The Role of Connexin Hemichannels in Inflammatory Diseases

Bo Peng, Chengping Xu, Shuaiwei Wang, Yijie Zhang, Wei Li, Bo Peng, Chengping Xu, Shuaiwei Wang, Yijie Zhang, Wei Li

Abstract

The connexin protein family consists of approximately 20 members, and is well recognized as the structural unit of the gap junction channels that perforate the plasma membranes of coupled cells and, thereby, mediate intercellular communication. Gap junctions are assembled by two preexisting hemichannels on the membranes of apposing cells. Non-junctional connexin hemichannels (CxHC) provide a conduit between the cell interior and the extracellular milieu, and are believed to be in a protectively closed state under physiological conditions. The development and characterization of the peptide mimetics of the amino acid sequences of connexins have resulted in the development of a panel of blockers with a higher selectivity for CxHC, which have become important tools for defining the role of CxHC in various biological processes. It is increasingly clear that CxHC can be induced to open by pathogen-associated molecular patterns. The opening of CxHC facilitates the release of damage-associated molecular patterns, a class of endogenous molecules that are critical for the pathogenesis of inflammatory diseases. The blockade of CxHC leads to attenuated inflammation, reduced tissue injury and improved organ function in human and animal models of about thirty inflammatory diseases and disorders. These findings demonstrate that CxHC may contribute to the intensification of inflammation, and serve as a common target in the treatments of various inflammatory diseases. In this review, we provide an update on the progress in the understanding of CxHC, with a focus on the role of these channels in inflammatory diseases.

Keywords: ATP; HMGB1; channel blocker; connexin hemichannel; gap junctions; inflammation; innate immune cells; ischemia; mimetic peptide; sepsis.

Conflict of interest statement

Author W.L. is an inventor of P5-related patents in the US and China. The authors declare no other conflict of interest.

Figures

Figure 1
Figure 1
Schematic diagram of a gap junction, hemichannel and connexin. The membrane topology of a connexin protein is shown on the right. NT, N-terminal; EL, extracellular loop; CL, cytoplasmic loop; CT, carboxyl terminal. Green arrows indicate the gap junction and hemichannel pores that allow the passage of small molecules.

References

    1. Beyer E.C., Berthoud V.M. Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim. Biophys. Acta Biomembr. 2018;1860:5–8. doi: 10.1016/j.bbamem.2017.05.016.
    1. Laird D.W., Lampe P.D. Therapeutic strategies targeting connexins. Nat. Rev. Drug Discov. 2018;17:905–921. doi: 10.1038/nrd.2018.138.
    1. Saez J.C., Berthoud V.M., Branes M.C., Martinez A.D., Beyer E.C. Plasma membrane channels formed by connexins: Their regulation and functions. Physiol. Rev. 2003;83:1359–1400. doi: 10.1152/physrev.00007.2003.
    1. Delvaeye T., Vandenabeele P., Bultynck G., Leybaert L., Krysko D.V. Therapeutic Targeting of Connexin Channels: New Views and Challenges. Trends Mol. Med. 2018;24:1036–1053. doi: 10.1016/j.molmed.2018.10.005.
    1. Musil L.S., Goodenough D.A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell. 1993;74:1065–1077. doi: 10.1016/0092-8674(93)90728-9.
    1. Gaietta G., Deerinck T.J., Adams S.R., Bouwer J., Tour O., Laird D.W., Sosinsky G.E., Tsien R.Y., Ellisman M.H. Multicolor and electron microscopic imaging of connexin trafficking. Science. 2002;296:503–507. doi: 10.1126/science.1068793.
    1. Liang W.G., Su C.C., Nian J.H., Chiang A.S., Li S.Y., Yang J.J. Human connexin30.2/31.3 (GJC3) does not form functional gap junction channels but causes enhanced ATP release in HeLa cells. Cell Biochem. Biophys. 2011;61:189–197. doi: 10.1007/s12013-011-9188-2.
    1. Yamamoto T., Hertzberg E.L., Nagy J.I. Epitopes of gap junctional proteins localized to neuronal subsurface cisterns. Brain Res. 1990;527:135–139. doi: 10.1016/0006-8993(90)91071-N.
    1. Li W., Ochalski P.A., Brimijoin S., Jordan L.M., Nagy J.I. C-terminals on motoneurons: Electron microscope localization of cholinergic markers in adult rats and antibody-induced depletion in neonates. Neuroscience. 1995;65:879–891. doi: 10.1016/0306-4522(94)00511-3.
    1. Lal R., John S.A., Laird D.W., Arnsdorf M.F. Heart gap junction preparations reveal hemiplaques by atomic force microscopy. Am. J. Physiol. 1995;268:C968–C977. doi: 10.1152/ajpcell.1995.268.4.C968.
    1. Goodenough D.A., Paul D.L. Beyond the gap: Functions of unpaired connexon channels. Nat. Rev. Mol. Cell Biol. 2003;4:285–294. doi: 10.1038/nrm1072.
    1. Wang N., Bock M.D., Decrock E., Bol M., Gadicherla A., Vinken M., Rogiers V., Bukauskas F., Bultynck G., Leybaert L. Paracrine signaling through plasma membrane hemichannels. Biochim. Biophys. Acta. 2013;1828:35–50. doi: 10.1016/j.bbamem.2012.07.002.
    1. Beyer E.C., Steinberg T.H. Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J. Biol. Chem. 1991;266:7971–7974. doi: 10.1016/S0021-9258(18)92924-8.
    1. Paul D.L., Ebihara L., Takemoto L.J., Swenson K.I., Goodenough D.A. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J. Cell Biol. 1991;115:1077–1089. doi: 10.1083/jcb.115.4.1077.
    1. Turovsky E.A., Varlamova E.G., Turovskaya M.V. Activation of Cx43 Hemichannels Induces the Generation of Ca2+ Oscillations in White Adipocytes and Stimulates Lipolysis. Int. J. Mol. Sci. 2021;22:8095. doi: 10.3390/ijms22158095.
    1. Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim. Biophys. Acta Mol. Basis Dis. 2021;1867:166258. doi: 10.1016/j.bbadis.2021.166258.
    1. Van Campenhout R., Gomes A.R., De Groof T.W.M., Muyldermans S., Devoogdt N., Vinken M. Mechanisms Underlying Connexin Hemichannel Activation in Disease. Int. J. Mol. Sci. 2021;22:3503. doi: 10.3390/ijms22073503.
    1. DeVries S.H., Schwartz E.A. Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J. Physiol. 1992;445:201–230. doi: 10.1113/jphysiol.1992.sp018920.
    1. Li W., Bao G., Chen W., Qiang X., Zhu S., Wang S., He M., Ma G., Ochani M., Al-Abed Y., et al. Connexin 43 Hemichannel as a Novel Mediator of Sterile and Infectious Inflammatory Diseases. Sci. Rep. 2018;8:166. doi: 10.1038/s41598-017-18452-1.
    1. Buratto D., Donati V., Zonta F., Mammano F. Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim. Biophys. Acta Mol. Basis Dis. 2021;1867:166047. doi: 10.1016/j.bbadis.2020.166047.
    1. Rodríguez-Sinovas A., Sánchez J.A., Valls-Lacalle L., Consegal M., Ferreira-González I. Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int. J. Mol. Sci. 2021;22:4413. doi: 10.3390/ijms22094413.
    1. Bao L., Sachs F., Dahl G. Connexins are mechanosensitive. Am. J. Physiol. Cell Physiol. 2004;287:C1389–C1395. doi: 10.1152/ajpcell.00220.2004.
    1. Lohman A.W., Isakson B.E. Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Lett. 2014;588:1379–1388. doi: 10.1016/j.febslet.2014.02.004.
    1. Wang S., Sun Y., Bai Y., Zhou N., Chen N., Miller E.J., Zhang Y., Li W. Contribution of Connexin Hemichannels to the Pathogenesis of Acute Lung Injury. Mediat. Inflamm. 2020;2020:8094347. doi: 10.1155/2020/8094347.
    1. Hansen D.B., Braunstein T.H., Nielsen M.S., MacAulay N. Distinct permeation profiles of the connexin 30 and 43 hemichannels. FEBS Lett. 2014;588:1446–1457. doi: 10.1016/j.febslet.2014.01.036.
    1. Bruzzone R., Hormuzdi S.G., Barbe M.T., Herb A., Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc. Natl. Acad. Sci. USA. 2003;100:13644–13649. doi: 10.1073/pnas.2233464100.
    1. Penuela S., Bhalla R., Nag K., Laird D.W. Glycosylation regulates pannexin intermixing and cellular localization. Mol. Biol. Cell. 2009;20:4313–4323. doi: 10.1091/mbc.e09-01-0067.
    1. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H., Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–158. doi: 10.1038/nature18629.
    1. Laird D.W., Lampe P.D. Cellular mechanisms of connexin-based inherited diseases. Trends Cell Biol. 2022;32:58–69. doi: 10.1016/j.tcb.2021.07.007.
    1. Willebrords J., Maes M., Yanguas S.C., Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol. Ther. 2017;180:144–160. doi: 10.1016/j.pharmthera.2017.07.001.
    1. King D.R., Sedovy M.W., Leng X., Xue J., Lamouille S., Koval M., Isakson B.E., Johnstone S.R. Mechanisms of Connexin Regulating Peptides. Int. J. Mol. Sci. 2021;22:10186. doi: 10.3390/ijms221910186.
    1. Becker D.L., Evans W.H., Green C.R., Warner A. Functional analysis of amino acid sequences in connexin43 involved in intercellular communication through gap junctions. J. Cell Sci. 1995;108:1455–1467. doi: 10.1242/jcs.108.4.1455.
    1. Chaytor A.T., Evans W.H., Griffith T.M. Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J. Physiol. 1997;503:99–110. doi: 10.1111/j.1469-7793.1997.099bi.x.
    1. Gomes P., Srinivas S.P., Van Driessche W., Vereecke J., Himpens B. ATP release through connexin hemichannels in corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2005;46:1208–1218. doi: 10.1167/iovs.04-1181.
    1. Wang N., De Bock M., Antoons G., Gadicherla A.K., Bol M., Decrock E., Evans W.H., Sipido K.R., Bukauskas F.F., Leybaert L. Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res. Cardiol. 2012;107:304. doi: 10.1007/s00395-012-0304-2.
    1. Decrock E., De Vuyst E., Vinken M., Van Moorhem M., Vranckx K., Wang N., Van Laeken L., De Bock M., D’Herde K., Lai C.P., et al. Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ. 2009;16:151–163. doi: 10.1038/cdd.2008.138.
    1. Wang N., Bock M.D., Decrock E., Bol M., Gadicherla A., Bultynck G., Leybaert L. Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology. 2013;75:506–516. doi: 10.1016/j.neuropharm.2013.08.021.
    1. Cotter M.L., Boitano S., Vagner J., Burt J.M. Lipidated connexin mimetic peptides potently inhibit gap junction-mediated Ca2+-wave propagation. Am. J. Physiol. Cell Physiol. 2018;315:C141–C154. doi: 10.1152/ajpcell.00156.2017.
    1. Cotter M.L., Boitano S., Lampe P.D., Solan J.L., Vagner J., Ek-Vitorin J.F., Burt J.M. The lipidated connexin mimetic peptide SRPTEKT- Hdc is a potent inhibitor of Cx43 channels with specificity for the pS368 phospho-isoform. Am. J. Physiol. Cell Physiol. 2019;317:C825–C842. doi: 10.1152/ajpcell.00160.2019.
    1. Rodjakovic D., Salm L., Beldi G. Function of Connexin-43 in Macrophages. Int. J. Mol. Sci. 2021;22:1412. doi: 10.3390/ijms22031412.
    1. Ponsaerts R., De Vuyst E., Retamal M., D’hondt C., Vermeire D., Wang N., De Smedt H., Zimmermann P., Himpens B., Vereecke J., et al. Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J. 2010;24:4378–4395. doi: 10.1096/fj.09-153007.
    1. Seki A., Duffy H.S., Coombs W., Spray D.C., Taffet S.M., Delmar M. Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region. Circ. Res. 2004;95:e22–e28. doi: 10.1161/01.RES.0000140737.62245.c5.
    1. Iyyathurai J., Wang N., D’hondt C., Jiang J.X., Leybaert L., Bultynck G. The SH3-binding domain of Cx43 participates in loop/tail interactions critical for Cx43-hemichannel activity. Cell. Mol. Life Sci. 2018;75:2059–2073. doi: 10.1007/s00018-017-2722-7.
    1. Wang N., De Vuyst E., Ponsaerts R., Boengler K., Palacios-Prado N., Wauman J., Lai C.P., De Bock M., Decrock E., Bol M., et al. Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res. Cardiol. 2013;108:309. doi: 10.1007/s00395-012-0309-x.
    1. Maes M., Crespo Yanguas S., Willebrords J., Weemhoff J.L., da Silva T.C., Decrock E., Lebofsky M., Pereira I.V.A., Leybaert L., Farhood A., et al. Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice. Toxicol. Lett. 2017;278:30–37. doi: 10.1016/j.toxlet.2017.07.007.
    1. Willebrords J., Cogliati B., Pereira I.V.A., da Silva T.C., Crespo Yanguas S., Maes M., Govoni V.M., Lima A., Felisbino D.A., Decrock E., et al. Inhibition of connexin hemichannels alleviates non-alcoholic steatohepatitis in mice. Sci. Rep. 2017;7:8268. doi: 10.1038/s41598-017-08583-w.
    1. Hunter A.W., Barker R.J., Zhu C., Gourdie R.G. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol. Biol. Cell. 2005;16:5686–5698. doi: 10.1091/mbc.e05-08-0737.
    1. Ghatnekar G.S., Grek C.L., Armstrong D.G., Desai S.C., Gourdie R.G. The effect of a connexin43-based peptide on the healing of chronic venous leg ulcers: A multicenter, randomized trial. J. Investig. Dermatol. 2015;135:289–298. doi: 10.1038/jid.2014.318.
    1. Riquelme M.A., Kar R., Gu S., Jiang J.X. Antibodies targeting extracellular domain of connexins for studies of hemichannels. Neuropharmacology. 2013;75:525–532. doi: 10.1016/j.neuropharm.2013.02.021.
    1. Zindel J., Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu. Rev. Pathol. 2020;15:493–518. doi: 10.1146/annurev-pathmechdis-012419-032847.
    1. Chauhan D., Walle L.V., Lamkanfi M. Therapeutic modulation of inflammasome pathways. Immunol. Rev. 2020;297:123–138. doi: 10.1111/imr.12908.
    1. Fitzgerald K.A., Kagan J.C. Toll-like Receptors and the Control of Immunity. Cell. 2020;180:1044–1066. doi: 10.1016/j.cell.2020.02.041.
    1. Krausgruber T., Fortelny N., Fife-Gernedl V., Senekowitsch M., Schuster L.C., Lercher A., Nemc A., Schmidl C., Rendeiro A.F., Bergthaler A., et al. Structural cells are key regulators of organ-specific immune responses. Nature. 2020;583:296–302. doi: 10.1038/s41586-020-2424-4.
    1. Shi K., Tian D.-C., Li Z.-G., Ducruet A.F., Lawton M.T., Shi F.-D. Global brain inflammation in stroke. Lancet Neurol. 2019;18:1058–1066. doi: 10.1016/S1474-4422(19)30078-X.
    1. Murao A., Aziz M., Wang H., Brenner M., Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26:152–162. doi: 10.1007/s10495-021-01663-3.
    1. Willebrords J., Yanguas S.C., Maes M., Decrock E., Wang N., Leybaert L., Kwak B.R., Green C.R., Cogliati B., Vinken M. Connexins and their channels in inflammation. Crit. Rev. Biochem. Mol. Biol. 2016;51:413–439. doi: 10.1080/10409238.2016.1204980.
    1. Sáez P.J., Shoji K.F., Aguirre A., Sáez J.C. Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediat. Inflamm. 2014;2014:742734. doi: 10.1155/2014/742734.
    1. Valdebenito S., Barreto A., Eugenin E.A. The role of connexin and pannexin containing channels in the innate and acquired immune response. Biochim. Biophys. Acta Biomembr. 2018;1860:154–165. doi: 10.1016/j.bbamem.2017.05.015.
    1. Koulakoff A., Mei X., Orellana J.A., Sáez J.C., Giaume C. Glial connexin expression and function in the context of Alzheimer’s disease. Biochim. Biophys. Acta. 2012;1818:2048–2057. doi: 10.1016/j.bbamem.2011.10.001.
    1. Alves L.A., Coutinho-Silva R., Persechini P.M., Spray D.C., Savino W., Campos de Carvalho A.C. Are there functional gap junctions or junctional hemichannels in macrophages? Blood. 1996;88:328–334. doi: 10.1182/blood.V88.1.328.328.
    1. Jara P.I., Boric M.P., Sáez J.C. Leukocytes express connexin 43 after activation with lipopolysaccharide and appear to form gap junctions with endothelial cells after ischemia-reperfusion. Proc. Natl. Acad. Sci. USA. 1995;92:7011–7015. doi: 10.1073/pnas.92.15.7011.
    1. Zahler S., Hoffmann A., Gloe T., Pohl U. Gap-junctional coupling between neutrophils and endothelial cells: A novel modulator of transendothelial migration. J. Leukoc. Biol. 2003;73:118–126. doi: 10.1189/jlb.0402184.
    1. Pfenniger A., Chanson M., Kwak B.R. Connexins in atherosclerosis. Biochim. Biophys. Acta. 2013;1828:157–166. doi: 10.1016/j.bbamem.2012.05.011.
    1. Westphalen K., Gusarova G.A., Islam M.N., Subramanian M., Cohen T.S., Prince A.S., Bhattacharya J. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature. 2014;506:503–506. doi: 10.1038/nature12902.
    1. Garg S., Syed M., Kielian T. Staphylococcus aureus-derived peptidoglycan induces Cx43 expression and functional gap junction intercellular communication in microglia. J. Neurochem. 2005;95:475–483. doi: 10.1111/j.1471-4159.2005.03384.x.
    1. Spray D.C., Fujita M., Saez J.C., Choi H., Watanabe T., Hertzberg E., Rosenberg L.C., Reid L.M. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures. J. Cell Biol. 1987;105:541–551. doi: 10.1083/jcb.105.1.541.
    1. Nagy J.I., Hossain M.Z., Lynn B.D., Curpen G.E., Yang S., Turley E.A. Increased connexin-43 and gap junctional communication correlate with altered phenotypic characteristics of cells overexpressing the receptor for hyaluronic acid-mediated motility. Cell Growth Differ. 1996;7:745–751.
    1. Alford A.I., Rannels D.E. Extracellular matrix fibronectin alters connexin43 expression by alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001;280:L680–L688. doi: 10.1152/ajplung.2001.280.4.L680.
    1. Bereczki E., Gonda S., Csont T., Korpos E., Zvara A., Ferdinandy P., Santha M. Overexpression of biglycan in the heart of transgenic mice: An antibody microarray study. J. Proteome Res. 2007;6:854–861. doi: 10.1021/pr060571b.
    1. Sheng W., Dong H., Lee D.Y., Lu W.-Y., Yang B.B. Versican modulates gap junction intercellular communication. J. Cell. Physiol. 2007;211:213–219. doi: 10.1002/jcp.20921.
    1. Ahmed S., Tsuchiya T., Nagahata-Ishiguro M., Sawada R., Banu N., Nagira T. Enhancing action by sulfated hyaluronan on connexin-26, -32, and -43 gene expressions during the culture of normal human astrocytes. J. Biomed. Mater. Res. A. 2009;90:713–719. doi: 10.1002/jbm.a.32018.
    1. Liu J., Li X., Ke A. High-mobility group box-1 induces mechanical pain hypersensitivity through astrocytic connexin 43 via the toll-like receptor-4/JNK signaling pathway. Synapse. 2020;75:e22184. doi: 10.1002/syn.22184.
    1. Thuringer D., Berthenet K., Cronier L., Jego G., Solary E., Garrido C. Oncogenic extracellular HSP70 disrupts the gap-junctional coupling between capillary cells. Oncotarget. 2015;6:10267–10283. doi: 10.18632/oncotarget.3522.
    1. Wang J., Fan Y., Cai X., Gao Z., Yu Z., Wei B., Tang Y., Hu L., Liu W.-T., Gu Y. Uric acid preconditioning alleviated doxorubicin induced JNK activation and Cx43 phosphorylation associated cardiotoxicity via activation of AMPK-SHP2 signaling pathway. Ann. Transl. Med. 2020;8:1570. doi: 10.21037/atm-20-3105.
    1. Yang H., Wang H., Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484.
    1. Berman J.W., Carvallo L., Buckner C.M., Luers A., Prevedel L., Bennett M.V., Eugenin E.A. HIV-tat alters Connexin43 expression and trafficking in human astrocytes: Role in NeuroAIDS. J. Neuroinflamm. 2016;13:54. doi: 10.1186/s12974-016-0510-1.
    1. Orellana J.A., Froger N., Ezan P., Jiang J.X., Bennett M.V., Naus C.C., Giaume C., Sáez J.C. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J. Neurochem. 2011;118:826–840. doi: 10.1111/j.1471-4159.2011.07210.x.
    1. Wang X., Qin W., Xu X., Xiong Y., Zhang Y., Zhang H., Sun B. Endotoxin-induced autocrine ATP signaling inhibits neutrophil chemotaxis through enhancing myosin light chain phosphorylation. Proc. Natl. Acad. Sci. USA. 2017;114:4483–4488. doi: 10.1073/pnas.1616752114.
    1. Parthasarathi K. Endothelial connexin43 mediates acid-induced increases in pulmonary microvascular permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012;303:L33–L42. doi: 10.1152/ajplung.00219.2011.
    1. Mat Nor M.N., Rupenthal I.D., Green C.R., Acosta M.L. Sustained connexin43 mimetic peptide release from loaded nanoparticles reduces retinal and choroidal photodamage. Investig. Ophthalmol. Vis. Sci. 2018;59:3682–3693. doi: 10.1167/iovs.17-22829.
    1. Guo C.X., Mat Nor M.N., Danesh-Meyer H.V., Vessey K.A., Fletcher E.L., O’Carroll S.J., Acosta M.L., Green C.R. Connexin43 mimetic peptide improves retinal function and reduces inflammation in a light-damaged albino rat model. Investig. Ophthalmol. Vis. Sci. 2016;57:3961–3973. doi: 10.1167/iovs.15-16643.
    1. Obert E., Strauss R., Brandon R., Grek C., Ghatnekar G., Gourdie R., Rohrer B. Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, alphaCT1, reduces VEGF-dependent RPE pathophysiology. J. Mol. Med. 2017;95:535–552. doi: 10.1007/s00109-017-1506-8.
    1. Yi C., Ezan P., Fernández P., Schmitt P., Sáez J.C., Giaume C., Koulakoff A. Inhibition of glial hemichannels by boldine treatment reduces neuronal suffering in a murine model of Alzheimer’s disease. Glia. 2017;65:1607–1625. doi: 10.1002/glia.23182.
    1. O’Quinn M.P., Palatinus J.A., Harris B.S., Hewett K.W., Gourdie R.G. A peptide mimetic of the connexin43 carboxyl terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury. Circ. Res. 2011;108:704–715. doi: 10.1161/CIRCRESAHA.110.235747.
    1. Grek C.L., Prasad G.M., Viswanathan V., Armstrong D.G., Gourdie R.G., Ghatnekar G.S. Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial. Wound Repair Regen. 2015;23:203–212. doi: 10.1111/wrr.12275.
    1. Ghatnekar G.S., O’Quinn M.P., Jourdan L.J., Gurjarpadhye A.A., Draughn R.L., Gourdie R.G. Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen. Med. 2009;4:205–223. doi: 10.2217/17460751.4.2.205.
    1. Tonkin R.S., Bowles C., Perera C.J., Keating B.A., Makker P.G.S., Duffy S.S., Lees J.G., Tran C., Don A.S., Fath T., et al. Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice. Exp. Neurol. 2018;300:1–12. doi: 10.1016/j.expneurol.2017.10.016.
    1. Elbadawy H.M., Mirabelli P., Xeroudaki M., Parekh M., Bertolin M., Breda C., Cagini C., Ponzin D., Lagali N., Ferrari S. Effect of connexin 43 inhibition by the mimetic peptide Gap27 on corneal wound healing, inflammation and neovascularization. Br. J. Pharmacol. 2016;173:2880–2893. doi: 10.1111/bph.13568.
    1. Moore K., Bryant Z.J., Ghatnekar G., Singh U.P., Gourdie R.G., Potts J.D. A synthetic connexin 43 mimetic peptide augments corneal wound healing. Exp. Eye Res. 2013;115:178–188. doi: 10.1016/j.exer.2013.07.001.
    1. Moore K., Ghatnekar G., Gourdie R.G., Potts J.D. Impact of the controlled release of a connexin 43 peptide on corneal wound closure in an STZ model of type I diabetes. PLoS ONE. 2014;9:e86570. doi: 10.1371/journal.pone.0086570.
    1. Mugisho O.O., Green C.R., Squirrell D.M., Bould S., Danesh-Meyer H.V., Zhang J., Acosta M.L., Rupenthal I.D. Connexin43 hemichannel block protects against the development of diabetic retinopathy signs in a mouse model of the disease. J. Mol. Med. 2019;97:215–229. doi: 10.1007/s00109-018-1727-5.
    1. Gonzalez J.P., Ramachandran J., Xie L.H., Contreras J.E., Fraidenraich D. Selective connexin43 inhibition prevents isoproterenol-induced arrhythmias and lethality in muscular dystrophy mice. Sci. Rep. 2015;5:13490. doi: 10.1038/srep13490.
    1. Davidson J.O., Drury P.P., Green C.R., Nicholson L.F., Bennet L., Gunn A.J. Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep. PLoS ONE. 2014;9:e96558. doi: 10.1371/journal.pone.0096558.
    1. Tarzemany R., Jiang G., Jiang J.X., Larjava H., Häkkinen L. Connexin 43 Hemichannels Regulate the Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts. Sci. Rep. 2017;7:14157. doi: 10.1038/s41598-017-12672-1.
    1. Yu H., Cao X., Li W., Liu P., Zhao Y., Song L., Chen J., Chen B., Yu W., Xu Y. Targeting connexin 43 provides anti-inflammatory effects after intracerebral hemorrhage injury by regulating YAP signaling. J. Neuroinflamm. 2020;17:322. doi: 10.1186/s12974-020-01978-z.
    1. Hawat G., Helie P., Baroudi G. Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J. Mol. Cell Cardiol. 2012;53:559–566. doi: 10.1016/j.yjmcc.2012.07.008.
    1. Li X., Zhao H., Tan X., Kostrzewa R.M., Du G., Chen Y., Zhu J., Miao Z., Yu H., Kong J., et al. Inhibition of connexin43 improves functional recovery after ischemic brain injury in neonatal rats. Glia. 2015;63:1553–1567. doi: 10.1002/glia.22826.
    1. Chen B., Yang L., Chen J., Chen Y., Zhang L., Wang L., Li X., Li Y., Yu H. Inhibition of Connexin43 hemichannels with Gap19 protects cerebral ischemia/reperfusion injury via the JAK2/STAT3 pathway in mice. Brain Res. Bull. 2019;146:124–135. doi: 10.1016/j.brainresbull.2018.12.009.
    1. Danesh-Meyer H.V., Kerr N.M., Zhang J., Eady E.K., O’Carroll S.J., Nicholson L.F., Johnson C.S., Green C.R. Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain. 2012;135:506–520. doi: 10.1093/brain/awr338.
    1. Chen Y.S., Green C.R., Teague R., Perrett J., Danesh-Meyer H.V., Toth I., Rupenthal I.D. Intravitreal injection of lipoamino acid modified connexin43 mimetic peptide enhances neuroprotection after retinal ischemia. Drug Deliv. Transl. Res. 2015;5:480–488. doi: 10.1007/s13346-015-0249-8.
    1. Yanguas S.C., Silva T.C.D., Pereira E.V.A., Willebrords J., Maes M., Nogueira M.S., Castro I.A.D., Leclercq I., Romualdo G.R., Barbisan L.F., et al. TAT-Gap19 and Carbenoxolone Alleviate Liver Fibrosis in Mice. Int. J. Mol. Sci. 2018;19:817. doi: 10.3390/ijms19030817.
    1. Maatouk L., Yi C., Carrillo-de Sauvage M.-A., Compagnion A.-C., Hunot S., Ezan P., Hirsch E.C., Koulakoff A., Frank W., Pfrieger F.W., et al. Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity. Cell Death Differ. 2019;26:580–596. doi: 10.1038/s41418-018-0150-3.
    1. Grek C.L., Montgomery J., Sharma M., Ravi A., Rajkumar J.S., Moyer K.E., Gourdie R.G., Ghatnekar G.S. A multicenter randomized controlled trial evaluating a Cx43-mimetic peptide in cutaneous scarring. J. Investig. Dermatol. 2017;137:620–630. doi: 10.1016/j.jid.2016.11.006.
    1. Dosch M., Zindel J., Jebbawi F., Melin N., Sanchez-Taltavull D., Stroka D., Candinas D., Beldi G. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. Elife. 2019;8:e42670. doi: 10.7554/eLife.42670.
    1. Delvaeye T., De Smet M.A.J., Verwaerde S., Decrock E., Czekaj A., Vandenbroucke R.E., Lemeire K., Gonçalves A., Declercq W., Vandenabeele P., et al. Blocking connexin43 hemichannels protects mice against tumour necrosis factor-induced inflammatory shock. Sci. Rep. 2019;9:16623. doi: 10.1038/s41598-019-52900-4.
    1. Mao Y., Tonkin R.S., Nguyen T., O’Carroll S.J., Nicholson L.F., Green C.R., Moalem-Taylor G., Gorrie C.A. Systemic administration of connexin43 mimetic peptide improves functional recovery after traumatic spinal cord injury in adult rats. J. Neurotrauma. 2017;34:707–719. doi: 10.1089/neu.2016.4625.
    1. O’Carroll S.J., Gorrie C.A., Velamoor S., Green C.R., Nicholson L.F.B. Connexin43 mimetic peptide is neuroprotective and improves function following spinal cord injury. Neurosci. Res. 2013;75:256–267. doi: 10.1016/j.neures.2013.01.004.
    1. Shintani-Ishida K., Uemura K., Yoshida K. Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1714–H1720. doi: 10.1152/ajpheart.00022.2007.
    1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Rudd K.E., Johnson S.C., Agesa K.M., Shackelford K.A., Tsoi D., Kievlan D.R., Colombara D.V., Ikuta K.S., Kissoon N., Finfer S., et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–211. doi: 10.1016/S0140-6736(19)32989-7.
    1. Moriyama K., Nishida O. Targeting Cytokines, Pathogen-Associated Molecular Patterns, and Damage-Associated Molecular Patterns in Sepsis via Blood Purification. Int. J. Mol. Sci. 2021;22:8882. doi: 10.3390/ijms22168882.
    1. Singhal A., Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology. 2022;165:22–43. doi: 10.1111/imm.13423.
    1. Li W., Li J., Sama A.E., Wang H. Carbenoxolone Blocks Endotoxin-Induced Protein Kinase R (PKR) Activation and High Mobility Group Box 1 (HMGB1) Release. Mol. Med. 2013;19:203–211. doi: 10.2119/molmed.2013.00064.
    1. ARDS Definition Task Force. Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA. 2012;307:2526–2533.
    1. Fanelli V., Ranieri V.M. Mechanisms and clinical consequences of acute lung injury. Ann. Am. Thorac. Soc. 2015;12:S3–S8. doi: 10.1513/AnnalsATS.201407-340MG.
    1. Johnson L.N., Koval M. Cross-Talk Between Pulmonary Injury, Oxidant Stress, and Gap Junctional Communication. Antioxid. Redox Signal. 2009;11:355–367. doi: 10.1089/ars.2008.2183.
    1. Losa D., Chanson M., Crespin S. Connexins as therapeutic targets in lung disease. Expert Opin. Ther. Targets. 2011;15:989–1002. doi: 10.1517/14728222.2011.584875.
    1. Parthasarathi K., Ichimura H., Monma E., Lindert J., Quadri S., Issekutz A., Bhattacharya J. Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J. Clin. Investig. 2006;116:2193–2200. doi: 10.1172/JCI26605.
    1. Abbasi-Habashi S., Jickling G.C., Winship I.R. Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke. Front. Neurol. 2021;12:746486. doi: 10.3389/fneur.2021.746486.
    1. Silvis M.J.M., Kaffka Genaamd Dengler S.E., Odille C.A., Mishra M., van der Kaaij N.P., Doevendans P.A., Sluijter J.P.G., de Kleijn D.P.V., de Jager S.C.A., Bosch L., et al. Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Front. Immunol. 2020;11:599511. doi: 10.3389/fimmu.2020.599511.
    1. Gong T., Liu L., Jiang W., Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020;20:95–112. doi: 10.1038/s41577-019-0215-7.
    1. Kozoriz M.G., Bechberger J.F., Bechberger G.R., Suen M.W., Moreno A.P., Maass K., Willecke K., Naus C.C. The connexin43 C-terminal region mediates neuroprotection during stroke. J. Neuropathol. Exp. Neurol. 2010;69:196–206. doi: 10.1097/NEN.0b013e3181cd44df.
    1. Johansen D., Cruciani V., Sundset R., Trehus K., Mikalsen S.-O. Ischemia induces closure of gap junctional channels and opening of hemichannels in heart-derived cells and tissue. Cell Physiol. Biochem. 2011;28:103–114. doi: 10.1159/000331719.
    1. Kim Y., Davidson J.O., Green C.R., Nicholson L.F.B., O’Carroll S.J., Zhang J. Connexins and Pannexins in cerebral ischemia. Biochim. Biophys. Acta Biomembr. 2018;1860:224–236. doi: 10.1016/j.bbamem.2017.03.018.
    1. Li W.E.I., Ochalski P.A., Hertzberg E.L., Nagy J.I. Immunorecognition, ultrastructure and phosphorylation status of astrocytic gap junctions and connexin43 in rat brain after cerebral focal ischaemia. Eur. J. Neurosci. 1998;10:2444–2463. doi: 10.1046/j.1460-9568.1998.00253.x.
    1. Baron J.C. The core/penumbra model: Implications for acute stroke treatment and patient selection in 2021. Eur. J. Neurol. 2021;28:2794–2803. doi: 10.1111/ene.14916.
    1. Fontes J.D., Ramsey J., Polk J.M., Koop A., Denisova J.V., Belousov A.B. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin. PLoS ONE. 2015;10:e0125395. doi: 10.1371/journal.pone.0125395.
    1. Nagy J.I., Pereda A.E., Rash J. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. Biochim. Biophys. Acta Biomembr. 2018;1860:102–123. doi: 10.1016/j.bbamem.2017.05.019.
    1. Retamal M.A., Froger N., Palacios-Prado N., Ezan P., Sáez P.J., Sáez J.C., Giaume C. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J. Neurosci. 2007;27:13781–13792. doi: 10.1523/JNEUROSCI.2042-07.2007.
    1. Nagy J.I., Dudek F.E., Rash J.E. Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res. Rev. 2004;47:191–215. doi: 10.1016/j.brainresrev.2004.05.005.
    1. Contreras J.E., Sánchez H.A., Eugenin E.A., Speidel D., Theis M., Willecke K., Bukauskas F.F., Bennett M.V., Sáez J.C. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc. Natl. Acad. Sci. USA. 2002;99:495–500. doi: 10.1073/pnas.012589799.
    1. Davidson J.O., Green C.R., Nicholson L.F., Bennet L., Gunn A.J. Connexin hemichannel blockade is neuroprotective after, but not during, global cerebral ischemia in near-term fetal sheep. Exp. Neurol. 2013;248:301–308. doi: 10.1016/j.expneurol.2013.06.026.
    1. Freitas-Andrade M., Wang N., Bechberger J.F., De Bock M., Lampe P.D., Leybaert L., Naus C.C. Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. J. Exp. Med. 2019;216:916–935. doi: 10.1084/jem.20171452.
    1. Yang P., Davidson J.O., Fowke T.M., Galinsky R., Wassink G., Karunasinghe R.N., Prasad J.D., Ranasinghe S., Green C.R., Bennet L., et al. Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep. Int. J. Mol. Sci. 2020;21:6475. doi: 10.3390/ijms21186475.
    1. Toychiev A.H., Batsuuri K., Srinivas M. Gap Junctional Coupling Between Retinal Astrocytes Exacerbates Neuronal Damage in Ischemia-Reperfusion Injury. Investig. Ophthalmol. Vis. Sci. 2021;62:27. doi: 10.1167/iovs.62.14.27.
    1. Li W., Hertzberg E.L., Spray D.C. Regulation of connexin43-protein binding in astrocytes in response to chemical ischemia/hypoxia. J. Biol. Chem. 2005;280:7941–7948. doi: 10.1074/jbc.M410548200.
    1. Rhett J.M., Gourdie R.G. The perinexus: A new feature of Cx43 gap junction organization. Heart Rhythm. 2012;9:619–623. doi: 10.1016/j.hrthm.2011.10.003.
    1. Li F., Sugishita K., Su Z., Ueda I., Barry W.H. Activation of connexin-43 hemichannels can elevate [Ca2+]i and [Na+]i in rabbit ventricular myocytes during metabolic inhibition. J. Mol. Cell. Cardiol. 2001;33:2145–2155. doi: 10.1006/jmcc.2001.1477.
    1. Clarke T.C., Williams O.J., Martin P.E., Evans W.H. ATP release by cardiac myocytes in a simulated ischaemia model: Inhibition by a connexin mimetic and enhancement by an antiarrhythmic peptide. Eur. J. Pharmacol. 2009;605:9–14. doi: 10.1016/j.ejphar.2008.12.005.
    1. Hawat G., Benderdour M., Rousseau G., Baroudi G. Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflug. Arch. 2010;460:583–592. doi: 10.1007/s00424-010-0849-6.
    1. Kim Y., Griffin J.M., Mat Nor M.N., Zhang J., Freestone P.S., Danesh-Meyer H.V., Rupenthal I.D., Acosta M., Nicholson L.F.B., O’Carroll S.J., et al. Tonabersat Prevents Inflammatory Damage in the Central Nervous System by Blocking Connexin43 Hemichannels. Neurotherapeutics. 2017;14:1148–1165. doi: 10.1007/s13311-017-0536-9.
    1. Louie H.H., Shome A., Kuo C.Y., Rupenthal I.D., Green C.R., Mugisho O.O. Connexin43 hemichannel block inhibits NLRP3 inflammasome activation in a human retinal explant model of diabetic retinopathy. Exp. Eye Res. 2021;202:108384. doi: 10.1016/j.exer.2020.108384.
    1. Wong C.W., Christen T., Roth I., Chadjichristos C.E., Derouette J.-P., Foglia B.F., Chanson M., Goodenough D.A., Kwak B.R. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat. Med. 2006;12:950–954. doi: 10.1038/nm1441.
    1. Roh J.S., Sohn D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18:e27. doi: 10.4110/in.2018.18.e27.
    1. Fodor P., White B., Khan R. Inflammation-The role of ATP in pre-eclampsia. Microcirculation. 2020;27:e12585. doi: 10.1111/micc.12585.
    1. Denning N.-L., Aziz M., Gurien S.D., Wang P. DAMPs and NETs in Sepsis. Front. Immunol. 2019;10:2536. doi: 10.3389/fimmu.2019.02536.
    1. Dosch M., Gerber J., Jebbawi F., Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int. J. Mol. Sci. 2018;19:1222. doi: 10.3390/ijms19041222.
    1. Romanello M., D’Andrea P. Dual mechanism of intercellular communication in HOBIT osteoblastic cells: A role for gap-junctional hemichannels. J. Bone Min. Res. 2001;16:1465–1476. doi: 10.1359/jbmr.2001.16.8.1465.
    1. Eltzschig H.K., Eckle T., Mager A., Küper N., Karcher C., Weissmüller T., Boengler K., Schulz R., Robson S.C., Colgan S.P. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ. Res. 2006;99:1100–1108. doi: 10.1161/01.RES.0000250174.31269.70.
    1. McClain J.L., Gulbransen B.D. The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins. J. Neurophysiol. 2017;117:365–375. doi: 10.1152/jn.00507.2016.
    1. Yin X., Feng L., Ma D., Yin P., Wang X., Hou S., Hao Y., Zhang J., Xin M., Feng J. Roles of astrocytic connexin-43, hemichannels, and gap junctions in oxygen-glucose deprivation/reperfusion injury induced neuroinflammation and the possible regulatory mechanisms of salvianolic acid B and carbenoxolone. J. Neuroinflamm. 2018;15:97. doi: 10.1186/s12974-018-1127-3.
    1. Turovsky E.A., Braga A., Yu Y., Esteras N., Korsak A., Theparambil S.M., Hadjihambi A., Hosford P.S., Teschemacher A.G., Marina N., et al. Mechanosensory Signaling in Astrocytes. J. Neurosci. 2020;40:9364–9371. doi: 10.1523/JNEUROSCI.1249-20.2020.
    1. Sengiku A., Ueda M., Kono J., Sano T., Nishikawa N., Kunisue S., Tsujihana K., Liou L.S., Kanematsu A., Shimba S., et al. Circadian coordination of ATP release in the urothelium via connexin43 hemichannels. Sci. Rep. 2018;8:1996. doi: 10.1038/s41598-018-20379-0.
    1. Faigle M., Seessle J., Zug S., El Kasmi K.C., Eltzschig H.K. ATP release from vascular endothelia occurs across Cx43 hemichannels and is attenuated during hypoxia. PLoS ONE. 2008;3:e2801. doi: 10.1371/journal.pone.0002801.
    1. Mugisho O.O., Green C.R., Kho D.T., Zhang J., Graham E.S., Acosta M.L., Rupenthal I.D. The inflammasome pathway is amplified and perpetuated in an autocrine manner through connexin43 hemichannel mediated ATP release. Biochim. Biophys. Acta Gen. Subj. 2018;1862:385–393. doi: 10.1016/j.bbagen.2017.11.015.
    1. Vuyst E.D., Decrock E., Cabooter L., Dubyak G.R., Naus C.C., Evans W.H., Leybaert L. Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J. 2006;25:34–44. doi: 10.1038/sj.emboj.7600908.
    1. Kuang Y., Zorzi V., Buratto D., Ziraldo G., Mazzarda F., Peres C., Nardin C., Salvatore A.M., Chiani F., Scavizzi F., et al. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine. 2020;57:102825. doi: 10.1016/j.ebiom.2020.102825.
    1. Svenningsen P., Burford J.L., Peti-Peterdi J. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct. Front. Physiol. 2013;4:292. doi: 10.3389/fphys.2013.00292.
    1. Lu B., Antoine D.J., Kwan K., Lundbäck P., Wähämaa H., Schierbeck H., Robinson M., Zoelen M.A.D., Yang H., Li J., et al. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc. Natl. Acad. Sci. USA. 2014;111:3068–3073. doi: 10.1073/pnas.1316925111.
    1. Kim Y.H., Kwak M.S., Lee B., Shin J.M., Aum S., Park I.H., Lee M.G., Shin J.-S. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy. 2021;17:2345–2362. doi: 10.1080/15548627.2020.1826690.
    1. Lu B., Nakamura T., Inouye K., Li J., Tang Y., Lundbäck P., Valdes-Ferrer S.I., Olofsson P.S., Kalb T., Roth J., et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012;488:670–674. doi: 10.1038/nature11290.
    1. Gardella S., Andrei C., Ferrera D., Lotti L.V., Torrisi M.R., Bianchi M.E., Rubartelli A. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3:995–1001. doi: 10.1093/embo-reports/kvf198.
    1. Li W., Deng M., Loughran P.A., Yang M., Lin M., Yang C., Gao W., Jin S., Li S., Cai J., et al. LPS induces active HMGB1 release from hepatocytes into exosomes through the coordinated activities of TLR4 and caspase-11/GSDMD signaling. Front. Immunol. 2020;11:229. doi: 10.3389/fimmu.2020.00229.
    1. Soares A.R., Martins-Marques T., Ribeiro-Rodrigues T., Ferreira J.V., Catarino S., Pinho M.J., Zuzarte M., Anjo S.I., Manadas B., Sluijter J.P.G., et al. Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci. Rep. 2015;5:13243. doi: 10.1038/srep13243.
    1. Varela-Eirin M., Varela-Vazquez A., Rodríguez-Candela Mateos M., Vila-Sanjurjo A., Fonseca E., Mascareñas J.L., Eugenio Vázquez M., Mayan M.D. Recruitment of RNA molecules by connexin RNA-binding motifs: Implication in RNA and DNA transport through microvesicles and exosomes. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:728–736. doi: 10.1016/j.bbamcr.2017.02.001.
    1. Chen K.W., Demarco B., Heilig R., Shkarina K., Boettcher A., Farady C.J., Pelczar P., Broz P. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. 2019;38:e101638. doi: 10.15252/embj.2019101638.
    1. Malik S., Eugenin E.A. Role of Connexin and Pannexin containing channels in HIV infection and NeuroAIDS. Neurosci. Lett. 2019;695:86–90. doi: 10.1016/j.neulet.2017.09.005.
    1. Luu R., Valdebenito S., Scemes E., Cibelli A., Spray D.C., Rovegno M., Tichauer J., Cottignies-Calamarte A., Rosenberg A., Capron C., et al. Pannexin-1 channel opening is critical for COVID-19 pathogenesis. iScience. 2021;24:103478. doi: 10.1016/j.isci.2021.103478.

Source: PubMed

3
Abonner