Acute and Chronic Effects of Cocaine on Cardiovascular Health

Sung Tae Kim, Taehwan Park, Sung Tae Kim, Taehwan Park

Abstract

Cardiac complications resulting from cocaine use have been extensively studied because of the complicated pathophysiological mechanisms. This study aims to review the underlying cellular and molecular mechanisms of acute and chronic effects of cocaine on the cardiovascular system with a specific focus on human studies. Studies have consistently reported the acute effects of cocaine on the heart (e.g., electrocardiographic abnormalities, acute hypertension, arrhythmia, and acute myocardial infarction) through multifactorial mechanisms. However, variable results have been reported for the chronic effects of cocaine. Some studies found no association of cocaine use with coronary artery disease (CAD), while others reported its association with subclinical coronary atherosclerosis. These inconsistent findings might be due to the heterogeneity of study subjects with regard to cardiac risk. After cocaine use, populations at high risk for CAD experienced coronary atherosclerosis whereas those at low risk did not experience CAD, suggesting that the chronic effects of cocaine were more likely to be prominent among individuals with higher CAD risk. Studies also suggested that risky behaviors and cardiovascular risks may affect the association between cocaine use and mortality. Our study findings highlight the need for education regarding the deleterious effects of cocaine, and access to interventions for cocaine abusers.

Keywords: acute effects; cardiovascular health; chronic effects; cocaine; heart disease.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Effects of cocaine on cardiovascular health. Use of cocaine (bottom) results in both acute (italic) and chronic (normal) changes in the heart (left) and blood vessels (right). (Note: Cocaine often induces cardiac condition(s) (e.g., acute myocardial infarction (MI) and coronary artery disease) by affecting the heart and vessels simultaneously).

References

    1. Cornish J.W., O’Brien C.P. Crack cocaine abuse: An epidemic with many public health consequences. Annu. Rev. Public Health. 1996;17:259–273. doi: 10.1146/annurev.pu.17.050196.001355.
    1. World Drug Report 2018. [(accessed on 29 October 2018)]; Available online: .
    1. Behavioral Health Trends in the United States: Results from the 2014 National Survey on Drug Use and Health. [(accessed on 29 October 2018)]; Available online: .
    1. Egred M., Davis G.K. Cocaine and the heart. Postgrad. Med. J. 2005;81:568–571. doi: 10.1136/pgmj.2004.028571.
    1. De Giorgi A., Fabbian F., Pala M., Bonetti F., Babini I., Bagnaresi I., Manfredini F., Portaluppi F., Mikhailidis D.P., Manfredini R. Cocaine and acute vascular diseases. Curr. Drug Abuse Rev. 2012;5:129–134. doi: 10.2174/1874473711205020129.
    1. Lange R.A., Hillis L.D. Cardiovascular complications of cocaine use. N. Engl. J. Med. 2001;345:351–358. doi: 10.1056/NEJM200108023450507.
    1. Trends in Substance Use Disorders among Adults Aged 18 or Older. [(accessed on 11 November 2018)]; Available online: .
    1. Drug Abuse Warning Network Trends Tables, 2011 Update. [(accessed on 11 November 2018)]; Available online: .
    1. Vongpatanasin W., Mansour Y., Chavoshan B., Arbique D., Victor R.G. Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation. 1999;100:497–502. doi: 10.1161/01.CIR.100.5.497.
    1. Howell L.L., Carroll F.I., Votaw J.R., Goodman M.M., Kimmel H.L. Effects of combined dopamine and serotonin transporter inhibitors on cocaine self-administration in rhesus monkeys. J. Pharmacol. Exp. Ther. 2007;320:757–765. doi: 10.1124/jpet.106.108324.
    1. Schwartz B.G., Rezkalla S., Kloner R.A. Cardiovascular effects of cocaine. Circulation. 2010;122:2558–2569. doi: 10.1161/CIRCULATIONAHA.110.940569.
    1. Pennings E.J., Leccese A.P., Wolff F.A. Effects of concurrent use of alcohol and cocaine. Addiction. 2002;97:773–783. doi: 10.1046/j.1360-0443.2002.00158.x.
    1. Rezkalla S.H., Kloner R.A. Cocaine-induced acute myocardial infarction. Clin. Med. Res. 2007;5:172–176. doi: 10.3121/cmr.2007.759.
    1. Davies O., Ajayeoba O., Kurian D. Coronary artery spasm: An often overlooked diagnosis. Niger. Med. J. 2014;55:356–358. doi: 10.4103/0300-1652.137231.
    1. Talarico G.P., Crosta M.L., Giannico M.B., Summaria F., Calo L., Patrizi R. Cocaine and coronary artery diseases: A systematic review of the literature. J. Cardiovasc. Med. 2017;18:291–294. doi: 10.2459/JCM.0000000000000511.
    1. Wilbert-Lampen U., Seliger C., Zilker T., Arendt R.M. Cocaine increases the endothelial release of immunoreactive endothelin and its concentrations in human plasma and urine: Reversal by coincubation with sigma-receptor antagonists. Circulation. 1998;98:385–390. doi: 10.1161/01.CIR.98.5.385.
    1. Togna G.I., Graziani M., Russo P., Caprino L. Cocaine toxic effect on endothelium-dependent vasorelaxation: An in vitro study on rabbit aorta. Toxicol. Lett. 2001;123:43–50. doi: 10.1016/S0378-4274(01)00379-4.
    1. Mo W., Singh A.K., Arruda J.A., Dunea G. Role of nitric oxide in cocaine-induced acute hypertension. Am. J. Hypertens. 1998;11:708–714. doi: 10.1016/S0895-7061(98)00041-7.
    1. Perreault C.L., Morgan K.G., Morgan J.P. Effects of cocaine on intracellular calcium handling in cardiac and vascular smooth muscle. NIDA Res. Monogr. 1991;108:139–153.
    1. Scholz A. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. Br. J. Anaesth. 2002;89:52–61. doi: 10.1093/bja/aef163.
    1. Siegel A.J., Sholar M.B., Mendelson J.H., Lukas S.E., Kaufman M.J., Renshaw P.F., McDonald J.C., Lewandrowski K.B., Apple F.S., Stec J.J., et al. Cocaine-induced erythrocytosis and increase in von Willebrand factor: Evidence for drug-related blood doping and prothrombotic effects. Arch. Intern. Med. 1999;159:1925–1929. doi: 10.1001/archinte.159.16.1925.
    1. Crumb W.J., Jr., Clarkson C.W. Characterization of cocaine-induced block of cardiac sodium channels. Biophys. J. 1990;57:589–599. doi: 10.1016/S0006-3495(90)82574-1.
    1. Hoffman R.S. Treatment of patients with cocaine-induced arrhythmias: Bringing the bench to the bedside. Br. J. Clin. Pharmacol. 2010;69:448–457. doi: 10.1111/j.1365-2125.2010.03632.x.
    1. Williams M.J., Restieaux N.J., Low C.J. Myocardial infarction in young people with normal coronary arteries. Heart. 1998;79:191–194. doi: 10.1136/hrt.79.2.191.
    1. Xu Y.Q., Crumb W.J., Jr., Clarkson C.W. Cocaethylene, a metabolite of cocaine and ethanol, is a potent blocker of cardiac sodium channels. J. Pharmacol. Exp. Ther. 1994;271:319–325.
    1. Goldstein R.A., DesLauriers C., Burda A., Johnson-Arbor K. Cocaine: History, social implications, and toxicity: A review. Semin. Diagn. Pathol. 2009;26:10–17. doi: 10.1053/j.semdp.2008.12.001.
    1. O’Leary M.E. Inhibition of HERG potassium channels by cocaethylene: A metabolite of cocaine and ethanol. Cardiovasc. Res. 2002;53:59–67. doi: 10.1016/S0008-6363(01)00458-8.
    1. Ferreira S., Crumb W.J., Jr., Carlton C.G., Clarkson C.W. Effects of cocaine and its major metabolites on the HERG-encoded potassium channel. J. Pharmacol. Exp. Ther. 2001;299:220–226.
    1. O’Leary M.E., Hancox J.C. Role of voltage-gated sodium, potassium and calcium channels in the development of cocaine-associated cardiac arrhythmias. Br. J. Clin. Pharmacol. 2010;69:427–442. doi: 10.1111/j.1365-2125.2010.03629.x.
    1. Crandall C.G., Vongpatanasin W., Victor R.G. Mechanism of cocaine-induced hyperthermia in humans. Ann. Intern. Med. 2002;136:785–791. doi: 10.7326/0003-4819-136-11-200206040-00006.
    1. Catravas J.D., Waters I.W. Acute cocaine intoxication in the conscious dog: Studies on the mechanism of lethality. J. Pharmacol. Exp. Ther. 1981;217:350–356.
    1. Bachi K., Mani V., Jeyachandran D., Fayad Z.A., Goldstein R.Z., Alia-Klein N. Vascular disease in cocaine addiction. Atherosclerosis. 2017;262:154–162. doi: 10.1016/j.atherosclerosis.2017.03.019.
    1. Mouhaffel A.H., Madu E.C., Satmary W.A., Fraker T.D., Jr. Cardiovascular complications of cocaine. Chest. 1995;107:1426–1434. doi: 10.1378/chest.107.5.1426.
    1. Lange R.A., Cigarroa R.G., Yancy C.W., Jr., Willard J.E., Popma J.J., Sills M.N., McBride W., Kim A.S., Hillis L.D. Cocaine-induced coronary-artery vasoconstriction. N. Engl. J. Med. 1989;321:1557–1562. doi: 10.1056/NEJM198912073212301.
    1. Sandoval Y., Smith S.W., Thordsen S.E., Apple F.S. Supply/demand type 2 myocardial infarction: Should we be paying more attention? J. Am. Coll. Cardiol. 2014;63:2079–2087. doi: 10.1016/j.jacc.2014.02.541.
    1. Pradhan L., Mondal D., Chandra S., Ali M., Agrawal K.C. Molecular analysis of cocaine-induced endothelial dysfunction: Role of endothelin-1 and nitric oxide. Cardiovasc. Toxicol. 2008;8:161–171. doi: 10.1007/s12012-008-9025-z.
    1. Bohm F., Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc. Res. 2007;76:8–18. doi: 10.1016/j.cardiores.2007.06.004.
    1. Previtali E., Bucciarelli P., Passamonti S.M., Martinelli I. Risk factors for venous and arterial thrombosis. Blood Transfus. 2011;9:120–138.
    1. Badimon L., Padro T., Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart J. Acute Cardiovasc. Care. 2012;1:60–74. doi: 10.1177/2048872612441582.
    1. Wright N.M., Martin M., Goff T., Morgan J., Elworthy R., Ghoneim S. Cocaine and thrombosis: A narrative systematic review of clinical and in-vivo studies. Subst. Abuse Treat. Prev. Policy. 2007;2:1–8. doi: 10.1186/1747-597X-2-27.
    1. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 2012;298:229–317.
    1. Graziani M., Antonilli L., Togna A.R., Grassi M.C., Badiani A., Saso L. Cardiovascular and hepatic toxicity of cocaine: Potential beneficial effects of modulators of oxidative stress. Oxid. Med. Cell Longev. 2016 doi: 10.1155/2016/8408479.
    1. Flores E.D., Lange R.A., Cigarroa R.G., Hillis L.D. Effect of cocaine on coronary artery dimensions in atherosclerotic coronary artery disease: Enhanced vasoconstriction at sites of significant stenoses. J. Am. Coll. Cardiol. 1990;16:74–79. doi: 10.1016/0735-1097(90)90459-3.
    1. Howard R.E., Hueter D.C., Davis G.J. Acute myocardial infarction following cocaine abuse in a young woman with normal coronary arteries. JAMA. 1985;254:95–96. doi: 10.1001/jama.1985.03360010101036.
    1. Maceira A.M., Ripoll C., Cosin-Sales J., Igual B., Gavilan M., Salazar J., Belloch V., Pennell D.J. Long term effects of cocaine on the heart assessed by cardiovascular magnetic resonance at 3T. J. Cardiovasc. Magn. Reson. 2014;16:26. doi: 10.1186/1532-429X-16-26.
    1. Hale S.L., Alker K.J., Rezkalla S., Figures G., Kloner R.A. Adverse effects of cocaine on cardiovascular dynamics, myocardial blood flow, and coronary artery diameter in an experimental model. Am. Heart J. 1989;118:927–933. doi: 10.1016/0002-8703(89)90226-3.
    1. Pitts W.R., Vongpatanasin W., Cigarroa J.E., Hillis L.D., Lange R.A. Effects of the intracoronary infusion of cocaine on left ventricular systolic and diastolic function in humans. Circulation. 1998;97:1270–1273. doi: 10.1161/01.CIR.97.13.1270.
    1. Hale S.L., Alker K.J., Rezkalla S.H., Eisenhauer A.C., Kloner R.A. Nifedipine protects the heart from the acute deleterious effects of cocaine if administered before but not after cocaine. Circulation. 1991;83:1437–1443. doi: 10.1161/01.CIR.83.4.1437.
    1. Gardin J.M., Wong N., Alker K., Hale S.L., Paynter J., Knoll M., Jamison B., Patterson M., Kloner R.A. Acute cocaine administration induces ventricular regional wall motion and ultrastructural abnormalities in an anesthetized rabbit model. Am. Heart J. 1994;128:1117–1129. doi: 10.1016/0002-8703(94)90742-0.
    1. Restrepo C.S., Rojas C.A., Martinez S., Riascos R., Marmol-Velez A., Carrillo J., Vargas D. Cardiovascular complications of cocaine: Imaging findings. Emerg. Radiol. 2009;16:11–19. doi: 10.1007/s10140-008-0762-x.
    1. Cooper C.J., Said S., Alkhateeb H., Rodriguez E., Trien R., Ajmal S., Blandon P.A., Hernandez G.T. Dilated cardiomyopathy secondary to chronic cocaine abuse: A case report. BMC Res. Notes. 2013;6:536. doi: 10.1186/1756-0500-6-536.
    1. Phillips K., Luk A., Soor G.S., Abraham J.R., Leong S., Butany J. Cocaine cardiotoxicity: A review of the pathophysiology, pathology, and treatment options. Am. J. Cardiovasc. Drugs. 2009;9:177–196. doi: 10.1007/BF03256574.
    1. Felker G.M., Hu W., Hare J.M., Hruban R.H., Baughman K.L., Kasper E.K. The spectrum of dilated cardiomyopathy. The Johns Hopkins experience with 1,278 patients. Medicine (Baltimore) 1999;78:270–283. doi: 10.1097/00005792-199907000-00005.
    1. Brickner M.E., Willard J.E., Eichhorn E.J., Black J., Grayburn P.A. Left ventricular hypertrophy associated with chronic cocaine abuse. Circulation. 1991;84:1130–1135. doi: 10.1161/01.CIR.84.3.1130.
    1. Nahas G.G., Trouve R., Manger W.M. Cocaine, catecholamines and cardiac toxicity. Acta. Anaesthesiol. Scand. Suppl. 1990;94:77–81. doi: 10.1111/j.1399-6576.1990.tb03226.x.
    1. Kloner R.A., Hale S., Alker K., Rezkalla S. The effects of acute and chronic cocaine use on the heart. Circulation. 1992;85:407–419. doi: 10.1161/01.CIR.85.2.407.
    1. Kolodgie F.D., Virmani R., Cornhill J.F., Herderick E.E., Smialek J. Increase in atherosclerosis and adventitial mast cells in cocaine abusers: An alternative mechanism of cocaine-associated coronary vasospasm and thrombosis. J. Am. Coll. Cardiol. 1991;17:1553–1560. doi: 10.1016/0735-1097(91)90646-Q.
    1. Patrizi R., Pasceri V., Sciahbasi A., Summaria F., Rosano G.M., Lioy E. Evidence of cocaine-related coronary atherosclerosis in young patients with myocardial infarction. J. Am. Coll. Cardiol. 2006;47:2120–2122. doi: 10.1016/j.jacc.2005.12.060.
    1. Minor R.L., Jr., Scott B.D., Brown D.D., Winniford M.D. Cocaine-induced myocardial infarction in patients with normal coronary arteries. Ann. Intern. Med. 1991;115:797–806. doi: 10.7326/0003-4819-115-10-797.
    1. Havranek E.P., Nademanee K., Grayburn P.A., Eichhorn E.J. Endothelium-dependent vasorelaxation is impaired in cocaine arteriopathy. J. Am. Coll. Cardiol. 1996;28:1168–1174. doi: 10.1016/S0735-1097(96)00299-9.
    1. Gan X., Zhang L., Berger O., Stins M.F., Way D., Taub D.D., Chang S.L., Kim K.S., House S.D., Weinand M., et al. Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin. Immunol. 1999;91:68–76. doi: 10.1006/clim.1998.4683.
    1. Simpson R.W., Edwards W.D. Pathogenesis of cocaine-induced ischemic heart disease. Autopsy findings in a 21-year-old man. Arch. Pathol. Lab. Med. 1986;110:479–484.
    1. Shah P.K. Mechanisms of plaque vulnerability and rupture. J. Am. Coll. Cardiol. 2003;41(Suppl. S4):15S–22S. doi: 10.1016/S0735-1097(02)02834-6.
    1. Lindstedt K.A., Mayranpaa M.I., Kovanen P.T. Mast cells in vulnerable atherosclerotic plaques—A view to a kill. J. Cell. Mol. Med. 2007;11:739–758. doi: 10.1111/j.1582-4934.2007.00052.x.
    1. Kokkonen J.O., Kovanen P.T. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc. Natl. Acad. Sci. USA. 1987;84:2287–2291. doi: 10.1073/pnas.84.8.2287.
    1. Kokkonen J.O., Kovanen P.T. Proteolytic enzymes of mast cell granules degrade low density lipoproteins and promote their granule-mediated uptake by macrophages in vitro. J. Biol. Chem. 1989;264:10749–10755.
    1. Huang M., Pang X., Letourneau R., Boucher W., Theoharides T.C. Acute stress induces cardiac mast cell activation and histamine release, effects that are increased in Apolipoprotein E knockout mice. Cardiovasc. Res. 2002;55:150–160. doi: 10.1016/S0008-6363(02)00336-X.
    1. Bohm M., La Rosee K., Schwinger R.H., Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J. Am. Coll. Cardiol. 1995;25:146–153. doi: 10.1016/0735-1097(94)00353-R.
    1. Billman G.E. Cocaine: A review of its toxic actions on cardiac function. Crit. Rev. Toxicol. 1995;25:113–132. doi: 10.3109/10408449509021610.
    1. Hobbs W.E., Moore E.E., Penkala R.A., Bolgiano D.D., Lopez J.A. Cocaine and specific cocaine metabolites induce von Willebrand factor release from endothelial cells in a tissue-specific manner. Arterioscler. Thromb. Vasc. Biol. 2013;33:1230–1237. doi: 10.1161/ATVBAHA.113.301436.
    1. Heesch C.M., Wilhelm C.R., Ristich J., Adnane J., Bontempo F.A., Wagner W.R. Cocaine activates platelets and increases the formation of circulating platelet containing microaggregates in humans. Heart. 2000;83:688–695. doi: 10.1136/heart.83.6.688.
    1. Moons A.H., Levi M., Peters R.J. Tissue factor and coronary artery disease. Cardiovasc. Res. 2002;53:313–325. doi: 10.1016/S0008-6363(01)00452-7.
    1. Gu X., Herrera G.A. Thrombotic microangiopathy in cocaine abuse-associated malignant hypertension: Report of 2 cases with review of the literature. Arch. Pathol. Lab. Med. 2007;131:1817–1820.
    1. Fogo A., Superdock K.R., Atkinson J.B. Severe arteriosclerosis in the kidney of a cocaine addict. Am. J. Kidney Dis. 1992;20:513–515. doi: 10.1016/S0272-6386(12)70267-6.
    1. Su J., Li J., Li W., Altura B., Altura B. Cocaine induces apoptosis in primary cultured rat aortic vascular smooth muscle cells: Possible relationship to aortic dissection, atherosclerosis, and hypertension. Int. J. Toxicol. 2004;23:233–237. doi: 10.1080/10915810490471361.
    1. Dabbouseh N.M., Ardelt A. Cocaine mediated apoptosis of vascular cells as a mechanism for carotid artery dissection leading to ischemic stroke. Med. Hypotheses. 2011;77:201–203. doi: 10.1016/j.mehy.2011.04.011.
    1. Ramondo A.B., Mistrorigo F., Angelini A. Intimal hyperplasia and cystic medial necrosis as substrate of acute coronary syndrome in a cocaine abuser: An in vivo/ex vivo pathological correlation. Heart. 2009;95:82. doi: 10.1136/hrt.2007.140509.
    1. Steinhauer J.R., Caulfield J.B. Spontaneous coronary artery dissection associated with cocaine use: A case report and brief review. Cardiovasc. Pathol. 2001;10:141–145. doi: 10.1016/S1054-8807(01)00074-6.
    1. Kamineni R., Sadhu A., Alpert J.S. Spontaneous coronary artery dissection: Report of two cases and a 50-year review of the literature. Cardiol. Rev. 2002;10:279–284. doi: 10.1097/00045415-200209000-00004.
    1. Meghani M., Siddique M.N., Bhat T., Samarneh M., Elsayegh S. Internal carotid artery redundancy and dissection in a young cocaine abuser. Vascular. 2013;21:243–245. doi: 10.1177/1708538113478765.
    1. Kozor R., Grieve S.M., Buchholz S., Kaye S., Darke S., Bhindi R., Figtree G.A. Regular cocaine use is associated with increased systolic blood pressure, aortic stiffness and left ventricular mass in young otherwise healthy individuals. PLoS ONE. 2014;9:e89710. doi: 10.1371/journal.pone.0089710.
    1. Kariyanna P.T., Jayarangaiah A., Al-Sadawi M., Ahmed R., Green J., Dubson I., McFarlane S.I. A rare case of second degree Mobitz type II AV block associated with cocaine use. Am. J. Med. Case Rep. 2018;6:146–148. doi: 10.12691/ajmcr-6-7-7.
    1. Satran A., Bart B.A., Henry C.R., Murad M.B., Talukdar S., Satran D., Henry T.D. Increased prevalence of coronary artery aneurysms among cocaine users. Circulation. 2005;111:2424–2429. doi: 10.1161/.
    1. Gupta N., Washam J.B., Mountantonakis S.E., Li S., Roe M.T., de Lemos J.A., Arora R. Characteristics, management, and outcomes of cocaine-positive patients with acute coronary syndrome (from the National Cardiovascular Data Registry) Am. J. Cardiol. 2014;113:749–756. doi: 10.1016/j.amjcard.2013.11.023.
    1. Salihu H.M., Salemi J.L., Aggarwal A., Steele B.F., Pepper R.C., Mogos M.F., Aliyu M.H. Opioid drug use and acute cardiac events among pregnant women in the United States. Am. J. Med. 2018;131:64–71. doi: 10.1016/j.amjmed.2017.07.023.
    1. Aslibekyan S., Levitan E.B., Mittleman M.A. Prevalent cocaine use and myocardial infarction. Am. J. Cardiol. 2008;102:966–969. doi: 10.1016/j.amjcard.2008.06.016.
    1. Gunja A., Stanislawski M.A., Baron A.E., Maddox T.M., Bradley S.M., Vidovich M.I. The implications of cocaine use and associated behaviors on adverse cardiovascular outcomes among veterans: Insights from the VA Clinical Assessment, Reporting, and Tracking (CART) Program. Clin. Cardiol. 2018;41:809–816. doi: 10.1002/clc.22961.
    1. Arora S., Dodani S., Kaeley G.S., Kraemer D.F., Aldridge P., Pomm R. Cocaine use and subclinical coronary artery disease in Caucasians. J. Clin. Exp. Cardiol. 2015;6:1–6.
    1. Bamberg F., Schlett C.L., Truong Q.A., Rogers I.S., Koenig W., Nagurney J.T., Seneviratne S., Lehman S.J., Cury R.C., Abbara S., et al. Presence and extent of coronary artery disease by cardiac computed tomography and risk for acute coronary syndrome in cocaine users among patients with chest pain. Am. J. Cardiol. 2009;103:620–625. doi: 10.1016/j.amjcard.2008.11.011.
    1. Chang A.M., Walsh K.M., Shofer F.S., McCusker C.M., Litt H.I., Hollander J.E. Relationship between cocaine use and coronary artery disease in patients with symptoms consistent with an acute coronary syndrome. Acad. Emerg. Med. 2011;18:1–9. doi: 10.1111/j.1553-2712.2010.00955.x.
    1. Lai H., Moore R., Celentano D.D., Gerstenblith G., Treisman G., Keruly J.C., Kickler T., Li J., Chen S., Lai S., et al. HIV infection itself may not be associated with subclinical coronary artery disease among African Americans without cardiovascular symptoms. J. Am. Heart Assoc. 2016;5:e002529. doi: 10.1161/JAHA.115.002529.
    1. Lucas G.M., Atta M.G., Fine D.M., McFall A.M., Estrella M.M., Zook K., Stein J.H. HIV, cocaine use, and hepatitis C virus: A triad of nontraditional risk factors for subclinical cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2016;36:2100–2107. doi: 10.1161/ATVBAHA.116.307985.
    1. DeFilippis E.M., Singh A., Divakaran S., Gupta A., Collins B.L., Biery D., Qamar A., Fatima A., Ramsis M., Pipilas D., et al. Cocaine and marijuana use among young adults with myocardial infarction. J. Am. Coll. Cardiol. 2018;71:2540–2551. doi: 10.1016/j.jacc.2018.02.047.
    1. Morentin B., Ballesteros J., Callado L.F., Meana J.J. Recent cocaine use is a significant risk factor for sudden cardiovascular death in 15–49-year-old subjects: A forensic case-control study. Addiction. 2014;109:2071–2078. doi: 10.1111/add.12691.
    1. Qureshi A.I., Chaudhry S.A., Suri M.F. Cocaine use and the likelihood of cardiovascular and all-cause mortality: Data from the third national health and nutrition examination survey mortality follow-up study. J. Vasc. Interv. Neurol. 2014;7:76–82. doi: 10.1212/WNL.78.1_MeetingAbstracts.P07.031.
    1. Hser Y.I., Kagihara J., Huang D., Evans E., Messina N. Mortality among substance-using mothers in California: A 10-year prospective study. Addiction. 2012;107:215–222. doi: 10.1111/j.1360-0443.2011.03613.x.
    1. Atoui M., Fida N., Nayudu S.K., Glandt M., Chilimuri S. Outcomes of patients with cocaine induced chest pain in an inner city hospital. Cardiol. Res. 2011;2:269–273. doi: 10.4021/cr103w.
    1. Hollander J.E., Hoffman R.S. Cocaine-induced myocardial infarction: An analysis and review of the literature. J. Emerg. Med. 1992;10:169–177. doi: 10.1016/0736-4679(92)90212-C.
    1. Pletcher M.J., Kiefe C.I., Sidney S., Carr J.J., Lewis C.E., Hulley S.B. Cocaine and coronary calcification in young adults: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Am. Heart J. 2005;150:921–926. doi: 10.1016/j.ahj.2005.04.016.
    1. Lai S., Lai H., Meng Q., Tong W., Vlahov D., Celentano D., Strathdee S., Nelson K., Fishman E.K., Lima J.A. Effect of cocaine use on coronary calcium among black adults in Baltimore, Maryland. Am. J. Cardiol. 2002;90:326–328. doi: 10.1016/S0002-9149(02)02475-X.
    1. Lai S., Lima J.A., Lai H., Vlahov D., Celentano D., Tong W., Bartlett J.G., Margolick J., Fishman E.K. Human immunodeficiency virus 1 infection, cocaine, and coronary calcification. Arch. Intern. Med. 2005;165:690–695. doi: 10.1001/archinte.165.6.690.
    1. Lai S., Fishman E.K., Lai H., Moore R., Cofrancesco J., Jr., Pannu H., Tong W., Du J., Barlett J. Long-term cocaine use and antiretroviral therapy are associated with silent coronary artery disease in African Americans with HIV infection who have no cardiovascular symptoms. Clin. Infect. Dis. 2008;46:600–610. doi: 10.1086/526782.
    1. Wang G.J., Volkow N.D., Logan J., Pappas N.R., Wong C.T., Zhu W., Netusil N., Fowler J.S. Brain dopamine and obesity. Lancet. 2001;357:354–357. doi: 10.1016/S0140-6736(00)03643-6.
    1. Volkow N.D., Wang G.J., Baler R.D. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn. Sci. 2011;15:37–46. doi: 10.1016/j.tics.2010.11.001.
    1. Mahapatra A. Overeating, obesity, and dopamine receptors. ACS Chem. Neurosci. 2010;1:346–347. doi: 10.1021/cn100044y.
    1. Thanos P.K., Cho J., Kim R., Michaelides M., Primeaux S., Bray G., Wang G.J., Volkow N.D. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats. Behav. Brain Res. 2011;217:165–170. doi: 10.1016/j.bbr.2010.10.027.
    1. Ramamoorthy S., Bauman A.L., Moore K.R., Han H., Yang-Feng T., Chang A.S., Ganapathy V., Blakely R.D. Antidepressant- and cocaine-sensitive human serotonin transporter: Molecular cloning, expression, and chromosomal localization. Proc. Natl. Acad. Sci. USA. 1993;90:2542–2546. doi: 10.1073/pnas.90.6.2542.
    1. Yadav V.K., Oury F., Suda N., Liu Z.W., Gao X.B., Confavreux C., Klemenhagen K.C., Tanaka K.F., Gingrich J.A., Guo X.E., et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138:976–989. doi: 10.1016/j.cell.2009.06.051.
    1. Vicentic A., Jones D.C. The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J. Pharmacol. Exp. Ther. 2007;320:499–506. doi: 10.1124/jpet.105.091512.
    1. Rogge G., Jones D., Hubert G.W., Lin Y., Kuha M.J. CART peptides: Regulators of body weight, reward and other functions. Nat. Rev. Neurosci. 2008;9:747–758. doi: 10.1038/nrn2493.
    1. Wortley K.E., Chang G.Q., Davydova Z., Fried S.K., Leibowitz S.F. Cocaine- and amphetamine-regulated transcript in the arcuate nucleus stimulates lipid metabolism to control body fat accrual on a high-fat diet. Regul. Pept. 2004;117:89–99. doi: 10.1016/j.regpep.2003.08.005.
    1. Hunter R.G., Philpot K., Vicentic A., Dominguez G., Hubert G.W., Kuhar M.J. CART in feeding and obesity. Trends Endocrinol. Metab. 2004;15:454–459. doi: 10.1016/S1043-2760(04)00220-6.
    1. Balopole D.C., Hansult C.D., Dorph D. Effect of cocaine on food intake in rats. Psychopharmacology. 1979;64:121–122. doi: 10.1007/BF00427356.
    1. Wolgin D.L., Hertz J.M. Effects of acute and chronic cocaine on milk intake, body weight, and activity in bottle- and cannula-fed rats. Behav. Pharmacol. 1995;6:746–753. doi: 10.1097/00008877-199511000-00010.
    1. Church M.W., Morbach C.A., Subramanian M.G. Comparative effects of prenatal cocaine, alcohol, and undernutrition on maternal/fetal toxicity and fetal body composition in the Sprague-Dawley rat with observations on strain-dependent differences. Neurotoxicol. Teratol. 1995;17:559–567. doi: 10.1016/0892-0362(95)00016-K.
    1. Castro F.G., Newcomb M.D., Cadish K. Lifestyle differences between young adult cocaine users and their nonuser peers. J. Drug Educ. 1987;17:89–111. doi: 10.2190/878H-U394-UKN3-DVD5.
    1. Ersche K.D., Stochl J., Woodward J.M., Fletcher P.C. The skinny on cocaine: Insights into eating behavior and body weight in cocaine-dependent men. Appetite. 2013;71:75–80. doi: 10.1016/j.appet.2013.07.011.
    1. Quach L.A., Wanke C.A., Schmid C.H., Gorbach S.L., Mwamburi D.M., Mayer K.H., Spiegelman D., Tang A.M. Drug use and other risk factors related to lower body mass index among HIV-infected individuals. Drug Alcohol Depend. 2008;95:30–36. doi: 10.1016/j.drugalcdep.2007.12.004.
    1. Escobar M., Scherer J.N., Soares C.M., Guimaraes L.S.P., Hagen M.E., von Diemen L., Pechansky F. Active Brazilian crack cocaine users: Nutritional, anthropometric, and drug use profiles. Braz. J. Psychiatry. 2018;40:354–360. doi: 10.1590/1516-4446-2017-2409.
    1. Muniz A.E., Evans T. Acute gastrointestinal manifestations associated with use of crack. Am. J. Emerg. Med. 2001;19:61–63. doi: 10.1053/ajem.2001.20010.
    1. Billing L., Ersche K.D. Cocaine’s appetite for fat and the consequences on body weight. Am. J. Drug Alcohol Abuse. 2015;41:115–118. doi: 10.3109/00952990.2014.966196.
    1. Ludwig D.S., Pereira M.A., Kroenke C.H., Hilner J.E., Van Horn L., Slattery M.L., Jacobs D.R., Jr. Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA. 1999;282:1539–1546. doi: 10.1001/jama.282.16.1539.
    1. Rangel C., Shu R.G., Lazar L.D., Vittinghoff E., Hsue P.Y., Marcus G.M. Beta-blockers for chest pain associated with recent cocaine use. Arch. Intern. Med. 2010;170:874–879. doi: 10.1001/archinternmed.2010.115.
    1. Lopez P.D., Akinlonu A., Mene-Afejuku T.O., Dumancas C., Saeed M., Cativo E.H., Visco F., Mushiyev S., Pekler G. Clinical outcomes of B-blocker therapy in cocaine-associated heart failure. Int. J. Cardiol. 2018 doi: 10.1016/S0735-1097(18)31427-X.
    1. Dattilo P.B., Hailpern S.M., Fearon K., Sohal D., Nordin C. Beta-blockers are associated with reduced risk of myocardial infarction after cocaine use. Ann. Emerg. Med. 2008;51:117–125. doi: 10.1016/j.annemergmed.2007.04.015.

Source: PubMed

3
Abonner