nanoGold and µGold inhibit autoimmune inflammation: a review

Gorm Danscher, Sten Rasmussen, Gorm Danscher, Sten Rasmussen

Abstract

The newest data on metallic gold have placed the noble metal central in the fight for the safe treatment of autoimmune inflammation. There are two different ways to use gold for the treatment of inflammation: gold microparticles > 20 µm and gold nanoparticles. The injection of gold microparticles (µGold) is a purely local therapy. µGold particles stay put where injected, and gold ions released from them are relatively few and taken up by cells within a sphere of only a few millimeters in diameter from their origin particles. The macrophage-induced release of gold ions may continue for years. Injection of gold nanoparticles (nanoGold), on the other hand, is spread throughout the whole body, and the bio-released gold ions, therefore, affect multitudes of cells all over the body, as when using gold-containing drugs such as Myocrisin. Since macrophages and other phagocytotic cells take up and transport nanoGold and remove it after a short period, repeated treatment is necessary. This review describes the details of the cellular mechanisms that lead to the bio-release of gold ions in µGold and nanoGold.

Keywords: Gold microparticles; Gold nanoparticles; Inflammation; Macrophages; Mast cells.

Conflict of interest statement

The authors declare no competing interests.

Both authors are involved in companies working with gold and inflammation, Berlock ApS and ReGold ApS.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Autometallographic (AMG) silver enhancement of gold ion accumulation in the tissue. The tissue sections are exposed to UV light to reduce the gold ions to metallic gold atoms (Au0). The resulting nanosized gold particle is enhanced in an AMG developer to study at LM and EM levels. The AMG-enhanced nanoGold-sized particles accumulate in the lysosomes of macrophages, fibroblasts, mast cells, and secretory granules of the mast cells. In this AMG picture, part of a gold grid is shown in the upper part. The dusty appearance of the tissue close to the gold implant represents gold clusters outside cells. The two loaded cells further away are believed to be macrophages (Danscher 2002)
Fig. 2
Fig. 2
Autometallographic (AMG) illustration of the dissolucytotic release of the gold ions from a gold grid. a Light micrograph of AMG silver-enhanced J774 cells, grown on a gold grid, packed with silver-enhanced gold nanoparticles (after UV radiation). (1) Heavily loaded cell (arrow). (2) Cell filled with tiny AMG grains (black arrowhead). Such gold-dusted cells were recorded already after 2 days of exposure. (3) Dissolucytes containing coarse AMG grains after 5 days of exposure (white arrowhead). The picture is a mosaic composed of J774 cells grown on gold surfaces for 2 and 5 days, respectively. Scale bar, 20 µm. b Liberation of gold ions into the dissolution membrane. Electron micrograph of a macrophage and its dissolution membrane. The grid to which the cell was attached is removed during the tissue preparation. Notice the AMG-enhanced gold nanoparticles within the membrane. Scale bar, 3 µm. c Electron micrograph of the dissolution membrane to show the AMG grains at higher magnification. Dissolution membrane (dm), cytoplasm (cyt), and nucleus (nuc). Scale bar, 200 nm (Larsen et al. 2007)
Fig. 3
Fig. 3
μGold particles (> 20 µm) stay put where they are injected and attract macrophages that liberate gold ions into the intracellular space through dissolucytosis. In contrast, nanoGold particles spread systemically, and in the macrophage lysosomal compartment, there is oxidation to gold ions. The bio-released gold ions (Au+), most likely present as dicyanoaurate ions (Au(CN)2–) that pharmaceutically influence the intracellular microenvironment as well as macrophages, mast cells, and fibroblasts, that is, the bio-released gold ions affect the immune response, inflammation, and regeneration (Rasmussen et al. 2022)
Fig. 4
Fig. 4
Once in the intercellular fluid and the intracellular compartment, the gold ions act in the same ways as systemically administered gold ions. One of the pharmacological effects may be related to the ability of the gold ions to change the folding of the protein structures. (Rasmussen et al. 2022)
Fig. 5
Fig. 5
Proteome changes in SF and serum found during treatment indicate involvement of multiple functional pathways and signaling processes, including wound healing, regulation of the humoral and adaptive immune system, and neutrophil degranulation (Rasmussen et al. 2022)

References

    1. Balfourier A, Kolosnjaj-Tabi J, Luciani N, et al. Gold-based therapy: from past to present. Proc Natl Acad Sci USA. 2020;117:22639–22648. doi: 10.1073/pnas.2007285117.
    1. Balfourier A, Luciani N, Wang G, et al. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc Natl Acad Sci USA. 2020;117:103–113. doi: 10.1073/pnas.1911734116.
    1. Brown C, Bushell G, Whitehouse M, Agrawal DS, Tuoe SG, Paknikar KM, Tiekink E. Nanogold-pharmaceutics. Gold Bull. 2007;40:245–250. doi: 10.1007/BF03215588.
    1. Cardoso E, Rezin GT, Zanoni ET, de Souza Notoya F, Leffa DD, Damiani AP, Daumann F, Rodriguez JC, Benavides R, da Silva L, Andrade VM, da Silva Paula MM. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats. Mutat Res. 2014 doi: 10.1016/j.mrfmmm.2014.05.009.
    1. Carlander U, Midander K, Hedberg YS, et al. Macrophage-assisted dissolution of gold nanoparticles. ACS Appl Bio Mater. 2019;2:1006–1016. doi: 10.1021/acsabm.8b00537.
    1. Chakravarty IKS. Oligodynamic boons of daptomycin and noble metal nanoparticles packaged in an Anti-MRSA topical gel formulation. Curr Pharm Biotechnol. 2019;20:707–718. doi: 10.2174/1389201020666190621103416.
    1. Danscher G. In vivo liberation of gold ions from gold implants. Autometallographic tracing of gold in cells adjacent to metallic gold. Histochem Cell Biol. 2002;117:447–452. doi: 10.1007/s00418-002-0400-8.
    1. Danscher G (2017) Gold particles for use in therapy to prevent or reduce capsular contracture. Eur Pat Off, pp 1–9
    1. Danscher G, Larsen A. Effects of dissolucytotic gold ions on recovering brain lesions. Histochem Cell Biol. 2010;133:367–373. doi: 10.1007/s00418-010-0681-2.
    1. Danscher G, Stoltenberg M. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Prog Histochem Cytochem. 2006;41:57–139. doi: 10.1016/j.proghi.2006.06.001.
    1. de Castro CT, de Queiroz MJ, Albuquerque FC, et al. Real-world effectiveness of biological therapy in patients with rheumatoid arthritis: Systematic review and meta-analysis. Front Pharmacol. 2022;13:1–16. doi: 10.3389/fphar.2022.927179.
    1. Fernandes TL, Gomoll AH, Lattermann C, et al. Macrophage: a potential target on cartilage regeneration. Front Immunol. 2020;11:1–9. doi: 10.3389/fimmu.2020.00111.
    1. Forestier J. The treatment of rheumatoid arthritis with gold salts. Lancet. 1932;219:441–444. doi: 10.1016/S0140-6736(01)24417-1.
    1. Freyberg RH, Block WD, Levey S. Metabolism, toxicity and manner of action of gold compounds used in the treatment of arthritis. I. Human plasma and synovial fluid concentration and urinary excretion of gold during and following treatment with gold sodium thiomalate, gold sodium thiosulfate, and colloidal gold sulfide. J Clin Invest. 1941;20:401–412. doi: 10.1172/JCI101235.
    1. Fricker SP. Medical uses of gold compounds: past, present and future. Gold Bull. 1996;29:53–60. doi: 10.1007/bf03215464.
    1. Graham GGDM. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes—II. Evidence for the formation and biological activity of aurocyanide. Biochem Pharmacol. 1990;39:1697–1702. doi: 10.1016/0006-2952(90)90113-y.
    1. Graudal H, Møller-Madsen BDG. Autometallographic demonstration of gold in rheumatoid synovial tissue. Z Rheumatol. 1988;47:347–350.
    1. Han X, Avelar E, Mathai A, et al. A clinical study to evaluate the safety and efficacy of oral administration of microscopic dose gold nanoparticle (AuNP) on knee joint health and function in arthritis patients. J Funct Morphol Kinesiol. 2022;7:1–21. doi: 10.3390/jfmk7030052.
    1. Harbut MB, Vilchèze C, Luo X, et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc Natl Acad Sci USA. 2015;112:4453–4458. doi: 10.1073/pnas.1504022112.
    1. Jacobsen E, Andreasen A, Graudal H, Danscher G. Autometallographic demonstration of gold uptake in cultured synovial fluid cells from patients with rheumatoid arthritis. Scand J Rheumatol. 1989;18:161–164. doi: 10.3109/03009748909095414.
    1. Jæger GT, Stigen Ø, Devor M, Moe L. Gold bead implantation in acupoints for coxofemoral arthrosis in dogs: method description and adverse effects. Animals. 2012;2:426–436. doi: 10.3390/ani2030426.
    1. James LRA, Xu ZQ, Sluyter R, et al. An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase. J Inorg Biochem. 2015;142:28–38. doi: 10.1016/j.jinorgbio.2014.09.013.
    1. Kalita S, Kandimalla R, Bhowal AC, et al. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci Rep. 2018;8:1–13. doi: 10.1038/s41598-018-22736-5.
    1. Koch R (1890) Ueber bakteriologische forschung. Verlag von August Hirschwald, Berlin, pp 1–15
    1. Larsen A, Kolind K, Pedersen DS, et al. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury. Histochem Cell Biol. 2008;130:681–692. doi: 10.1007/s00418-008-0448-1.
    1. Larsen A, Stoltenberg M, Danscher G. In vitro liberation of charged gold atoms: autometallographic tracing of gold ions released by macrophages grown on metallic gold surfaces. Histochem Cell Biol. 2007;128:1–6. doi: 10.1007/s00418-007-0295-5.
    1. Lie KI, Jæger G, Nordstoga K, Moe L. Inflammatory response to therapeutic gold bead implantation in canine hip joint osteoarthritis. Vet Pathol. 2011;48:1118–1124. doi: 10.1177/0300985810381910.
    1. Märki N, Witte S, Kuchen S, et al. Safety of intra-articular gold microimplants in horses–a randomized, blinded, controlled experimental study. J Equine Vet Sci. 2018;60:59–66.e2. doi: 10.1016/j.jevs.2017.03.005.
    1. Marra S, Konior RJ, Leonetti JP, Raslan W. Effect of magnetic resonance imaging on implantable eyelid weights. Ann Otol Rhinol Laryngol. 1995;104:448–452. doi: 10.1177/000348949510400606.
    1. Maruotti N, Cantatore FP, Crivellato E, Vacca ARD. Macrophages in rheumatoid arthritis. Histol Histopathol. 2007;22:581–586. doi: 10.14670/HH-22.581.
    1. McCarrick S, Midander K, Krausová M, et al. Gold nanoparticles dissolve extracellularly in the presence of human macrophages. Int J Nanomed. 2021;16:5895–5908. doi: 10.2147/IJN.S314643.
    1. Minakata K, Nozawa H, Gonmori K, et al. Determination of cyanide, in urine and gastric content, by electrospray ionization tandem mass spectrometry after direct flow injection of dicyanogold. Anal Chim Acta. 2009;651:81–84. doi: 10.1016/j.aca.2009.08.001.
    1. Møller-Madsen B, Danscher G, Uldbjerg NAJ. Autometallographic demonstration of gold in human fetal liver and placenta. Rheumatol Int. 1987;7:47–48. doi: 10.1007/BF00267342.
    1. Pedersen DS, Fredericia PM, Pedersen MO, et al. Metallic gold slows disease progression, reduces cell death and induces astrogliosis while simultaneously increasing stem cell responses in an EAE rat model of multiple sclerosis. Histochem Cell Biol. 2012;138:787–802. doi: 10.1007/s00418-012-0996-2.
    1. Petersen J, Bendtzen K. Immunosuppressive actions of gold salts. Scand J Rheumatol. 1983;12:28–35. doi: 10.3109/03009748309095340.
    1. Pisetsky DS. Antinuclear antibody testing - misunderstood or misbegotten? Nat Rev Rheumatol. 2017;13:495–502. doi: 10.1038/nrrheum.2017.74.
    1. Rasmussen S, Kjær Petersen K, Kristiansen MK, et al. Gold micro-particles for knee osteoarthritis. Eur J Pain (UK) 2022;26:811–824. doi: 10.1002/ejp.1909.
    1. Rau R. Have traditional DMARDs had their day? Effectiveness of parenteral gold compared to biologic agents. Clin Rheumatol. 2005;24:189–202. doi: 10.1007/s10067-004-0869-8.
    1. Richards DG, McMillin DL, Mein EA, Nelson CD. Gold and its relationship to neurological/glandular conditions. Int J Neurosci. 2002;112:31–53. doi: 10.1080/00207450212018.
    1. Roche PA. Gold-plating MHC class II molecules. Nat Chem Biol. 2006;2:178–179. doi: 10.1038/nchembio0406-178.
    1. Sadauskas E, Danscher G, Stoltenberg M, et al. Protracted elimination of gold nanoparticles from mouse liver. Nanomed Nanotech Biol Med. 2009;5:162–169. doi: 10.1016/j.nano.2008.11.002.
    1. Sadauskas E, Wallin H, Stoltenberg M, et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 2007;4:1–7. doi: 10.1186/1743-8977-4-10.
    1. Seifert O, Matussek A, Sjögren F, et al. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions. J Inflamm (UK) 2012 doi: 10.1186/1476-9255-9-43.
    1. Shalit M, Levi-schaffer F. Auranofin inhibits histamine release from rat peritoneal mast cells. Int J Immunopharmaco. 1990;12:403–407. doi: 10.1016/0192-0561(90)90022-f.
    1. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–6440. doi: 10.1002/jcp.26429.
    1. Tamang TL, Nicholas Pullen JR. Mast cell-macrophage interactions alter inflammatory cytokine production. J Immunol. 2012;188:177.
    1. Tepperman K, Zhang Y, Roy PW, et al. Transport of the dicyanogold (I) anion. Met Based Drugs. 1994;1:433–443. doi: 10.1155/MBD.1994.433.
    1. Tepperman K, Roy PW, Moloney BF, Elder RC. Dicyanogold effects on lymphokine production. Met Based Drugs. 1999;6:301–309. doi: 10.1155/MBD.1999.301.
    1. Williams HJ, Ward JR, Egger MJ, Reading JC, Samuelson CO, Altz-Smith M, Willkens RW, Solsky MA, Hayes SP, Furst D, et al. Auranofin, gold sodium thiomalate, and placebo in the treatment of rheumatoid arthritis. Cooperative systematic studies of rheumatic diseases. Clin Rheumatol. 1984 doi: 10.1007/BF03342621.
    1. Wojtecka-Lukasik E, Sopata I, Maśliński S. Auranofin modulates mast cell histamine and polymorphonuclear leukocyte collagenase release. Agents Actions. 1986;18:86–70. doi: 10.1007/BF01987985.
    1. Wojtecka-Łukasik E, Sopata I, Maśliński S. Auranofin modulates mast cell histamine and polymorphonuclear leukocyte collagenase release. Agents Actions. 1986;18:68–70. doi: 10.1007/BF01987985.
    1. Wynn TABL. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30:245–257. doi: 10.1055/s-0030-1255354.
    1. Xu JM, Shi GP. Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev. 2012;33:71–108. doi: 10.1210/er.2011-0013.
    1. Yamashita M, Ichinowatari G, Yamaki K, Ohuchi K. Inhibition by auranofin of the production of prostaglandin E2 and nitric oxide in rat peritoneal macrophages. Eur J Pharmacol. 1999;368:251–258. doi: 10.1016/S0014-2999(99)00053-9.
    1. Zainali K, Danscher G, Jakobsen T, Jakobsen SS, Baas J, Møller P, Bechtold JESK. Effects of gold coating on experimental implant fixation. J Biomed Mater Res A. 2009;88:274–280. doi: 10.1002/jbm.a.31924.
    1. Zainali K, Baas J, Jakobsen T, et al. Particulate gold as an anti-inflammatory mediator in bone allograft-An animal study. J Biomed Mater Res - Part A. 2010;95:956–963. doi: 10.1002/jbm.a.32928.
    1. Zainali K, Danscher G, Jakobsen T, et al. Assessment of modified gold surfaced titanium implants on skeletal fixation. J Biomed Mater Res - Part A. 2013;101A:195–202. doi: 10.1002/jbm.a.34307.
    1. Zetterström CK, Jiang W, Wähämaa H, et al. Pivotal Advance: Inhibition of HMGB1 nuclear translocation as a mechanism for the anti-rheumatic effects of gold sodium thiomalate. J Leukoc Biol. 2008;83:31–38. doi: 10.1189/jlb.0507323.

Source: PubMed

3
Abonner