3D measurement techniques for the hindfoot alignment angle from weight-bearing CT in a clinical population

Chiara Pavani, Claudio Belvedere, Maurizio Ortolani, Mauro Girolami, Stefano Durante, Lisa Berti, Alberto Leardini, Chiara Pavani, Claudio Belvedere, Maurizio Ortolani, Mauro Girolami, Stefano Durante, Lisa Berti, Alberto Leardini

Abstract

Cone-beam CT (CBCT) scans now enable accurate measurements on foot skeletal structures with the advantage of observing these in 3D and in weight-bearing. Among the most common skeletal deformities, the varus/valgus of the hindfoot is the most complex to be represented, and a number of measure proposals have been published. This study aims to analyze and to compare these measurements from CBCT scans in a real clinical population with large such deformity. Ten patients with severe acquired adult flatfoot and indication for surgery underwent CBCT scans (Carestream, USA) while standing on that leg, before and after surgical correction. Corresponding 3D shape of each bone of the distal shank and hindfoot were defined (Materialise, Belgium). Six different techniques from the literature were used to calculate the varus/valgus deformity, i.e. the inclination of the hindfoot in the frontal plane of the shank. Standard clinical measurements by goniometers were taken for comparison. According to these techniques, and starting from a careful 3D reconstruction of the relevant foot skeletal structures, a large spectrum of measurements was found to represent the same hindfoot alignment angle. Most of them were very different from the traditional clinical measures. The assessment of the pre-operative valgus deformity and of the corresponding post-operative correction varied considerably. CBCT finally allows 3D assessment of foot deformities in weight-bearing. Measurements from the different available techniques do not compare well, as they are based on very different approaches. It is recommended to be aware of the anatomical and functional concepts behind these techniques before clinical and surgical conclusions.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
A screenshot from the 3D reconstruction of the foot bones from a CBCT scan by Mimics Innovation Suite (Materialise, Belgium) software. Each bone segment has a different colour, in both the 3D view (bottom-right) and in the three anatomical planar views; in this antero-posterior slice (top-left), the tibia, fibula, calcaneus and talus bone segments are depicted. In the sagittal view (bottom-left), apparently the foot is an inclined ground, but this is accounted for to the inclination of the gantry in the present device, i.e. the foot is on the horizontal ground.
Figure 2
Figure 2
Representation of all the techniques for HAA calculation. In the frontal view, the longitudinal axis of the tibial distal diaphysis (black) and the hindfoot vertical axis (blue) are shown for each technique. For technique A, the three principal component axes of the PCA applied to the calcaneus are also shown. For techniques D and E, the sagittal views are also to better represent the posterior part of the calcaneus. Lastly, the bottom-right (RENDER) is the posterior view of the CBCT rendering of the same scan.
Figure 3
Figure 3
Boxplot with relevant outliers; the HAA measurements from all techniques for pre-op (top) and post-op (bottom). Outliers were not found in the pre-op values.

References

    1. Myerson MS, Thordarson DB, Johnson JE, Hintermann B, Sangeorzan BJ, Deland JT, Schon LC, Ellis SJ, Netto CdC. Classification and nomenclature: Progressive collapsing foot deformity. Foot Ankle Int. 2020;41(10):1271–1276. doi: 10.1177/1071100720950722.
    1. Van Boerum DH, Sangeorzan BJ. Biomechanics and pathophysiology of flat foot. Foot Ankle Clin. 2003;8(3):419–430. doi: 10.1016/s1083-7515(03)00084-6.
    1. Gutteck N, Schilde S, Delank KS, Arbab D. Etiology, pathogenesis, clinical features, diagnostics and conservative treatment of adult flatfoot. Der Orthopade. 2020;49(11):942–953. doi: 10.1007/s00132-020-03995-5.
    1. Caravaggi P, Sforza C, Leardini A, Portinaro N, Panou A. Effect of plano-valgus foot posture on midfoot kinematics during barefoot walking in an adolescent population. J. Foot Ankle Res. 2018;11(1):55. doi: 10.1186/s13047-018-0297-7.
    1. Conti MS, Ellis SJ. Weight-bearing CT scans in foot and ankle surgery. J. Am. Acad. Orthop. Surg. 2020;28(14):e595–e603. doi: 10.5435/JAAOS-D-19-00700.
    1. Carrara C, Caravaggi P, Belvedere C, Leardini A. Radiographic angular measurements of the foot and ankle in weight-bearing: A literature review. Foot Ankle Surg. 2020;26(5):509–517. doi: 10.1016/j.fas.2019.07.008.
    1. Leardini A, Durante S, Belvedere C, Caravaggi P, Carrara C, Berti L, Lullini G, Giacomozzi C, Durastanti G, Ortolani M, Guglielmi G, Bazzocchi A. Weight-bearing CT technology in musculoskeletal pathologies of the lower limbs: Techniques, initial applications, and preliminary combinations with gait-analysis measurements at the Istituto Ortopedico Rizzoli. Seminars in Musculoskeletal Radiology. 2019;23(6):643–656. doi: 10.1055/s-0039-1697939.
    1. Carrara C, Belvedere C, Caravaggi P, Durante S, Leardini A. Techniques for 3D foot bone orientation angles in weight-bearing from cone-beam computed tomography. Foot Ankle Surg. 2021;27(2):168–174. doi: 10.1016/j.fas.2020.03.013.
    1. Ortolani M, Leardini A, Pavani C, Scicolone S, Girolami M, Bevoni R, Lullini G, Durante S, Berti L, Belvedere C. Angular and linear measurements of adult flexible flatfoot via weight-bearing CT scans and 3D bone reconstruction tools. Sci. Rep. 2021;11(1):16139. doi: 10.1038/s41598-021-95708-x.
    1. Godoy-Santos ALBA, Bordalo-Rodrigues M, Lintz F, Lôbo CFT, Netto CC. Weight-bearing cone-beam computed tomography in the foot and ankle specialty: Where we are and where we are going - an update. Radiol. Bras. 2021;54(3):177–184. doi: 10.1590/0100-3984.2020.0048.
    1. Brandenburg LS, Siegel M, Neubauer J, Merz J, Bode G, Kuhle J. Measuring standing hindfoot alignment: reliability of different approaches in conventional X-ray and cone-beam CT. Arch Orthop Trauma Surg. 2021 doi: 10.1007/s00402-021-03904-1.
    1. Pilania K, Jankharia B, Monoot P. Role of the weight-bearing cone-beam CT in evaluation of flatfoot deformity. Indian J. Radiol. Imaging. 2019;29(4):364–371. doi: 10.4103/ijri.IJRI_288_19.
    1. Cody EA, Williamson ER, Burket JC, Deland JT, Ellis SJ. Correlation of talar anatomy and subtalar joint alignment on weightbearing computed tomography with radiographic flatfoot parameters. Foot Ankle Int. 2016;37(8):874–881. doi: 10.1177/1071100716646629.
    1. de Cesar NC, Schon LC, Thawait GK, da Fonseca LF, Chinanuvathana A, Zbijewski WB, Siewerdsen JH, Demehri S. Flexible adult acquired flatfoot deformity: Comparison between weight-bearing and non-weight-bearing measurements using cone-beam computed tomography. J. Bone Joint Surg. Am. 2017;99(18):e98. doi: 10.2106/JBJS.16.01366.
    1. Barg A, Bailey T, Richter M, de Cesar NC, Lintz F, Burssens A, Phisitkul P, Hanrahan CJ, Saltzman CL. Weightbearing computed tomography of the foot and ankle: Emerging technology topical review. Foot Ankle Int. 2018;39(3):376–386. doi: 10.1177/1071100717740330.
    1. Lintz F, de Cesar Netto C, Barg A, Burssens A, Richter M, Group WBCIS Weight-bearing cone beam CT scans in the foot and ankle. EFORT Open Rev. 2018;3(5):278–286. doi: 10.1302/2058-5241.3.170066.
    1. Burssens ABM, Buedts K, Barg A, Vluggen E, Demey P, Saltzman CL, Victor JMK. Is lower-limb alignment associated with hindfoot deformity in the coronal plane? A weightbearing CT analysis. Clin. Orthop. Relat. Res. 2020;478(1):154–168. doi: 10.1097/CORR.0000000000001067.
    1. Haldar A, Bernasconi A, Junaid SE, Lee KHB, Welck M, Saifuddin A. 3D imaging for hindfoot alignment assessment: A comparative study between non-weight-bearing MRI and weight-bearing CT. Skelet. Radiol. 2021;50(1):179–188. doi: 10.1007/s00256-020-03532-7.
    1. Lintz F, Beaudet P, Richardi G, Brilhault J. Weight-bearing CT in foot and ankle pathology. Orthop. Traumatol. Surg. Res. 2021;107(1S):102772. doi: 10.1016/j.otsr.2020.102772.
    1. Ludlow JB, Ivanovic M. Weightbearing CBCT, MDCT, and 2D imaging dosimetry of the foot and ankle. Int. J. Diagn. Imaging. 2014;1(2):1. doi: 10.5430/ijdi.v1n2p1.
    1. Ludlow JB. Hand-wrist, knee, and foot-ankle dosimetry and image quality measurements of a novel extremity imaging unit providing CBCT and 2D imaging options. Med. Phys. 2018;45(11):4955–4963. doi: 10.1002/mp.13198.
    1. Posadzy M, Desimpel J, Vanhoenacker F. Cone beam CT of the musculoskeletal system: Clinical applications. Insights Imaging. 2018;9(1):35. doi: 10.1007/s13244-017-0582-1.
    1. Hamard M, Neroladaki A, Bagetakos I, Dubois-Ferrière V, Montet X, Boudabbous S. Accuracy of cone-beam computed tomography for syndesmosis injury diagnosis compared to conventional computed tomography. Foot Ankle Surg. 2019;26(3):265–272. doi: 10.1016/j.fas.2019.03.006.
    1. Durastanti G, Leardini A, Siegler S, Durante S, Bazzocchi A, Belvedere C. Comparison of cartilage and bone morphological models of the ankle joint derived from different medical imaging technologies. Quant. Imaging Med. Surg. 2019;9(8):1368–1382. doi: 10.21037/qims.2019.08.08.
    1. Kido M, Ikoma K, Imai K, Maki M, Takatori R, Tokunaga D, Inoue N, Kubo T. Load response of the tarsal bones in patients with flatfoot deformity: in vivo 3D study. Foot Ankle Int. 2011;32(11):1017–1022. doi: 10.3113/FAI.2011.1017.
    1. Bernasconi A, De Franco C, Improta G, Verrazzo R, Balato G, Rizzo M, Lenzi M, Smeraglia F. Foot and ankle measurements on cone beam weightbearing computed tomography. J. Biol. Regul. Homeost. Agents. 2020;34(3 Suppl. 2):23–32.
    1. Bücking TM, Hill ER, Robertson JL, Maneas E, Plumb AA, Nikitichev DI. From medical imaging data to 3D printed anatomical models. PLoS ONE. 2017;12(5):e0178540. doi: 10.1371/journal.pone.0178540.
    1. de Cesar NC, Shakoor D, Roberts L, Chinanuvathana A, Mousavian A, Lintz F, Schon L, Demehri S. Hindfoot alignment of adult acquired flatfoot deformity: A comparison of clinical assessment and weightbearing cone beam CT examinations. Foot Ankle Surg. 2019 doi: 10.1016/j.fas.2018.10.008.
    1. Richter M, Seidl B, Zech S, Hahn S. PedCAT for 3D-imaging in standing position allows for more accurate bone position (angle) measurement than radiographs or CT. Foot Ankle Surg. 2014;20(3):201–207. doi: 10.1016/j.fas.2014.04.004.
    1. Hirschmann A, Pfirrmann CWA, Klammer G, Espinosa N, Buck FM. Upright cone CT of the hindfoot: Comparison of the non-weight-bearing with the upright weight-bearing position. Eur. Radiol. 2014;24(3):553–558. doi: 10.1007/s00330-013-3028-2.
    1. Shakoor D, de Cesar-Netto C, Thawait GK, Ellis SJ, Richter M, Schon LC, Society IWBC. Demehri S. Weight-bearing radiographs and cone-beam computed tomography examinations in adult acquired flatfoot deformity. Foot Ankle Surg. 2020;27(2):201–206. doi: 10.1016/j.fas.2020.04.011.
    1. Sobel E, Levitz S, Caselli M, Brentnall Z, Tran MQ. Natural history of the rearfoot angle: Preliminary values in 150 children. Foot Ankle Int. 1999;20(2):119–125. doi: 10.1177/107110079902000209.
    1. Kanatli UGR, Besli K, Yetkin H, Bölükbasi S. The relationship between the hindfoot angle and the medial longitudinal arch of the foot. Foot Ankle Int. 2006;27(8):623–627. doi: 10.1177/107110070602700810.
    1. Saltzman CL, el-Khoury GY. The hindfoot alignment view. Foot Ankle Int. 1995;16(9):572–576. doi: 10.1177/107110079501600911.
    1. de Cesar NC, Kunas GC, Soukup D, Marinescu A, Ellis SJ. Correlation of clinical evaluation and radiographic hindfoot alignment in stage II adult-acquired flatfoot deformity. Foot Ankle Int. 2018;39(7):771–779. doi: 10.1177/1071100718762113.
    1. Ohnishi T, Hida M, Nagasaki T, Wada C. Reliability of laser-assisted hindfoot alignment evaluation. J. Phys. Ther. Sci. 2020;32(1):38–41. doi: 10.1589/jpts.32.38.
    1. Flores DV, Mejía Gómez C, Fernández Hernando M, Davis MA, Pathria MN. Adult acquired flatfoot deformity: Anatomy, biomechanics, staging, and imaging findings. Radiographics. 2019;39(5):1437–1460. doi: 10.1148/rg.2019190046.
    1. Reilingh MLBL, Tuijthof GJ, Stufkens SA, Maas M, van Dijk CN. Measuring hindfoot alignment radiographically: The long axial view is more reliable than the hindfoot alignment view. Skelet. Radiol. 2010;39(11):1103–1108. doi: 10.1007/s00256-009-0857-9.
    1. Robinson IDR, Halson-Brown S. Reliability of clinical and radiographic measurement of rearfoot alignment in a patient population. Foot. 2001;11(1):2–9. doi: 10.1054/foot.2000.0645.
    1. Cobey JC. Posterior roentgenogram of the foot. Clin. Orthop. Relat. Res. 1976;118:202–207.
    1. Choi JY, Lee HI, Kim JH, Suh JS. Radiographic measurements on hindfoot alignment view in 1128 asymptomatic subjects. Foot Ankle Surg. 2021;27(4):366–370. doi: 10.1016/j.fas.2020.04.010.
    1. Lamm BM, Mendicino RW, Catanzariti AR, Hillstrom HJ. Static rearfoot alignment: A comparison of clinical and radiographic measures. J. Am. Podiatr. Med. Assoc. 2005;95(1):26–33. doi: 10.7547/0950026.
    1. Williamson ERC, Chan JY, Burket JC, Deland JT, Ellis SJ. New radiographic parameter assessing hindfoot alignment in stage II adult-acquired flatfoot deformity. Foot Ankle Int. 2015;36(4):417–423. doi: 10.1177/1071100714558846.
    1. Kleiger BMH. A roentgenographic study of the development of the calcaneus by means of the posterior tangential view. J. Bone Joint Surg. 1961;43(7):961–969. doi: 10.2106/00004623-196143070-00005.
    1. Lee HY, Barbachan Mansur NS, Lalevee M, Dibbern KN, Myerson MS, Ellis SJ, Femino JE, Progressive Collapsing Foot Deformity Consensus G. de Cesar Netto C. Intra- and interobserver reliability of the new classification system of progressive collapsing foot deformity. Foot Ankle Int. 2021;1:2. doi: 10.1177/10711007211058154.
    1. Burssens A, Peeters J, Buedts K, Victor J, Vandeputte G. Measuring hindfoot alignment in weight bearing CT: A novel clinical relevant measurement method. Foot Ankle Surg. 2016;22(4):233–238. doi: 10.1016/j.fas.2015.10.002.
    1. Lôbo CFTPE, Bordalo-Rodrigues M, de Cesar NC, Godoy-Santos AL. Imaging of progressive collapsing foot deformity with emphasis on the role of weightbearing cone beam CT. Skelet. Radiol. 2021 doi: 10.1007/s00256-021-03942-1.
    1. Johnson JE, Lamdan R, Granberry WF, Harris GF, Carrera GF. Hindfoot coronal alignment: A modified radiographic method. Foot Ankle Int. 1999;20(12):818–825. doi: 10.1177/107110079902001212.
    1. Buck FM, Hoffmann A, Mamisch-Saupe N, Espinosa N, Resnick D, Hodler J. Hindfoot alignment measurements: Rotation-stability of measurement techniques on hindfoot alignment view and long axial view radiographs. AJR Am. J. Roentgenol. 2011;197(3):578–582. doi: 10.2214/AJR.10.5728.
    1. Slullitel GÁV, Lopez V, Calvi JP, Calvo AB. How accurate is clinical evaluation in hindfoot coronal alignment? Foot Ankle Ortho. 2017;2(4):1–7.
    1. Burssens A, Van Herzele E, Leenders T, Clockaerts S, Buedts K, Vandeputte G, Victor J. Weightbearing CT in normal hindfoot alignment—Presence of a constitutional valgus? Foot Ankle Surg. 2018;24(3):213–218. doi: 10.1016/j.fas.2017.02.006.
    1. Mosca M, Caravelli S, Vannini F, Pungetti C, Catanese G, Massimi S, Fuiano M, Faldini C, Giannini S. Mini bone block distraction subtalar arthrodesis (SAMBB) in the management of acquired adult flatfoot with subtalar arthritis: A modification to the Grice-Green procedure. Joints. 2019;7(2):64–70. doi: 10.1055/s-0039-3400452.
    1. Mosca M, Caravelli S, Vocale E, Massimi S, Fuiano M, Grassi A, Ceccarelli F, Zaffagnini S. Outcome after modified Grice-Green Procedure (SAMBB) for arthritic acquired adult flatfoot. Foot Ankle Int. 2020;41(11):1404–1410. doi: 10.1177/1071100720938665.
    1. Marta Peña Fernández DH, Chan O, Mordecai S, Blunn GW, Tozzi G, Goldberg A. Centre of rotation of the human subtalar joint using weight-bearing clinical computed tomography. Sci. Rep. 2020;10:1035. doi: 10.1038/s41598-020-57912-z.

Source: PubMed

3
Abonner