Visual field map clusters in human frontoparietal cortex

Wayne E Mackey, Jonathan Winawer, Clayton E Curtis, Wayne E Mackey, Jonathan Winawer, Clayton E Curtis

Abstract

The visual neurosciences have made enormous progress in recent decades, in part because of the ability to drive visual areas by their sensory inputs, allowing researchers to define visual areas reliably across individuals and across species. Similar strategies for parcellating higher-order cortex have proven elusive. Here, using a novel experimental task and nonlinear population receptive field modeling, we map and characterize the topographic organization of several regions in human frontoparietal cortex. We discover representations of both polar angle and eccentricity that are organized into clusters, similar to visual cortex, where multiple gradients of polar angle of the contralateral visual field share a confluent fovea. This is striking because neural activity in frontoparietal cortex is believed to reflect higher-order cognitive functions rather than external sensory processing. Perhaps the spatial topography in frontoparietal cortex parallels the retinotopic organization of sensory cortex to enable an efficient interface between perception and higher-order cognitive processes. Critically, these visual maps constitute well-defined anatomical units that future studies of frontoparietal cortex can reliably target.

Keywords: attention; fMRI; frontal; human; neuroscience; parietal; population receptive field; topography.

Conflict of interest statement

The authors declare that no competing interests exist.

Figures

Figure 1.. Topographic mapping and population receptive-field…
Figure 1.. Topographic mapping and population receptive-field modeling.
(A) The discrimination task used for topographic mapping. Subjects fixated at the center of the screen while attending covertly to a bar composed of three apertures of moving dots incrementally traversing the screen. Subjects indicated on each trial which aperture (left, right, top, or bottom) was comprised of dots whose motion direction matched that of the dots in the middle sample aperture. Motion coherence was staircased in order to tax attention constantly. The white outlines around each of the three apertures are shown here for clarity, but were not visible to subjects. (B) Schematic of the nonlinear population receptive-field modeling procedure. Trial sequences were converted into 2D binary contrast apertures and projected onto a 2D Gaussian representing a predicted pRF. A static non-linearity was applied to account for compressive spatial summation. (C) Example model fits from single voxels in multiple visual field maps. pRF model predictions are shown in red, actual data for an individual voxel for a given visual field map are shown in black. Stimulus sweep direction and bar width are shown above and below the model fits. Estimated pRF size and variance explained for each voxel are shown to the right. DOI:http://dx.doi.org/10.7554/eLife.22974.002
Figure 2.. Visual field maps in early…
Figure 2.. Visual field maps in early visual cortex.
The color of each voxel indicates the best fit pRF parameter for the data being displayed. (A) Eccentricity (top) and polar angle (bottom) maps in the left hemisphere of an example subject projected onto a flattened representation of the cortical surface, where dark gray denotes sulci and light gray denotes gyri. V1, V2, and V3 share a confluent fovea while V3A and V3B share another. (B) Eccentricity (top left) and polar angle (bottom left) maps, along with variance explained (top right) and pRF size (bottom right) of an example subject projected onto an inflated cortical surface. (C) Relationship between pRF size and eccentricity. pRF sizes of voxels in V1, V2, V3, and V3AB increase with eccentricity. Error bars represent ±1 SEM across subjects. DOI:http://dx.doi.org/10.7554/eLife.22974.004
Figure 2—figure supplement 1.. Individual subject visual…
Figure 2—figure supplement 1.. Individual subject visual cortex data.
For both hemispheres of each individual subject, we show eccentricity, polar angle, pRF size, and variance explained projected onto the inflated cortical surface. Areas V1, V2d, and V3d are depicted. DOI:http://dx.doi.org/10.7554/eLife.22974.005
Figure 3.. Visual field maps in parietal…
Figure 3.. Visual field maps in parietal cortex.
Maps of polar angle and eccentricity on an inflated cortical surface (top) and on a flattened representation of the cortical surface (bottom) for an example subject. IPS0/IPS1 form one visual field map cluster, while IPS2/IPS3 form another. Each cluster consists of two angle maps that share a confluent foveal representation. White lines denote the boundaries at the upper vertical meridian (UVM) and black lines denote the lower vertical meridian (LVM); asterisks denote foveal representations. DOI:http://dx.doi.org/10.7554/eLife.22974.006
Figure 3—figure supplement 1.. Individual subject parietal…
Figure 3—figure supplement 1.. Individual subject parietal cortex data.
For both hemispheres of each individual subject (S1–S5), we show pRF size, variance explained, polar angle and eccentricity projected onto the inflated cortical surface. DOI:http://dx.doi.org/10.7554/eLife.22974.007
Figure 4.. Representation of fovea in sPCS…
Figure 4.. Representation of fovea in sPCS map.
Left (top) and right (bottom) hemispheres for each individual subject are shown. Top and bottom rows mark the anatomical locations of the superior frontal sulcus (SFS: white line) and the superior precentral sulcus (sPCS: black line) on an inflated cortical surface representation of each hemisphere. For clarity, black squares represent a zoomed in view of the anatomical intersection of the SFS and sPCS. The location of the fovea (asterisk) is shown both on the anatomy (left) and on the eccentricity map (right) for each individual subject. Notice how the fovea lies at the intersection of the SFS and sPCS for each subject. DOI:http://dx.doi.org/10.7554/eLife.22974.008
Figure 5.. Visual field maps in frontal…
Figure 5.. Visual field maps in frontal cortex.
Maps of eccentricity and polar angle are displayed for an example subject projected on both inflated (inside) and flattened (outside) cortical surfaces. In order to demonstrate the systematic organization of each map clearly, each pair of flattened cortical surfaces depicts a cartoon schematic of the organization of each map (left flat patch) next to actual map data (right flat patch). sPCS1 and sPCS2 form a visual field map cluster, sharing a foveal representation that sits at the intersection of the PCS and the SFS. White lines denote the boundaries at the upper vertical meridian (UVM) and black lines denote the lower vertical meridian (LVM). The foveal representation in iPCS sits at the intersection of the PCS and the IFS. DOI:http://dx.doi.org/10.7554/eLife.22974.009
Figure 5—figure supplement 1.. Individual subject superiorprecentral…
Figure 5—figure supplement 1.. Individual subject superiorprecentral sulcus(sPCS) maps.
For both hemispheres of each individual subject, we show eccentricity, variance explained, polar angle and pRF size, projected onto the inflated cortical surface. DOI:http://dx.doi.org/10.7554/eLife.22974.010
Figure 5—figure supplement 2.. Individual subject inferior…
Figure 5—figure supplement 2.. Individual subject inferior precentral sulcus (iPCS) maps.
For both hemispheres of each individual subject, we show eccentricity, variance explained, polar angle and pRF size projected onto the inflated cortical surface. DOI:http://dx.doi.org/10.7554/eLife.22974.011
Figure 6.. Visual field map coverage, laterality,…
Figure 6.. Visual field map coverage, laterality, and model comparison.
(A) Visual field map coverage plots. While all visual field maps primarily represent the contralateral hemifield, maps in association cortices also begin to represent small portions of the ipsilateral hemifield perifoveally. This is due to the fact that pRFs are less eccentric and larger in frontal and parietal cortex than in early visual cortex. (B) Visual field coverage plots for the PCS in individual subjects. Each small black dot represents the center of a voxel’s pRF. (C) Laterality index (means ± SEM across subjects). The index ranges from 0 (completely ipsilateral) to 0.5 (no laterality) to 1 (completely contralateral). All areas are highly contralateralized. (D) Comparison of cross validation results by model (means ± SEM across subjects). For every visual field map, the non-linear model explained the largest amount of variance, followed by the linear model, and finally the contralateral model. DOI:http://dx.doi.org/10.7554/eLife.22974.012
Figure 7.. Cross-session stability of frontal and…
Figure 7.. Cross-session stability of frontal and parietal visual maps.
For two subjects, we show the visual maps in the intraparietal and precentral sulci derived from two independent scanning sessions. Both the eccentricity and angle representations are shown for both subjects and both hemispheres. Note the striking similarity of the maps, demonstrating that the visual map structure is stable over time and our measurement methods are reliable. DOI:http://dx.doi.org/10.7554/eLife.22974.013
Figure 7—figure supplement 1.. Grid fit and…
Figure 7—figure supplement 1.. Grid fit and search fit comparison.
(A) For both PCS (top) and IPS (bottom), we compare eccentricity and polar angle solutions for both the grid fit (with smoothing) and search fit (without smoothing). As demonstrated in each figure comparison, the solutions for both fits not only have the same structure to each gradient, but are nearly identical. (B) We cross-validated both the grid and search fits to compare how well their solutions fit new data. In each ROI, the grid fit solutions performed as well as or better than the search fit solutions on new data. DOI:http://dx.doi.org/10.7554/eLife.22974.014
Figure 8.. Visual maps in reference to…
Figure 8.. Visual maps in reference to other anatomical designations.
We projected a probabilistic map of visual topography (PMVT; Wang et al., 2015; black outlines) and a multi-modal parcellation of brain areas (MMP; Glasser et al., 2016; white outlines) onto the brains of our subjects to compare these locations with those of our retinotopically defined visual maps. The PMVT includes IPS0-3 from posterior to anterior in parietal cortex, and ‘FEF’ in frontal cortex. The MMP covers the entire cortex, but here we only show the areas near or overlapping our visual maps, labeled on the images for Subject 2 (S2). DOI:http://dx.doi.org/10.7554/eLife.22974.015

References

    1. Amano K, Wandell BA, Dumoulin SO. Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. Journal of Neurophysiology. 2009;102:2704–2718. doi: 10.1152/jn.00102.2009.
    1. Arcaro MJ, Kastner S. Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system. Visual Neuroscience. 2015;32:E014. doi: 10.1017/S0952523815000115.
    1. Arcaro MJ, McMains SA, Singer BD, Kastner S. Retinotopic organization of human ventral visual cortex. Journal of Neuroscience. 2009;29:10638–10652. doi: 10.1523/JNEUROSCI.2807-09.2009.
    1. Arcaro MJ, Pinsk MA, Kastner S. The anatomical and functional Organization of the human Visual Pulvinar. Journal of Neuroscience. 2015;35:9848–9871. doi: 10.1523/JNEUROSCI.1575-14.2015.
    1. Arcaro MJ, Pinsk MA, Li X, Kastner S. Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study. Journal of Neuroscience. 2011;31:2064–2078. doi: 10.1523/JNEUROSCI.3334-10.2011.
    1. Barlow HB. Why have multiple cortical areas? Vision Research. 1986;26:81–90. doi: 10.1016/0042-6989(86)90072-6.
    1. Bartels A, Zeki S. The architecture of the colour centre in the human visual brain: new results and a review. European Journal of Neuroscience. 2000;12:172–193. doi: 10.1046/j.1460-9568.2000.00905.x.
    1. Barton B, Brewer AA. Visual field map clusters in High-Order Visual Processing: organization of V3A/V3B and a New Cloverleaf Cluster in the Posterior Superior Temporal Sulcus. Frontiers in Integrative Neuroscience. 2017;11:4. doi: 10.3389/fnint.2017.00004.
    1. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50:7–15. doi: 10.1016/0010-0277(94)90018-3.
    1. Ben Hamed S, Duhamel JR, Bremmer F, Graf W. Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis. Experimental Brain Research. 2001;140:127–144. doi: 10.1007/s002210100785.
    1. Benson NC, Butt OH, Brainard DH, Aguirre GK. Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy. PLoS Computational Biology. 2014;10:e1003538. doi: 10.1371/journal.pcbi.1003538.
    1. Benson NC, Butt OH, Datta R, Radoeva PD, Brainard DH, Aguirre GK. The retinotopic organization of striate cortex is well predicted by surface topology. Current Biology. 2012;22:2081–2085. doi: 10.1016/j.cub.2012.09.014.
    1. Blair Hedges S, Kumar S. Genomic clocks and evolutionary timescales. Trends in Genetics. 2003;19:200–206. doi: 10.1016/S0168-9525(03)00053-2.
    1. Blanke O, Morand S, Thut G, Michel CM, Spinelli L, Landis T, Seeck M. Visual activity in the human frontal eye field. NeuroReport. 1999;10:925–930. doi: 10.1097/00001756-199904060-00006.
    1. Blatt GJ, Andersen RA, Stoner GR. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. The Journal of Comparative Neurology. 1990;299:421–445. doi: 10.1002/cne.902990404.
    1. Bourne JA, Rosa MG. Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT) Cerebral Cortex. 2006;16:405–414. doi: 10.1093/cercor/bhi119.
    1. Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB. Primate frontal eye fields. II. physiological and anatomical correlates of electrically evoked eye movements. Journal of Neurophysiology. 1985;54:714–734.
    1. Buckner RL, Krienen FM. The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences. 2013;17:648–665. doi: 10.1016/j.tics.2013.09.017.
    1. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. segmentation and surface reconstruction. NeuroImage. 1999;9:179–194. doi: 10.1006/nimg.1998.0395.
    1. Desimone R, Ungerleider LG. Multiple visual areas in the caudal superior temporal sulcus of the macaque. The Journal of Comparative Neurology. 1986;248:164–189. doi: 10.1002/cne.902480203.
    1. Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Vision. 2003;3:1–598. doi: 10.1167/3.10.1.
    1. Dumoulin SO, Wandell BA. Population receptive field estimates in human visual cortex. NeuroImage. 2008;39:647–660. doi: 10.1016/j.neuroimage.2007.09.034.
    1. Engel SA, Glover GH, Wandell BA. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex. 1997;7:181–192. doi: 10.1093/cercor/7.2.181.
    1. Gattass R, Nascimento-Silva S, Soares JG, Lima B, Jansen AK, Diogo AC, Farias MF, Botelho MM, Mariani OS, Azzi J, Fiorani M. Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005;360:709–731. doi: 10.1098/rstb.2005.1629.
    1. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536:171–178. doi: 10.1038/nature18933.
    1. Hagler DJ, Sereno MI. Spatial maps in frontal and prefrontal cortex. NeuroImage. 2006;29:567–577. doi: 10.1016/j.neuroimage.2005.08.058.
    1. Holmes G. Disturbances of vision by cerebral lesions. British Journal of Ophthalmology. 1918;2:353–384. doi: 10.1136/bjo.2.7.353.
    1. Huk AC, Dougherty RF, Heeger DJ. Retinotopy and functional subdivision of human areas MT and MST. Journal of Neuroscience. 2002;22:7195–7205.
    1. Inouye T. Die Sehstörungen Bei Schussverletzungen Der Kortikalen Sehsphäre: Nach Beobachtungen an Verwundeten Der Letzten Japanischen Kriege. Leipzig: Engelmann; 1909.
    1. Jerde TA, Merriam EP, Riggall AC, Hedges JH, Curtis CE. Prioritized maps of space in human frontoparietal cortex. Journal of Neuroscience. 2012;32:17382–17390. doi: 10.1523/JNEUROSCI.3810-12.2012.
    1. Kaas JH. Topographic maps are fundamental to sensory processing. Brain Research Bulletin. 1997;44:107–112. doi: 10.1016/S0361-9230(97)00094-4.
    1. Kastner S, DeSimone K, Konen CS, Szczepanski SM, Weiner KS, Schneider KA. Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. Journal of Neurophysiology. 2007;97:3494–3507. doi: 10.1152/jn.00010.2007.
    1. Kay KN, Weiner KS, Grill-Spector K. Attention reduces spatial uncertainty in human ventral temporal cortex. Current Biology. 2015;25:595–600. doi: 10.1016/j.cub.2014.12.050.
    1. Kay KN, Winawer J, Mezer A, Wandell BA. Compressive spatial summation in human visual cortex. Journal of Neurophysiology. 2013;110:481–494. doi: 10.1152/jn.00105.2013.
    1. Kay KN. Alignvolumedata. 327bdc5 Github. 2017
    1. Kolster H, Mandeville JB, Arsenault JT, Ekstrom LB, Wald LL, Vanduffel W. Visual field map clusters in macaque extrastriate visual cortex. Journal of Neuroscience. 2009;29:7031–7039. doi: 10.1523/JNEUROSCI.0518-09.2009.
    1. Larsson J, Heeger DJ. Two retinotopic visual areas in human lateral occipital cortex. Journal of Neuroscience. 2006;26:13128–13142. doi: 10.1523/JNEUROSCI.1657-06.2006.
    1. Mackey W, Winawer J, Curtis CE. Visual Field Map Clusters in Human Frontoparietal Cortex Data Supplement. [April, 25 2017];Open Science Framework. 2017
    1. Mackey WE, Devinsky O, Doyle WK, Golfinos JG, Curtis CE. Human parietal cortex lesions impact the precision of spatial working memory. Journal of Neurophysiology. 2016a;116:02016. doi: 10.1152/jn.00380.2016.
    1. Mackey WE, Devinsky O, Doyle WK, Meager MR, Curtis CE. Human Dorsolateral Prefrontal Cortex is not necessary for spatial working memory. Journal of Neuroscience. 2016b;36:2847–2856. doi: 10.1523/JNEUROSCI.3618-15.2016.
    1. Manes F, Sahakian B, Clark L, Rogers R, Antoun N, Aitken M, Robbins T. Decision-making processes following damage to the prefrontal cortex. Brain. 2002;125:624–639. doi: 10.1093/brain/awf049.
    1. Michalka SW, Kong L, Rosen ML, Shinn-Cunningham BG, Somers DC. Short-Term memory for space and Time Flexibly Recruit complementary Sensory-Biased frontal lobe attention Networks. Neuron. 2015;87:882–892. doi: 10.1016/j.neuron.2015.07.028.
    1. Mountcastle VB. Modality and topographic properties of single neurons of cat's somatic sensory cortex. Journal of Neurophysiology. 1957;20:408–434.
    1. Orban GA, Van Essen D, Vanduffel W. Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Sciences. 2004;8:315–324. doi: 10.1016/j.tics.2004.05.009.
    1. Passingham R. How good is the macaque monkey model of the human brain? Current Opinion in Neurobiology. 2009;19:6–11. doi: 10.1016/j.conb.2009.01.002.
    1. Patel GH, Kaplan DM, Snyder LH. Topographic organization in the brain: searching for general principles. Trends in Cognitive Sciences. 2014;18:351–363. doi: 10.1016/j.tics.2014.03.008.
    1. Patel GH, Shulman GL, Baker JT, Akbudak E, Snyder AZ, Snyder LH, Corbetta M. Topographic organization of macaque area LIP. PNAS. 2010;107:4728–4733. doi: 10.1073/pnas.0908092107.
    1. Posner MI, Walker JA, Friedrich FJ, Rafal RD. Effects of parietal injury on covert orienting of attention. Journal of Neuroscience. 1984;4:1863–1874.
    1. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018.
    1. Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA. Visual areas and spatial summation in human visual cortex. Vision Research. 2001;41:1321–1332. doi: 10.1016/S0042-6989(01)00074-8.
    1. Rilling JK. Human and nonhuman primate brains: Are they allometrically scaled versions of the same design? Evolutionary Anthropology: Issues, News, and Reviews. 2006;15:65–77. doi: 10.1002/evan.20095.
    1. Robinson DA, Fuchs AF. Eye movements evoked by stimulation of frontal eye fields. Journal of Neurophysiology. 1969;32:637–648.
    1. Rosa MG, Tweedale R. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005;360:665–691. doi: 10.1098/rstb.2005.1626.
    1. Rosa MG. Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Brazilian Journal of Medical and Biological Research. 2002;35:1485–1498. doi: 10.1590/S0100-879X2002001200008.
    1. Savaki HE, Gregoriou GG, Bakola S, Moschovakis AK. Topography of Visuomotor Parameters in the frontal and Premotor Eye Fields. Cerebral Cortex. 2015;25:3095–3106. doi: 10.1093/cercor/bhu106.
    1. Savaki HE, Gregoriou GG, Bakola S, Raos V, Moschovakis AK. The place code of saccade metrics in the lateral bank of the intraparietal sulcus. Journal of Neuroscience. 2010;30:1118–1127. doi: 10.1523/JNEUROSCI.2268-09.2010.
    1. Saygin AP, Sereno MI. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex. Cerebral Cortex. 2008;18:2158–2168. doi: 10.1093/cercor/bhm242.
    1. Schall J, Zinke W, Cosman J, Schall M, Paré M, Pouget P. On the Evolution of the Frontal Eye Field: Comparisons of Monkeys, Apes, and Humans. In: Kass J, editor. Evolution of Nervous Systems. Oxford: Elsevier; 2017. pp. 249–275.
    1. Schluppeck D, Glimcher P, Heeger DJ. Topographic organization for delayed saccades in human posterior parietal cortex. Journal of Neurophysiology. 2005;94:1372–1384. doi: 10.1152/jn.01290.2004.
    1. Sereno MI, Pitzalis S, Martinez A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science. 2001;294:1350–1354. doi: 10.1126/science.1063695.
    1. Sheremata SL, Silver MA. Hemisphere-dependent attentional modulation of human parietal visual field representations. Journal of Neuroscience. 2015;35:508–517. doi: 10.1523/JNEUROSCI.2378-14.2015.
    1. Silver MA, Kastner S. Topographic maps in human frontal and parietal cortex. Trends in Cognitive Sciences. 2009;13:488–495. doi: 10.1016/j.tics.2009.08.005.
    1. Silver MA, Ress D, Heeger DJ. Topographic maps of visual spatial attention in human parietal cortex. Journal of Neurophysiology. 2005;94:1358–1371. doi: 10.1152/jn.01316.2004.
    1. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC. Visual topography of human intraparietal sulcus. Journal of Neuroscience. 2007;27:5326–5337. doi: 10.1523/JNEUROSCI.0991-07.2007.
    1. Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM. Functional analysis of V3A and related areas in human visual cortex. Journal of Neuroscience. 1997;17:7060–7078.
    1. Essen DC, Zeki SM. The topographic organization of rhesus monkey prestriate cortex. The Journal of Physiology. 1978;277:193–226. doi: 10.1113/jphysiol.1978.sp012269.
    1. Wandell BA, Brewer AA, Dougherty RF. Visual field map clusters in human cortex. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005;360:693–707. doi: 10.1098/rstb.2005.1628.
    1. Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex. Neuron. 2007;56:366–383. doi: 10.1016/j.neuron.2007.10.012.
    1. Wandell BA, Winawer J. Imaging retinotopic maps in the human brain. Vision Research. 2011;51:718–737. doi: 10.1016/j.visres.2010.08.004.
    1. Wandell BA, Winawer J. Computational neuroimaging and population receptive fields. Trends in Cognitive Sciences. 2015;19:349–357. doi: 10.1016/j.tics.2015.03.009.
    1. Wang L, Mruczek RE, Arcaro MJ, Kastner S. Probabilistic Maps of Visual Topography in human cortex. Cerebral Cortex. 2015;25:3911–3931. doi: 10.1093/cercor/bhu277.
    1. Wig GS, Laumann TO, Cohen AL, Power JD, Nelson SM, Glasser MF, Miezin FM, Snyder AZ, Schlaggar BL, Petersen SE. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations. Cerebral Cortex. 2014;24:2036–2054. doi: 10.1093/cercor/bht056.
    1. Wilkins AJ, Shallice T, McCarthy R. Frontal lesions and sustained attention. Neuropsychologia. 1987;25:359–365. doi: 10.1016/0028-3932(87)90024-8.
    1. Winawer J, Horiguchi H, Sayres RA, Amano K, Wandell BA. Mapping hV4 and ventral occipital cortex: the venous eclipse. Journal of Vision. 2010;10:1. doi: 10.1167/10.5.1.
    1. Winawer J, Kay KN, Foster BL, Rauschecker AM, Parvizi J, Wandell BA. Asynchronous broadband signals are the principal source of the BOLD response in human visual cortex. Current Biology. 2013;23:1145–1153. doi: 10.1016/j.cub.2013.05.001.
    1. Winawer J, Wandell BA, Dougherty RF. vistasoft GitHub. 2017
    1. Yeo BT, Krienen FM, Chee MW, Buckner RL. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. NeuroImage. 2014;88:212–227. doi: 10.1016/j.neuroimage.2013.10.046.
    1. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology. 2011;106:1125–1165. doi: 10.1152/jn.00338.2011.

Source: PubMed

3
Abonner