J Clin Gastroenterol. 2016;50:23–32.
    1. Zhang Q, Wang F, Chen ZY, Wang Z, Zhi FC, Liu SD, Bai Y. Comparison of the diagnostic efficacy of white light endoscopy and magnifying endoscopy with narrow band imaging for early gastric cancer: a meta-analysis. Gastric Cancer. 2016;19:543–552.
    1. Dias-Silva D, Pimentel-Nunes P, Magalhaes J, Magalhaes R, Veloso N, Ferreira C, Figueiredo P, Moutinho P, Dinis-Ribeiro M. The learning curve for narrow-band imaging in the diagnosis of precancerous gastric lesions by using Web-based video. Gastrointest Endosc. 2014;79:910–920.
    1. Higashi R, Uraoka T, Kato J, Kuwaki K, Ishikawa S, Saito Y, Matsuda T, Ikematsu H, Sano Y, Suzuki S, Murakami Y, Yamamoto K. Diagnostic accuracy of narrow-band imaging and pit pattern analysis significantly improved for less-experienced endoscopists after an expanded training program. Gastrointest Endosc. 2010;72:127–135.
    1. Yao K, Iwashita A, Tanabe H, Nagahama T, Matsui T, Ueki T, Sou S, Kikuchi Y, Yorioka M. Novel zoom endoscopy technique for diagnosis of small flat gastric cancer: a prospective, blind study. Clin Gastroenterol Hepatol. 2007;5:869–878.
    1. Saka A, Yagi K, Nimura S. Endoscopic and histological features of gastric cancers after successful Helicobacter pylori eradication therapy. Gastric Cancer. 2016;19:524–530.
    1. Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, Yoshida S, Hamamoto Y, Endo T. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004;9:568–577.
    1. Kuznetsov K, Lambert R, Rey JF. Narrow-band imaging: potential and limitations. Endoscopy. 2006;38:76–81.
    1. Yao K, Takaki Y, Matsui T, Iwashita A, Anagnostopoulos GK, Kaye P, Ragunath K. Clinical application of magnification endoscopy and narrow-band imaging in the upper gastrointestinal tract: new imaging techniques for detecting and characterizing gastrointestinal neoplasia. Gastrointest Endosc Clin N Am. 2008;18:415–433.
    1. Yao K, Anagnostopoulos GK, Ragunath K. Magnifying endoscopy for diagnosing and delineating early gastric cancer. Endoscopy. 2009;41:462–467.
    1. Kaise M, Kato M, Urashima M, Arai Y, Kaneyama H, Kanzazawa Y, Yonezawa J, Yoshida Y, Yoshimura N, Yamasaki T, Goda K, Imazu H, Arakawa H, Mochizuki K, Tajiri H. Magnifying endoscopy combined with narrow-band imaging for differential diagnosis of superficial depressed gastric lesions. Endoscopy. 2009;41:310–315.
    1. Pimentel-Nunes P, Dinis-Ribeiro M, Soares JB, Marcos-Pinto R, Santos C, Rolanda C, Bastos RP, Areia M, Afonso L, Bergman J, Sharma P, Gotoda T, Henrique R, Moreira-Dias L. A multicenter validation of an endoscopic classification with narrow band imaging for gastric precancerous and cancerous lesions. Endoscopy. 2012;44:236–246.
    1. Nakayoshi T, Tajiri H, Matsuda K, Kaise M, Ikegami M, Sasaki H. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology (including video) Endoscopy. 2004;36:1080–1084.
    1. Uedo N, Ishihara R, Iishi H, Yamamoto S, Yamamoto S, Yamada T, Imanaka K, Takeuchi Y, Higashino K, Ishiguro S, Tatsuta M. A new method of diagnosing gastric intestinal metaplasia: narrow-band imaging with magnifying endoscopy. Endoscopy. 2006;38:819–824.
    1. Guo YT, Li YQ, Yu T, Zhang TG, Zhang JN, Liu H, Liu FG, Xie XJ, Zhu Q, Zhao YA. Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study. Endoscopy. 2008;40:547–553.

Source: PubMed

3
Abonner