Bloodstream infections in adult patients with malignancy, epidemiology, microbiology, and risk factors associated with mortality and multi-drug resistance

Ali Amanati, Sarvin Sajedianfard, Somayeh Khajeh, Shabnam Ghasempour, Salma Mehrangiz, Samane Nematolahi, Zahra Shahhosein, Ali Amanati, Sarvin Sajedianfard, Somayeh Khajeh, Shabnam Ghasempour, Salma Mehrangiz, Samane Nematolahi, Zahra Shahhosein

Abstract

Background: This study aimed to investigate the epidemiology, microbiology, and risk factors associated with mortality and multi-drug resistance bacterial bloodstream infections (BSIs) among adult cancer patients in Shiraz, Iran. We also report a four-year trend of antimicrobial resistance patterns of BSIs.

Methods: We conducted a retrospective study at a referral oncology hospital from July 2015 to August 2019, which included all adults with confirmed BSI.

Results: 2393 blood cultures tested during the four-year study period; 414 positive cultures were included. The mean age of our patients was 47.57 ± 17.46 years old. Central Line-Associated BSI (CLABSI) was more common in solid tumors than patients with hematological malignancies. Gram-negative (GN) bacteria were more detected (63.3%, 262) than gram-positive bacteria (36.7%, 152). Escherichia coli was the most common gram-negative organism (123/262, 47%), followed by Pseudomonas spp. (82/262, 31%) and Klebsiella pneumoniae (38/262, 14.5%). Coagulase-negative staphylococci (CoNS) was the most frequently isolated pathogen among gram-positive bacteria (83/152, 54.6%). Acinetobacter spp., Pseudomonas spp., E. coli, and K. pneumoniae were the most common Extended-Spectrum Beta-Lactamase (ESBL) producers (100, 96.2, 66.7%, and 60.7, respectively). Acinetobacter spp., Pseudomonas spp., Enterobacter spp., E. coli, and K. pneumoniae were the most common carbapenem-resistant (CR) isolates (77.8, 70.7, 33.3, 24.4, and 13.2%, respectively). Out of 257 Enterobacterales and non-fermenter gram-negative BSIs, 39.3% (101/257) were carbapenem-resistant. Although the incidence of multi-drug resistance (MDR) gram-negative BSI increased annually during 2015-2018, the mortality rate of gram-negative BSI remains unchanged at about 20% (p-value = 0.55); however, the mortality rate was significantly greater (35.4%) in those with resistant gram-positive BSI (p-value = 0.001). The overall mortality rate was 21.5%. Early (7-day mortality) and late mortality rate (30-day mortality) were 10 and 3.4%, respectively.

Conclusions: The emergence of MDR gram-negative BSI is a significant healthcare problem in oncology centers. The high proportion of the most frequently isolated pathogens were CR and ESBL-producing Enterobacterales and Pseudomonas spp. We have few effective choices against MDRGN BSI, especially in high-risk cancer patients, which necessitate newer treatment options.

Keywords: Bloodstream infection; Cancer; Carbapenem-resistant isolates; Extended-Spectrum Beta-lactamase producing pathogens; Mortality; Multidrug-resistant gram-negative infection.

Conflict of interest statement

The authors do not have any financial or other relationships, which could regard as a conflict of interest.

Figures

Fig. 1
Fig. 1
Flow chart of study population screened and enrolled associated with bloodstream infections caused by gram-negative and gram-positive bacteria in patients treated at the Amir oncology hospital between July 2015 to August 2019
Fig. 2
Fig. 2
Incidence of febrile neutropenia, bloodstream infections, mortality rate/10000 cases, and hospitalized adults with cancer during 2015–2019. FN: febrile neutropenia episodes; BSI: bloodstream infection
Fig. 3
Fig. 3
The percentage frequency distribution of different gram-negative and gram-positive bacteria isolated from blood cultures
Fig. 4
Fig. 4
The annual frequency of ESBL and CRE-associated BSI, in addition to MRCoNS, associated BSI (labels represent case numbers). CRGN includes carbapenem resistance Enterobacterales and non-fermenter spp.
Fig. 5
Fig. 5
Antimicrobial susceptibility results of 123 E. coli (A) and 81 Pseudomonas spp. (B) isolates recovered from blood cultures during 2015–2019
Fig. 6
Fig. 6
Antimicrobial susceptibility results of 38 K. pneumonia (A) and of 80 coagulase-negative staphylococci (CoNS) isolates (B) recovered from blood cultures during 2015–2019
Fig. 7
Fig. 7
Comparative analysis for antibiotic resistance rate between E. coli, K. pneumoniae, and Pseudomonas spp. with all gram-negative isolates (A, B, and C, respectively)

References

    1. El-Mahallawy HA, Hassan SS, El-Wakil M, Moneer MM, Shalaby L. Increasing antimicrobial resistance monitored in surveillance analysis of blood stream infections in febrile neutropenic pediatric oncology patients. Asian Pac J Cancer Prev. 2015;16(14):5691–5695. doi: 10.7314/APJCP.2015.16.14.5691.
    1. Kang C-I, Kim S-H, Park WB, Lee K-D, Kim H-B, Kim E-C. Oh M-d, Choe K-W: bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob Agents Chemother. 2005;49(2):760–766. doi: 10.1128/AAC.49.2.760-766.2005.
    1. Van de Louw A, Lewis AM, Yang Z. Autopsy findings in patients with acute myeloid leukemia and non-Hodgkin lymphoma in the modern era: a focus on lung pathology and acute respiratory failure. Ann Hematol. 2019;98(1):119–129. doi: 10.1007/s00277-018-3494-3.
    1. Easow JM, Joseph NM, Dhungel BA, Chapagain B, Shivananda PG. Blood stream infections among febrile patients attending a teaching hospital in Western region of Nepal. Australasian Medical Journal. 2010;3(10):633–637. doi: 10.4066/AMJ.2010.422.
    1. Al-Otaibi FE, Bukhari EE, Badr M, Alrabiaa AA. Prevalence and risk factors of gram-negative bacilli causing blood stream infection in patients with malignancy. Saudi Medical Journal. 2016;37(9):979–984. doi: 10.15537/smj.2016.9.14211.
    1. Kokkayil P, Agarwal R, Mohapatra S, Bakhshi S, Das B, Sood S, Dhawan B, Kapil A. Bacterial profile and antibiogram of blood stream infections in febrile neutropenic patients with haematological malignancies. Journal of Infection in Developing Countries. 2018;12(6):442–447. doi: 10.3855/jidc.9725.
    1. Prabhash K, Medhekar A, Ghadyalpatil N, Noronha V, Biswas S, Kurkure P, Nair R, Kelkar R. Blood stream infections in cancer patients: A single center experience of isolates and sensitivity pattern. Indian J Cancer. 2010;47(2):184–188. doi: 10.4103/0019-509X.63019.
    1. McNamara JF, Righi E, Wright H, Hartel GF, Harris PNA, Paterson DL. Long-term morbidity and mortality following bloodstream infection: A systematic literature review. J Inf Secur. 2018;77(1):1–8.
    1. Kuderer NM, Dale DC, Crawford J, Cosler LE, Lyman GH. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer. 2006;106(10):2258–2266. doi: 10.1002/cncr.21847.
    1. Feld R. Bloodstream infections in cancer patients with febrile neutropenia. Int J Antimicrob Agents. 2008;32:S30–S33. doi: 10.1016/j.ijantimicag.2008.06.017.
    1. Tang Y, Wu X, Cheng Q, Li X. Inappropriate initial antimicrobial therapy for hematological malignancies patients with gram-negative bloodstream infections. Infection. 2020;48(1):109–116. doi: 10.1007/s15010-019-01370-x.
    1. Garcia-Vidal C, Cardozo-Espinola C, Puerta-Alcalde P, Marco F, Tellez A, Agüero D, Romero-Santana F, Díaz-Beyá M, Giné E, Morata L. Risk factors for mortality in patients with acute leukemia and bloodstream infections in the era of multiresistance. PLoS One. 2018;13(6):e0199531. doi: 10.1371/journal.pone.0199531.
    1. Doron S, Davidson LE. Antimicrobial stewardship. Mayo Clin Proc. 2011;86(11):1113–1123. doi: 10.4065/mcp.2011.0358.
    1. Diekema DJ, Hsueh P-R, Mendes RE, Pfaller MA, Rolston KV, Sader HS, Jones RN. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2019;63(7):e00355–e00319. doi: 10.1128/AAC.00355-19.
    1. Organization WH: Antimicrobial resistance – global report on surveillance. 64748_eng.pdf;jsessionid=519244EE0EEF520027CE4098504150B4?sequence=1. 2014.
    1. Clinical and Laboratory Standards Institute (CLSI): Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. In. 950 West Valley Road. Suite 2500, Wayne, Pennsylvania 19087 USA: Clinical and Laboratory Standards Institute; 2020: 108.
    1. Clinical and Laboratory Standards Institute (CLSI): Performance standards for antimicrobial susceptibility testing: approved 28th ed. In.: CLSI Wayne, PA; 2018.
    1. Magiorakos A-P, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, Harbarth S, Hindler J, Kahlmeter G, Olsson-Liljequist B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi: 10.1111/j.1469-0691.2011.03570.x.
    1. Islas-Muñoz B, Volkow-Fernández P, Ibanes-Gutiérrez C, Villamar-Ramírez A, Vilar-Compte D, Cornejo-Juárez P. Bloodstream infections in cancer patients. Risk factors associated with mortality. Int J Infect Dis. 2018;71:59–64. doi: 10.1016/j.ijid.2018.03.022.
    1. Moell J, Svenningsson A, Af Sandeberg M, Larsson M, Heyman M, Harila-Saari A, Nilsson A. Early central line-associated blood stream infections in children with cancer pose a risk for premature catheter removal. Acta Paediatr. 2019;108(2):361–366. doi: 10.1111/apa.14432.
    1. Vahedian-Ardakani HA, Moghimi M, Shayestehpour M, Doosti M, Amid N. Bacterial Spectrum and antimicrobial resistance pattern in Cancer patients with febrile neutropenia. Asian Pac J Cancer Prev. 2019;20(5):1471–1474. doi: 10.31557/APJCP.2019.20.5.1471.
    1. Jamal A, Fatima N, Shaikh S, Kaleem B, Rizvi QA, Zaidi U, Borhany M, Shamsi T. Pattern of antimicrobial sensitivity in microbiologically documented infections in neutropenic patients with Haematological malignancies: A single center study. Indian J Microbiol. 2019;59(2):188–192. doi: 10.1007/s12088-019-00789-y.
    1. Litwin A, Fedorowicz O, Duszynska W. Characteristics of microbial factors of healthcare-associated infections including multidrug-resistant pathogens and antibiotic consumption at the university intensive care unit in Poland in the years 2011–2018. Int J Environ Res Public Health. 2020;17(19):6943. doi: 10.3390/ijerph17196943.
    1. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) [.]
    1. Andersen MA, Moser CE, Lundgren J, Niemann CU. Epidemiology of bloodstream infections in patients with chronic lymphocytic leukemia: a longitudinal nation-wide cohort study. Leukemia. 2019;33(3):662–670. doi: 10.1038/s41375-018-0316-5.
    1. Righi E, Peri AM, Harris PN, Wailan AM, Liborio M, Lane SW, Paterson DL. Global prevalence of carbapenem resistance in neutropenic patients and association with mortality and carbapenem use: systematic review and meta-analysis. J Antimicrob Chemother. 2017;72(3):668–677. doi: 10.1093/jac/dkw459.
    1. Nordmann P, Poirel L: Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clinical Infectious Diseases 2019, 69(Supplement_7):S521-S528.
    1. Başaran NÇ, Karaağaoğlu E, Hasçelik G, Tanrıöver MD, Akova M. Prospective evaluation of infection episodes in cancer patients in a tertiary care academic center: microbiological features and risk factors for mortality. Turkish Journal of Hematology. 2016;33(4):311–319. doi: 10.4274/tjh.2015.0216.
    1. Zhang Y, Wang Q, Yin Y, Chen H, Jin L, Gu B, Xie L, Yang C, Ma X, Li H: Epidemiology of carbapenem-resistant Enterobacteriaceae infections: report from the China CRE Network. Antimicrob Agents Chemother 2018, 62(2).
    1. Mehrad B, Clark NM, Zhanel GG, Lynch JP., III Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest. 2015;147(5):1413–1421. doi: 10.1378/chest.14-2171.
    1. Chen C-Y, Tien F-M, Sheng W-H, Huang S-Y, Yao M, Tang J-L, Tsay W, Tien H-F, Hsueh P-R. Clinical and microbiological characteristics of bloodstream infections among patients with haematological malignancies with and without neutropenia at a medical Centre in northern Taiwan, 2008–2013. Int J Antimicrob Agents. 2017;49(3):272–281. doi: 10.1016/j.ijantimicag.2016.11.009.
    1. Andria N, Henig O, Kotler O, Domchenko A, Oren I, Zuckerman T, Ofran Y, Fraser D, Paul M. Mortality burden related to infection with carbapenem-resistant gram-negative bacteria among haematological cancer patients: a retrospective cohort study. J Antimicrob Chemother. 2015;70(11):3146–3153. doi: 10.1093/jac/dkv218.
    1. Moghnieh R, Estaitieh N, Mugharbil A, Jisr T, Abdallah DI, Ziade F, Sinno L, Ibrahim A. Third generation cephalosporin resistant Enterobacteriaceae and multi-drug resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis. Front Cell Infect Microbiol. 2015;5:11. doi: 10.3389/fcimb.2015.00011.
    1. Kim Y-a, Yong choi J, Ki kim C, Oh kim C, Soo kim M, Hoon choi S, Sik chin B, Hoon han S, Sung lee H, Kyoung choi H : Risk factors and outcomes of bloodstream infections with metallo-β-lactamase-producing Acinetobacter. Scand J Infect Dis 2008, 40(3):234–240.
    1. Tofas P, Skiada A, Angelopoulou M, Sipsas N, Pavlopoulou I, Tsaousi S, Pagoni M, Kotsopoulou M, Perlorentzou S, Antoniadou A. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections in neutropenic patients with haematological malignancies or aplastic anaemia: analysis of 50 cases. Int J Antimicrob Agents. 2016;47(4):335–339. doi: 10.1016/j.ijantimicag.2016.01.011.
    1. Leal HF, Azevedo J, Silva GEO, Amorim AML, de Roma LRC, Arraes ACP, Gouveia EL, Reis MG, Mendes AV, de Oliveira SM. Bloodstream infections caused by multidrug-resistant gram-negative bacteria: epidemiological, clinical and microbiological features. BMC Infect Dis. 2019;19(1):609. doi: 10.1186/s12879-019-4265-z.
    1. Mansour W, Haenni M, Saras E, Grami R, Mani Y, Khalifa ABH, El Atrouss S, Kheder M, Hassen MF, Boujâafar N. Outbreak of colistin-resistant carbapenemase-producing Klebsiella pneumoniae in Tunisia. Journal of global antimicrobial resistance. 2017;10:88–94. doi: 10.1016/j.jgar.2017.03.017.
    1. El-Mokhtar MA, Daef E, Mohamed Hussein AA, Hashem MK, Hassan HM. Emergence of nosocomial pneumonia caused by Colistin-resistant Escherichia coli in patients admitted to chest intensive care unit. Antibiotics. 2021;10(3):226. doi: 10.3390/antibiotics10030226.
    1. Paterson DL, Harris PN. Colistin resistance: a major breach in our last line of defence. Lancet Infect Dis. 2016;16(2):132–133. doi: 10.1016/S1473-3099(15)00463-6.
    1. Hussein NH, Al-Kadmy IM, Taha BM, Hussein JD. Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review. Mol Biol Rep. 2021:1–11.
    1. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I. Pascual A: Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018:31(2).
    1. Shrivastava SR, Shrivastava PS, Ramasamy J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Journal of Medical Society. 2018;32(1):76. doi: 10.4103/jms.jms_25_17.
    1. Abadi ATB, Rizvanov AA, Haertlé T, Blatt NL. World Health Organization report: current crisis of antibiotic resistance. BioNanoScience. 2019;9(4):778–788. doi: 10.1007/s12668-019-00658-4.
    1. Zhou C, Jin L, Wang Q, Wang X, Chen F, Gao Y, Zhao C, Chen H, Cao B, Wang H. Bloodstream infections caused by Carbapenem-resistant Enterobacterales: risk factors for mortality, antimicrobial therapy and treatment outcomes from a prospective multicenter study. Infection and Drug Resistance. 2021;14:731. doi: 10.2147/IDR.S294282.
    1. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America guidance on the treatment of extended-Spectrum β-lactamase producing Enterobacterales (ESBL-E), Carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) Clin Infect Dis. 2021;72(7):e169–e183. doi: 10.1093/cid/ciaa1478.
    1. Lodise TP, Jr, PN, Kwa A, Graves J, Furuno JP, Graffunder E, Lomaestro B, McGregor JC. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother. 2007;51(10):3510–3515. doi: 10.1128/AAC.00338-07.
    1. Research Ethics Certificate [].

Source: PubMed

3
Abonner