Patient Self-Inflicted Lung Injury-A Narrative Review of Pathophysiology, Early Recognition, and Management Options

Peter Sklienka, Michal Frelich, Filip Burša, Peter Sklienka, Michal Frelich, Filip Burša

Abstract

Patient self-inflicted lung injury (P-SILI) is a life-threatening condition arising from excessive respiratory effort and work of breathing in patients with lung injury. The pathophysiology of P-SILI involves factors related to the underlying lung pathology and vigorous respiratory effort. P-SILI might develop both during spontaneous breathing and mechanical ventilation with preserved spontaneous respiratory activity. In spontaneously breathing patients, clinical signs of increased work of breathing and scales developed for early detection of potentially harmful effort might help clinicians prevent unnecessary intubation, while, on the contrary, identifying patients who would benefit from early intubation. In mechanically ventilated patients, several simple non-invasive methods for assessing the inspiratory effort exerted by the respiratory muscles were correlated with respiratory muscle pressure. In patients with signs of injurious respiratory effort, therapy aimed to minimize this problem has been demonstrated to prevent aggravation of lung injury and, therefore, improve the outcome of such patients. In this narrative review, we accumulated the current information on pathophysiology and early detection of vigorous respiratory effort. In addition, we proposed a simple algorithm for prevention and treatment of P-SILI that is easily applicable in clinical practice.

Keywords: extracorporeal membranous oxygenation; patient self-inflicted lung injury; respiratory effort; transpulmonary driving pressure; work of breathing.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The pathophysiology of P-SILI—a “vicious circle” of self-aggravating lung injury; yellow arrow—vagal signalization (according to [5,10,18]).
Figure 2
Figure 2
Noninvasive or minimally invasive bedside tools for detection of potentially injurious respiratory effort. Blue square—methods of indirect detection of vigorous spontaneous effort in patients breathing spontaneously or on noninvasive ventilation. White square—methods applicable both during spontaneous breathing and mechanical ventilation. Green square—methods applicable under mechanical ventilation. Abbreviations: WOB—work of breathing; HFNC—high-flow nasal cannula; NIV—noninvasive ventilation; SpO2—peripheral oxygen saturation; FiO2—fraction of inspired oxygen; RR—respiratory rate; HR—heart rate; GCS—Glasgow Coma Scale; paO2—arterial partial pressure of oxygen; Pes—esophageal pressure; ΔPes—esophageal pressure swings; Pmus—respiratory muscle pressure; PL—transpulmonary pressure; Vt—tidal volume; IBW—ideal body weight; P0.1—airway occlusion pressure at 100 ms; Pocc—expiratory occlusion pressure.
Figure 3
Figure 3
Proposal of an algorithm for P-SILI prevention and treatment. CMV—controlled mechanical ventilation; HFNC—high-flow nasal cannula; NIV—noninvasive ventilation; PNX—pneumothorax; PNM—pneumomediastinum; ECMO—extracorporeal membranous oxygenation.

References

    1. Tremblay L.N., Slutsky A.S. Ventilator-induced injury: From barotrauma to biotrauma. Proc. Assoc. Am. Physicians. 1998;110:482–488.
    1. Vincent J.-L., Zambon M. Why Do Patients Who Have Acute Lung Injury/Acute Respiratory Distress Syndrome Die from Multiple Organ Dysfunction Syndrome? Implications for Management. Clin. Chest Med. 2006;27:725–731. doi: 10.1016/j.ccm.2006.06.010.
    1. Petrucci N., De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst. Rev. 2013;2013:CD003844. doi: 10.1002/14651858.CD003844.pub4.
    1. Cressoni M., Gotti M., Chiurazzi C., Massari D., Algieri I., Amini M., Cammaroto A., Brioni M., Montaruli C., Nikolla K., et al. Mechanical Power and Development of Ventilator-induced Lung Injury. Anesthesiology. 2016;124:1100–1108. doi: 10.1097/ALN.0000000000001056.
    1. Brochard L., Slutsky A., Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017;195:438–442. doi: 10.1164/rccm.201605-1081CP.
    1. Mascheroni D., Kolobow T., Fumagalli R., Moretti M.P., Chen V., Buckhold D. Acute respiratory failure following pharmacologically induced hyperventilation: An experimental animal study. Intensive Care Med. 1988;15:8–14. doi: 10.1007/BF00255628.
    1. Yoshida T., Uchiyama A., Matsuura N., Mashimo T., Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model. Crit. Care Med. 2012;40:1578–1585. doi: 10.1097/CCM.0b013e3182451c40.
    1. Yoshida T., Uchiyama A., Matsuura N., Mashimo T., Fujino Y. The Comparison of Spontaneous Breathing and Muscle Paralysis in Two Different Severities of Experimental Lung Injury*. Crit. Care Med. 2013;41:536–545. doi: 10.1097/CCM.0b013e3182711972.
    1. Cruces P., Retamal J., Hurtado D.E., Erranz B., Iturrieta P., González C., Díaz F. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection. Crit. Care. 2020;24:494. doi: 10.1186/s13054-020-03197-7.
    1. Jonkman A.H., de Vries H., Heunks L.M.A. Physiology of the Respiratory Drive in ICU Patients: Implications for Diagnosis and Treatment. Crit. Care. 2020;24:104. doi: 10.1186/s13054-020-2776-z.
    1. Spinelli E., Mauri T., Beitler J.R., Pesenti A., Brodie D. Respiratory drive in the acute respiratory distress syndrome: Pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46:606–618. doi: 10.1007/s00134-020-05942-6.
    1. Gattinoni L., Carlesso E., Caironi P. Stress and strain within the lung. Curr. Opin. Crit. Care. 2012;18:42–47. doi: 10.1097/MCC.0b013e32834f17d9.
    1. Gattinoni L., Tonetti T., Quintel M. Regional physiology of ARDS. Crit. Care. 2017;21((Suppl. S3)):312. doi: 10.1186/s13054-017-1905-9.
    1. Yoshida T., Amato M.B.P., Grieco D.L., Chen L., Lima C.A.S., Roldan R., Morais C.C.A., Gomes S., Costa E.L.V., Cardoso P.F.G., et al. Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. Am. J. Respir. Crit. Care Med. 2018;197:1018–1026. doi: 10.1164/rccm.201709-1806OC.
    1. Yoshida T., Torsani V., Gomes S., De Santis R.R., Beraldo M.A., Costa E.L.V., Tucci M.R., Zin W.A., Kavanagh B.P., Amato M.B.P. Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2013;188:1420–1427. doi: 10.1164/rccm.201303-0539OC.
    1. Bachmann M.C., Morais C., Bugedo G., Bruhn A., Morales A., Borges J.B., Costa E., Retamal J. Electrical impedance tomography in acute respiratory distress syndrome. Crit. Care. 2018;22:263. doi: 10.1186/s13054-018-2195-6.
    1. Cornejo R.A., Arellano D.H., Ruiz-Rudolph P., Guiñez D.V., Morais C.C.A., Gajardo A.I.J., Lazo M.T., Brito R.E., Cerda M.A., González S.J., et al. Inflammatory biomarkers and pendelluft magnitude in ards patients transitioning from controlled to partial support ventilation. Sci. Rep. 2022;12:20233. doi: 10.1038/s41598-022-24412-1.
    1. Bhattacharya M., Kallet R.H., Ware L.B., Matthay M.A. Negative-Pressure Pulmonary Edema. Chest. 2016;150:927–933. doi: 10.1016/j.chest.2016.03.043.
    1. Goligher E.C., Jonkman A.H., Dianti J., Vaporidi K., Beitler J.R., Patel B.K., Yoshida T., Jaber S., Dres M., Mauri T., et al. Clinical strategies for implementing lung and diaphragm-protective ventilation: Avoiding insufficient and excessive effort. Intensive Care Med. 2020;46:2314–2326. doi: 10.1007/s00134-020-06288-9.
    1. Itagaki T. Diaphragm-protective mechanical ventilation in acute respiratory failure. J. Med. Investig. 2022;69:165–172. doi: 10.2152/jmi.69.165.
    1. Saavedra S.N., Barisich P.V.S., Maldonado J.B.P., Lumini R.B., Gómez-González A., Gallardo A. Asynchronies during invasive mechanical ventilation: Narrative review and update. Acute Crit. Care. 2022;37:491–501. doi: 10.4266/acc.2022.01158.
    1. Blanch L., Villagra A., Sales B., Montanya J., Lucangelo U., Luján M., García-Esquirol O., Chacón E., Estruga A., Oliva J.C., et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–641. doi: 10.1007/s00134-015-3692-6.
    1. Kyo M., Shimatani T., Hosokawa K., Taito S., Kataoka Y., Ohshimo S., Shime N. Patient–ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: A systematic review and meta-analysis. J. Intensive Care. 2021;9:50. doi: 10.1186/s40560-021-00565-5.
    1. Gattinoni L., Chiumello D., Caironi P., Busana M., Romitti F., Brazzi L., Camporota L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–1102. doi: 10.1007/s00134-020-06033-2.
    1. Marini J.J., Dellinger R.P., Brodie D. Integrating the evidence: Confronting the COVID-19 elephant. Intensive Care Med. 2020;46:1904–1907. doi: 10.1007/s00134-020-06195-z.
    1. Tonelli R., Marchioni A., Tabbì L., Fantini R., Busani S., Castaniere I., Andrisani D., Gozzi F., Bruzzi G., Manicardi L., et al. Spontaneous Breathing and Evolving Phenotypes of Lung Damage in Patients with COVID-19: Review of Current Evidence and Forecast of a New Scenario. J. Clin. Med. 2021;10:975. doi: 10.3390/jcm10050975.
    1. Busana M., Gasperetti A., Giosa L., Forleo G.B., Schiavone M., Mitacchione G., Bonino C., Villa P., Galli M., Tondo C., et al. Prevalence and outcome of silent hypoxemia in COVID-19. Minerva Anestesiol. 2021;87:325–333. doi: 10.23736/S0375-9393.21.15245-9.
    1. Porzionato A., Emmi A., Contran M., Stocco E., Riccetti S., Sinigaglia A., Macchi V., Barzon L., De Caro R. Case Report: The Carotid Body in COVID-19: Histopathological and Virological Analyses of an Autopsy Case Series. Front. Immunol. 2021;12:736529. doi: 10.3389/fimmu.2021.736529.
    1. Lambermont B., Davenne E., Maclot F., Delvenne P. SARS-CoV-2 in carotid body. Intensive Care Med. 2021;47:342–343. doi: 10.1007/s00134-021-06351-z.
    1. Elabbadi A., Urbina T., Berti E., Contou D., Plantefève G., Soulier Q., Milon A., Carteaux G., Voiriot G., Fartoukh M., et al. Spontaneous pneumomediastinum: A surrogate of P-SILI in critically ill COVID-19 patients. Crit. Care. 2022;26:350. doi: 10.1186/s13054-022-04228-1.
    1. Shahsavarinia K., Rahvar G., Soleimanpour H., Saadati M., Vahedi L., Mahmoodpoor A. Spontaneous pneumomediastinum, pneumothorax and subcutaneous emphysema in critically ill COVID-19 patients: A systematic review. Pak. J. Med. Sci. 2022;38:730–735. doi: 10.12669/pjms.38.3.5529.
    1. Melhorn J., Achaiah A., Conway F.M., Thompson E.M.F., Skyllberg E.W., Durrant J., Hasan N.A., Madani Y., Naran P., Vijayakumar B., et al. Pneumomediastinum in COVID-19: A phenotype of severe COVID-19 pneumonitis? The results of the UK POETIC survey. Eur. Respir. J. 2022;60:2102522. doi: 10.1183/13993003.02522-2021.
    1. Woo W., Kipkorir V., Marza A.M., Hamouri S., Albawaih O., Dhali A., Kim W., Udwadia Z.F., Nashwan A.J., Shaikh N., et al. Prognosis of Spontaneous Pneumothorax/Pneumomediastinum in Coronavirus Disease 2019: The CoBiF Score. J. Clin. Med. 2022;11:7132. doi: 10.3390/jcm11237132.
    1. Tobin M.J. Why Physiology Is Critical to the Practice of Medicine. Clin. Chest Med. 2019;40:243–257. doi: 10.1016/j.ccm.2019.02.012.
    1. Apigo M., Schechtman J., Dhliwayo N., Al Tameemi M., Gazmuri R.J. Development of a work of breathing scale and monitoring need of intubation in COVID-19 pneumonia. Crit. Care. 2020;24:477. doi: 10.1186/s13054-020-03176-y.
    1. Roca O., Messika J., Caralt B., García-De-Acilu M., Sztrymf B., Ricard J.-D., Masclans J.R. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J. Crit. Care. 2016;35:200–205. doi: 10.1016/j.jcrc.2016.05.022.
    1. Prakash J., Bhattacharya P.K., Yadav A.K., Kumar A., Tudu L.C., Prasad K. ROX index as a good predictor of high flow nasal cannula failure in COVID-19 patients with acute hypoxemic respiratory failure: A systematic review and meta-analysis. J. Crit. Care. 2021;66:102–108. doi: 10.1016/j.jcrc.2021.08.012.
    1. Zhou X., Liu J., Pan J., Xu Z., Xu J. The ROX index as a predictor of high-flow nasal cannula outcome in pneumonia patients with acute hypoxemic respiratory failure: A systematic review and meta-analysis. BMC Pulm. Med. 2022;22:121. doi: 10.1186/s12890-022-01914-2.
    1. Duan J., Han X., Bai L., Zhou L., Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43:192–199. doi: 10.1007/s00134-016-4601-3.
    1. Bai L., Ding F., Xiong W., Shu W., Jiang L., Liu Y., Duan J. Early assessment of the efficacy of noninvasive ventilation tested by HACOR score to avoid delayed intubation in patients with moderate to severe ARDS. Ther. Adv. Respir. Dis. 2022;16:17534666221081042. doi: 10.1177/17534666221081042.
    1. Grasso S., Stripoli T. Transpulmonary Pressure–based Mechanical Ventilation in Acute Respiratory Distress Syndrome. From Theory to Practice? Am. J. Respir. Crit. Care Med. 2018;197:977–978. doi: 10.1164/rccm.201801-0132ED.
    1. Mietto C., Malbrain M.L., Chiumello D. Transpulmonary pressure monitoring during mechanical ventilation: A bench-to-bedside review. Anaesthesiol. Intensive Ther. 2015;47:27–37. doi: 10.5603/AIT.a2015.0065.
    1. Tonelli R., Cortegiani A., Marchioni A., Fantini R., Tabbì L., Castaniere I., Biagioni E., Busani S., Nani C., Cerbone C., et al. Nasal pressure swings as the measure of inspiratory effort in spontaneously breathing patients with de novo acute respiratory failure. Crit. Care. 2022;26:70. doi: 10.1186/s13054-022-03938-w.
    1. Telias I., Junhasavasdikul D., Rittayamai N., Piquilloud L., Chen L., Ferguson N., Goligher E.C., Brochard L. Airway Occlusion Pressure As an Estimate of Respiratory Drive and Inspiratory Effort during Assisted Ventilation. Am. J. Respir. Crit. Care Med. 2020;201:1086–1098. doi: 10.1164/rccm.201907-1425OC.
    1. Telias I., Spadaro S. Techniques to monitor respiratory drive and inspiratory effort. Curr. Opin. Crit. Care. 2020;26:3–10. doi: 10.1097/MCC.0000000000000680.
    1. Bertoni M., Telias I., Urner M., Long M., Del Sorbo L., Fan E., Sinderby C., Beck J., Liu L., Qiu H., et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit. Care. 2019;23:346. doi: 10.1186/s13054-019-2617-0.
    1. Roesthuis L., Berg M.V.D., van der Hoeven H. Non-invasive method to detect high respiratory effort and transpulmonary driving pressures in COVID-19 patients during mechanical ventilation. Ann. Intensive Care. 2021;11:26. doi: 10.1186/s13613-021-00821-9.
    1. Albani F., Fusina F., Ciabatti G., Pisani L., Lippolis V., Franceschetti M.E., Giovannini A., di Mussi R., Murgolo F., Rosano A., et al. Flow Index accurately identifies breaths with low or high inspiratory effort during pressure support ventilation. Crit. Care. 2021;25:427. doi: 10.1186/s13054-021-03855-4.
    1. Miao M.-Y., Chen W., Zhou Y.-M., Gao R., Song D.-J., Wang S.-P., Yang Y.-L., Zhang L., Zhou J.-X. Validation of the flow index to detect low inspiratory effort during pressure support ventilation. Ann. Intensive Care. 2022;12:89. doi: 10.1186/s13613-022-01063-z.
    1. Bellani G., Mauri T., Coppadoro A., Grasselli G., Patroniti N., Spadaro S., Sala V., Foti G., Pesenti A. Estimation of Patient’s Inspiratory Effort From the Electrical Activity of the Diaphragm*. Crit. Care Med. 2013;41:1483–1491. doi: 10.1097/CCM.0b013e31827caba0.
    1. Coppadoro A., Rona R., Bellani G., Foti G. A brief airway occlusion is sufficient to measure the patient’s inspiratory effort/electrical activity of the diaphragm index (PEI) J. Clin. Monit. Comput. 2021;35:183–188. doi: 10.1007/s10877-020-00459-1.
    1. Graßhoff J., Petersen E., Farquharson F., Kustermann M., Kabitz H.-J., Rostalski P., Walterspacher S. Surface EMG-based quantification of inspiratory effort: A quantitative comparison with Pes. Crit. Care. 2021;25:441. doi: 10.1186/s13054-021-03833-w.
    1. Bellani G., Bronco A., Marocco S.A., Pozzi M., Sala V., Eronia N., Villa G., Foti G., Tagliabue G., Eger M., et al. Measurement of Diaphragmatic Electrical Activity by Surface Electromyography in Intubated Subjects and Its Relationship With Inspiratory Effort. Respir. Care. 2018;63:1341–1349. doi: 10.4187/respcare.06176.
    1. Jimenez J.V., Weirauch A.J., Culter C.A., Choi P.J., Hyzy R.C. Electrical Impedance Tomography in Acute Respiratory Distress Syndrome Management. Crit. Care Med. 2022;50:1210–1223. doi: 10.1097/CCM.0000000000005582.
    1. Musso G., Taliano C., Molinaro F., Fonti C., Veliaj D., Torti D., Paschetta E., Castagna E., Carbone G., Laudari L., et al. Early prolonged prone position in noninvasively ventilated patients with SARS-CoV-2-related moderate-to-severe hypoxemic respiratory failure: Clinical outcomes and mechanisms for treatment response in the PRO-NIV study. Crit. Care. 2022;26:118. doi: 10.1186/s13054-022-03937-x.
    1. Chiumello D., Chiodaroli E., Coppola S., Borlino S.C., Granata C., Pitimada M., Garcia P.D.W. Awake prone position reduces work of breathing in patients with COVID-19 ARDS supported by CPAP. Ann. Intensive Care. 2021;11:179. doi: 10.1186/s13613-021-00967-6.
    1. Fazzini B., Page A., Pearse R., Puthucheary Z. Prone positioning for non-intubated spontaneously breathing patients with acute hypoxaemic respiratory failure: A systematic review and meta-analysis. Br. J. Anaesth. 2022;128:352–362. doi: 10.1016/j.bja.2021.09.031.
    1. Reddy M.P., Subramaniam A.F., Afroz A., Billah B., Lim Z.J., Zubarev A.M., Blecher G.F., Tiruvoipati R.F., Ramanathan K.M., Wong S.N.M., et al. Prone Positioning of Nonintubated Patients with Coronavirus Disease 2019—A Systematic Review and Meta-Analysis. Crit. Care Med. 2021;49:e1001–e1014. doi: 10.1097/CCM.0000000000005086.
    1. Landoni G., Belloni O., Russo G., Bonaccorso A., Carà G., Jabaudon M. Inhaled Sedation for Invasively Ventilated COVID-19 Patients: A Systematic Review. J. Clin. Med. 2022;11:2500. doi: 10.3390/jcm11092500.
    1. Dzierba A.L., Khalil A.M., Derry K.L., Madahar P.M., Beitler J.R.M. Discordance Between Respiratory Drive and Sedation Depth in Critically Ill Patients Receiving Mechanical Ventilation. Crit. Care Med. 2021;49:2090–2101. doi: 10.1097/CCM.0000000000005113.
    1. Kassis E.B., Beitler J.R., Talmor D. Lung-protective sedation: Moving toward a new paradigm of precision sedation. Intensive Care Med. 2023;49:91–94. doi: 10.1007/s00134-022-06901-z.
    1. Dianti J., Fard S., Wong J., Chan T.C.Y., Del Sorbo L., Fan E., Amato M.B.P., Granton J., Burry L., Reid W.D., et al. Strategies for lung- and diaphragm-protective ventilation in acute hypoxemic respiratory failure: A physiological trial. Crit. Care. 2022;26:259. doi: 10.1186/s13054-022-04123-9.
    1. Jabaudon M., Boucher P., Imhoff E., Chabanne R., Faure J.-S., Roszyk L., Thibault S., Blondonnet R., Clairefond G., Guérin R., et al. Sevoflurane for Sedation in Acute Respiratory Distress Syndrome. A Randomized Controlled Pilot Study. Am. J. Respir. Crit. Care Med. 2017;195:792–800. doi: 10.1164/rccm.201604-0686OC.
    1. Jerath A., Slessarev M. The impact of the coronavirus pandemic on sedation in critical care: Volatile anesthetics in the ICU. Curr. Opin. Crit. Care. 2023;29:14–18. doi: 10.1097/MCC.0000000000001011.
    1. Doorduin J., Nollet J.L., Roesthuis L.H., Van Hees H.W.H., Brochard L.J., Sinderby C.A., Van Der Hoeven J.G., Heunks L.M.A. Partial Neuromuscular Blockade during Partial Ventilatory Support in Sedated Patients with High Tidal Volumes. Am. J. Respir. Crit. Care Med. 2017;195:1033–1042. doi: 10.1164/rccm.201605-1016OC.
    1. Somhorst P., Groot M.W., Gommers D. Partial neuromuscular blockage to promote weaning from mechanical ventilation in severe ARDS: A case report. Respir. Med. Case Rep. 2018;25:225–227. doi: 10.1016/j.rmcr.2018.09.008.
    1. Hurtado D.E., Erranz B., Lillo F., Sarabia-Vallejos M., Iturrieta P., Morales F., Blaha K., Medina T., Diaz F., Cruces P. Progression of regional lung strain and heterogeneity in lung injury: Assessing the evolution under spontaneous breathing and mechanical ventilation. Ann. Intensive Care. 2020;10:107. doi: 10.1186/s13613-020-00725-0.
    1. Bachmann M.C., Cruces P., Díaz F., Oviedo V., Goich M., Fuenzalida J., Damiani L.F., Basoalto R., Jalil Y., Carpio D., et al. Spontaneous breathing promotes lung injury in an experimental model of alveolar collapse. Sci. Rep. 2022;12:12648. doi: 10.1038/s41598-022-16446-2.
    1. Gattinoni L., Gattarello S., Steinberg I., Busana M., Palermo P., Lazzari S., Romitti F., Quintel M., Meissner K., Marini J.J., et al. COVID-19 pneumonia: Pathophysiology and management. Eur. Respir. Rev. 2021;30:210138. doi: 10.1183/16000617.0138-2021.
    1. Van Haren F., Pham T., Brochard L., Bellani G., Laffey J., Dres M., Fan E., Goligher E., Heunks L., Lynch J., et al. Spontaneous Breathing in Early Acute Respiratory Distress Syndrome. Crit. Care Med. 2019;47:229–238. doi: 10.1097/CCM.0000000000003519.
    1. Güldner A., Pelosi P., De Abreu M.G. Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr. Opin. Crit. Care. 2014;20:69–76. doi: 10.1097/MCC.0000000000000055.
    1. Papazian L., Aubron C., Brochard L., Chiche J.-D., Combes A., Dreyfuss D., Forel J.M., Guérin C., Jaber S., Mekontso-Dessap A., et al. Formal guidelines: Management of acute respiratory distress syndrome. Ann. Intensive Care. 2019;9:69. doi: 10.1186/s13613-019-0540-9.
    1. Hohmann F., Wedekind L., Grundeis F., Dickel S., Frank J., Golinski M., Griesel M., Grimm C., Herchenhahn C., Kramer A., et al. Early spontaneous breathing for acute respiratory distress syndrome in individuals with COVID-19. Cochrane Database Syst. Rev. 2022;6:CD015077. doi: 10.1002/14651858.cd015077.
    1. Crotti S., Bottino N., Spinelli E. Spontaneous breathing during veno-venous extracorporeal membrane oxygenation. J. Thorac. Dis. 2018;10((Suppl. S5)):S661–S669. doi: 10.21037/jtd.2017.10.27.
    1. Langer T., Vecchi V., Belenkiy S.M., Cannon J.W., Chung K.K., Cancio L.C., Gattinoni L., Batchinsky A.I. Extracorporeal Gas Exchange and Spontaneous Breathing for the Treatment of Acute Respiratory Distress Syndrome. Crit. Care Med. 2014;42:e211–e220. doi: 10.1097/CCM.0000000000000121.
    1. Paternoster G., Bertini P., Belletti A., Landoni G., Gallotta S., Palumbo D., Isirdi A., Guarracino F. Venovenous Extracorporeal Membrane Oxygenation in Awake Non-Intubated Patients with COVID-19 ARDS at High Risk for Barotrauma. J. Cardiothorac. Vasc. Anesth. 2022;36:2975–2982. doi: 10.1053/j.jvca.2022.03.011.
    1. Umlauf J., Eilenberger S., Spring O. Successful Treatment of a Patient with COVID-19-Induced Severe ARDS, Pneumothorax, and Pneumomediastinum with Awake vv-ECMO Implantation. Case Rep. Crit. Care. 2022;2022:6559385. doi: 10.1155/2022/6559385.
    1. Soroksky A., Tocut M., Rosman Z., Dekel H. Awake extracorporeal membrane oxygenation in a patient with COVID-19 pneumonia and severe hypoxemic respiratory failure. Eur. Rev. Med. Pharmacol. Sci. 2022;26:1761–1764. doi: 10.26355/eurrev_202203_28246.

Source: PubMed

3
Abonner