Patient-Self Inflicted Lung Injury: A Practical Review

Guillaume Carteaux, Mélodie Parfait, Margot Combet, Anne-Fleur Haudebourg, Samuel Tuffet, Armand Mekontso Dessap, Guillaume Carteaux, Mélodie Parfait, Margot Combet, Anne-Fleur Haudebourg, Samuel Tuffet, Armand Mekontso Dessap

Abstract

Patients with severe lung injury usually have a high respiratory drive, resulting in intense inspiratory effort that may even worsen lung damage by several mechanisms gathered under the name "patient-self inflicted lung injury" (P-SILI). Even though no clinical study has yet demonstrated that a ventilatory strategy to limit the risk of P-SILI can improve the outcome, the concept of P-SILI relies on sound physiological reasoning, an accumulation of clinical observations and some consistent experimental data. In this review, we detail the main pathophysiological mechanisms by which the patient's respiratory effort could become deleterious: excessive transpulmonary pressure resulting in over-distension; inhomogeneous distribution of transpulmonary pressure variations across the lung leading to cyclic opening/closing of nondependent regions and pendelluft phenomenon; increase in the transvascular pressure favoring the aggravation of pulmonary edema. We also describe potentially harmful patient-ventilator interactions. Finally, we discuss in a practical way how to detect in the clinical setting situations at risk for P-SILI and to what extent this recognition can help personalize the treatment strategy.

Keywords: acute respiratory distress syndrome; acute respiratory failure; artificial ventilation; patient-self inflicted lung injury; ventilator induced lung injury.

Conflict of interest statement

G.C. reports personal fees from Air Liquide Medical System, Medtronic and Löwenstein, outside the submitted work. A.M.D. reports grants from Fischer Paykel, Baxter, Philips, Ferring and GSK, personal fees from Air Liquide, Baxter, Amomed, Getingue and Addmedica, outside the submitted work. M.P., M.C., A.-F.H. and S.T. declare no conflicts of interest.

Figures

Figure 1
Figure 1
Schematic illustration of the pendelluft phenomenon. Pendelluft corresponds to an intrapulmonary shift of gas from the non-dependent anterior regions to the dependent posterior regions at the very onset of the inspiratory effort (just after the onset of the deflection on the esophageal pressure curve (Pes), blue dashed line), even before the beginning of the ventilator’s insufflation (red dashed line). Thus, with no change in overall volume, there is an abrupt loss of aeration in the anterior regions, and a concomitant increase in aeration in the posterior ones. Definition of abbreviations: Paw: airway pressure; Flow: airway flow; Pes: esophageal pressure.
Figure 2
Figure 2
Combined effects of inspiratory effort and respiratory mechanics on tidal volume and alveolar pressure during pressure support ventilation. A ventilator set in pressure support ventilation with a PEEP level of 5 cm H2O and a pressure support level of 10 cm H2O was connected to an active lung simulator that simulated various respiratory system compliance (C), resistance (R) and muscle pressure (Pmus). Note that Pmus of 5 and 20 cm H2O correspond to esophageal pressure swings (∆Pes) around 3 and 18 cm H2O. When simulating normal respiratory mechanics and low inspiratory effort (A), the tidal volume was within usual clinical range and alveolar pressure (Palv, red line) remained above the PEEP. Marked increases in inspiratory effort (B) resulted in important increase in tidal volume and decrease in alveolar pressure below the PEEP. Thus, the decrease in respiratory system compliance with the same strong simulated inspiratory effort (C) yielded a decrease in tidal volume without changing that much the alveolar pressure. Finally increasing the resistance (D) led to an important decrease in tidal volume and a dramatic drop in alveolar pressure far below 0 cm H2O. Note that of these four conditions, the one that represented the lowest risk of P-SILI (A: normal respiratory mechanics, low inspiratory effort, alveolar pressure above the PEEP) and the one that represented the highest risk of P-SILI (D: impaired respiratory mechanics, intense inspiratory effort, fall in alveolar pressure far below zero) led to similar tidal volumes and comparable flow and airway pressure waveforms. Thus, the detection of a situation at high risk of P-SILI can be particularly difficult during pressure support ventilation and may be facilitated by esophageal pressure monitoring and careful clinical assessment. Definition of abbreviations: Paw: airway pressure; Flow: airway flow.
Figure 3
Figure 3
Effect of inspiratory effort on the airway pressure waveform during volume assist-control ventilation. A ventilator set in volume assist-control ventilation was connected to an active lung simulator. Passive conditions were simulated (A), followed by increasing inspiratory effort with a simulated muscle pressure of 5 (B), 10 (C), and 20 (D) cm H2O. As inspiratory effort increased, the airway pressure decreased and the waveform became “deeper”. This phenomenon makes it possible to detect intense inspiratory efforts by analyzing the ventilator’s waveforms at the bedside. Note that a Pmus of 5, 10 and 20 cm H2O correspond to an esophageal pressure swings (∆Pes) around 3, 8 and 18 cm H2O. Definition of abbreviations: Paw: airway pressure; Flow: airway flow; Pmus: muscle pressure of the inspiratory muscles.

References

    1. Slutsky A.S., Ranieri V.M. Ventilator-Induced Lung Injury. New Engl. J. Med. 2013;369:2126–2136. doi: 10.1056/NEJMra1208707.
    1. Acute Respiratory Distress Syndrome Network Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New Engl. J. Med. 2000;342:1301–1308.
    1. Fan E., Del Sorbo L., Goligher E.C., Hodgson C.L., Munshi L., Walkey A.J., Adhikari N.K.J., Amato M.B.P., Branson R., Brower R.G., et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017;195:1253–1263. doi: 10.1164/rccm.201703-0548ST.
    1. Briel M., Meade M., Mercat A., Brower R.G., Talmor D., Walter S.D., Slutsky A.S., Pullenayegum E., Zhou Q., Cook D. Higher vs Lower Positive End-Expiratory Pressure in Patients with Acute Lung Injury and Acute Respiratory Distress Syndrome: Systematic Review and Meta-Analysis. JAMA. 2010;303:865–873. doi: 10.1001/jama.2010.218.
    1. Brochard L., Slutsky A., Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017;195:438–442. doi: 10.1164/rccm.201605-1081CP.
    1. Bellani G., Grasselli G., Teggia-Droghi M., Mauri T., Coppadoro A., Brochard L., Pesenti A. Do Spontaneous and Mechanical Breathing Have Similar Effects on Average Transpulmonary and Alveolar Pressure? A Clinical Crossover Study. Crit. Care. 2016;20 doi: 10.1186/s13054-016-1290-9.
    1. Yoshida T., Nakahashi S., Nakamura M.A.M., Koyama Y., Roldan R., Torsani V., De Santis R.R., Gomes S., Uchiyama A., Amato M.B.P., et al. Volume-Controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort. Am. J. Respir. Crit. Care Med. 2017;196:590–601. doi: 10.1164/rccm.201610-1972OC.
    1. Yoshida T., Nakamura M.A.M., Morais C.C.A., Amato M.B.P., Kavanagh B.P. Reverse Triggering Causes an Injurious Inflation Pattern during Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2018 doi: 10.1164/rccm.201804-0649LE.
    1. Magder S., Verscheure S. Proper Reading of Pulmonary Artery Vascular Pressure Tracings. Am. J. Respir. Crit. Care Med. 2014;190:1196–1198. doi: 10.1164/rccm.201408-1526LE.
    1. Brochard L. Ventilation-Induced Lung Injury Exists in Spontaneously Breathing Patients with Acute Respiratory Failure: Yes. Intensive Care Med. 2017;43:250–252. doi: 10.1007/s00134-016-4645-4.
    1. Yoshida T., Torsani V., Gomes S., De Santis R.R., Beraldo M.A., Costa E.L.V., Tucci M.R., Zin W.A., Kavanagh B.P., Amato M.B.P. Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2013;188:1420–1427. doi: 10.1164/rccm.201303-0539OC.
    1. Carteaux G., Millán-Guilarte T., De Prost N., Razazi K., Abid S., Thille A.W., Schortgen F., Brochard L., Brun-Buisson C., Mekontso Dessap A. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit. Care Med. 2016;44:282–290. doi: 10.1097/CCM.0000000000001379.
    1. Frat J.-P., Ragot S., Coudroy R., Constantin J.-M., Girault C., Prat G., Boulain T., Demoule A., Ricard J.-D., Razazi K. Predictors of Intubation in Patients With Acute Hypoxemic Respiratory Failure Treated With a Noninvasive Oxygenation Strategy. Crit. Care Med. 2018;46:208–215. doi: 10.1097/CCM.0000000000002818.
    1. Papazian L., Perrin G., Seghboyan J.-M., Guérin C. Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome. New Engl. J. Med. 2010;363:1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Dreyfuss D., Soler P., Basset G., Saumon G. High Inflation Pressure Pulmonary Edema: Respective Effects of High Airway Pressure, High Tidal Volume, and Positive End-Expiratory Pressure. Am. Rev. Respir. Dis. 1988;137:1159–1164. doi: 10.1164/ajrccm/137.5.1159.
    1. Mascheroni D., Kolobow T., Fumagalli R., Moretti M.P., Chen V., Buckhold D. Acute Respiratory Failure Following Pharmacologically Induced Hyperventilation: An Experimental Animal Study. Intensive Care Med. 1988;15 doi: 10.1007/BF00255628.
    1. Marini J.J., Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020;323:2329. doi: 10.1001/jama.2020.6825.
    1. Tobin M.J., Laghi F., Jubran A. Caution about Early Intubation and Mechanical Ventilation in COVID-19. Ann. Intensive Care. 2020;10:78. doi: 10.1186/s13613-020-00692-6.
    1. Gattinoni L., Carlesso E., Caironi P. Stress and Strain within the Lung. Curr. Opin. Crit. Care. 2012;18:42–47. doi: 10.1097/MCC.0b013e32834f17d9.
    1. Gattinoni L., Pesenti A. The Concept of “Baby Lung”. Intensive Care Med. 2005;31:776–784. doi: 10.1007/s00134-005-2627-z.
    1. Akoumianaki E., Maggiore S.M., Valenza F., Bellani G., Jubran A., Loring S.H., Pelosi P., Talmor D., Grasso S., Chiumello D., et al. The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure. Am. J. Respir. Crit. Care Med. 2014;189:520–531. doi: 10.1164/rccm.201312-2193CI.
    1. Mauri T., Yoshida T., Bellani G., Goligher E., Carteaux G., Rittayamai N., Mojoli F., Chiumello D., Piquilloud L., Grasso S., et al. Esophageal and Transpulmonary Pressure in the Clinical Setting: Meaning, Usefulness and Perspectives. Intensive Care Med. 2016;42:1360–1373. doi: 10.1007/s00134-016-4400-x.
    1. Caironi P., Cressoni M., Chiumello D., Ranieri M., Quintel M., Russo S.G., Cornejo R., Bugedo G., Carlesso E., Russo R., et al. Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2010;181:578–586. doi: 10.1164/rccm.200905-0787OC.
    1. Loyd J.E., Nolop K.B., Parker R.E., Roselli R.J., Brigham K.L. Effects of Inspiratory Resistance Loading on Lung Fluid Balance in Awake Sheep. J. Appl. Physiol. 1986;60:198–203. doi: 10.1152/jappl.1986.60.1.198.
    1. Smith-Erichsen N., Bø G. Airway closure and fluid filtration in the lung. Br. J. Anaesth. 1979;51:475–479. doi: 10.1093/bja/51.6.475.
    1. Lemyze M., Mallat J. Understanding Negative Pressure Pulmonary Edema. Intensive Care Med. 2014;40:1140–1143. doi: 10.1007/s00134-014-3307-7.
    1. Bhattacharya M., Kallet R.H., Ware L.B., Matthay M.A. Negative-Pressure Pulmonary Edema. Chest. 2016;150:927–933. doi: 10.1016/j.chest.2016.03.043.
    1. Yoshida T., Uchiyama A., Matsuura N., Mashimo T., Fujino Y. The Comparison of Spontaneous Breathing and Muscle Paralysis in Two Different Severities of Experimental Lung Injury. Crit. Care Med. 2013;41:536–545. doi: 10.1097/CCM.0b013e3182711972.
    1. Vaporidi K., Akoumianaki E., Telias I., Goligher E.C., Brochard L., Georgopoulos D. Respiratory Drive in Critically Ill Patients. Pathophysiology and Clinical Implications. Am. J. Respir. Crit. Care Med. 2020;201:20–32. doi: 10.1164/rccm.201903-0596SO.
    1. Spinelli E., Mauri T., Beitler J.R., Pesenti A., Brodie D. Respiratory Drive in the Acute Respiratory Distress Syndrome: Pathophysiology, Monitoring, and Therapeutic Interventions. Intensive Care Med. 2020;46:606–618. doi: 10.1007/s00134-020-05942-6.
    1. Brochard L., Lefebvre J.-C., Cordioli R.L., Akoumianaki E., Richard J.-C.M. Noninvasive Ventilation for Patients with Hypoxemic Acute Respiratory Failure. Semin. Respir. Crit. Care Med. 2014;35:492–500. doi: 10.1055/s-0034-1383863.
    1. Coppadoro A., Grassi A., Giovannoni C., Rabboni F., Eronia N., Bronco A., Foti G., Fumagalli R., Bellani G. Occurrence of Pendelluft under Pressure Support Ventilation in Patients Who Failed a Spontaneous Breathing Trial: An Observational Study. Ann. Intensive Care. 2020;10:39. doi: 10.1186/s13613-020-00654-y.
    1. Chanques G., Kress J.P., Pohlman A., Patel S., Poston J., Jaber S., Hall J.B. Impact of Ventilator Adjustment and Sedation–Analgesia Practices on Severe Asynchrony in Patients Ventilated in Assist-Control Mode. Crit. Care Med. 2013;41:2177–2187. doi: 10.1097/CCM.0b013e31828c2d7a.
    1. Thille A.W., Rodriguez P., Cabello B., Lellouche F., Brochard L. Patient-Ventilator Asynchrony during Assisted Mechanical Ventilation. Intensive Care Med. 2006;32:1515–1522. doi: 10.1007/s00134-006-0301-8.
    1. Akoumianaki E., Lyazidi A., Rey N., Matamis D., Perez-Martinez N., Giraud R., Mancebo J., Brochard L., Richard J.-C.M. Mechanical Ventilation-Induced Reverse-Triggered Breaths. Chest. 2013;143:927–938. doi: 10.1378/chest.12-1817.
    1. Baedorf Kassis E., Su H.K., Graham A.R., Novack V., Loring S.H., Talmor D.S. Reverse Trigger Phenotypes in Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2021;203:67–77. doi: 10.1164/rccm.201907-1427OC.
    1. Levine S., Nguyen T., Taylor N., Friscia M.E., Budak M.T., Rothenberg P., Zhu J., Sachdeva R., Sonnad S., Kaiser L.R., et al. Rapid Disuse Atrophy of Diaphragm Fibers in Mechanically Ventilated Humans. New Engl. J. Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447.
    1. Jaber S., Petrof B.J., Jung B., Chanques G., Berthet J.-P., Rabuel C., Bouyabrine H., Courouble P., Koechlin-Ramonatxo C., Sebbane M., et al. Rapidly Progressive Diaphragmatic Weakness and Injury during Mechanical Ventilation in Humans. Am. J. Respir. Crit. Care Med. 2011;183:364–371. doi: 10.1164/rccm.201004-0670OC.
    1. Goligher E.C., Dres M., Fan E., Rubenfeld G.D., Scales D.C., Herridge M.S., Vorona S., Sklar M.C., Rittayamai N., Lanys A., et al. Mechanical Ventilation–Induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. Am. J. Respir. Crit. Care Med. 2018;197:204–213. doi: 10.1164/rccm.201703-0536OC.
    1. Goligher E.C., Fan E., Herridge M.S., Murray A., Vorona S., Brace D., Rittayamai N., Lanys A., Tomlinson G., Singh J.M., et al. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. Am. J. Respir. Crit. Care Med. 2015;192:1080–1088. doi: 10.1164/rccm.201503-0620OC.
    1. Dres M., Goligher E.C., Heunks L.M.A., Brochard L.J. Critical Illness-Associated Diaphragm Weakness. Intensive Care Med. 2017;43:1441–1452. doi: 10.1007/s00134-017-4928-4.
    1. Goligher E.C., Dres M., Patel B.K., Sahetya S.K., Beitler J.R., Telias I., Yoshida T., Vaporidi K., Grieco D.L., Schepens T., et al. Lung- and Diaphragm-Protective Ventilation. Am. J. Respir. Crit. Care Med. 2020;202:950–961. doi: 10.1164/rccm.202003-0655CP.
    1. Goligher E.C., Jonkman A.H., Dianti J., Vaporidi K., Beitler J.R., Patel B.K., Yoshida T., Jaber S., Dres M., Mauri T., et al. Clinical Strategies for Implementing Lung and Diaphragm-Protective Ventilation: Avoiding Insufficient and Excessive Effort. Intensive Care Med. 2020;46:2314–2326. doi: 10.1007/s00134-020-06288-9.
    1. Pellegrini M., Hedenstierna G., Roneus A., Segelsjö M., Larsson A., Perchiazzi G. The Diaphragm Acts as a Brake during Expiration to Prevent Lung Collapse. Am. J. Respir. Crit. Care Med. 2017;195:1608–1616. doi: 10.1164/rccm.201605-0992OC.
    1. Kress J.P. Daily Interruption of Sedative Infusions in Critically Ill Patients Undergoing Mechanical Ventilation. New Engl. J. Med. 2000;342:1471–1477. doi: 10.1056/NEJM200005183422002.
    1. Carteaux G., Mancebo J., Mercat A., Dellamonica J., Richard J.-C.M., Aguirre-Bermeo H., Kouatchet A., Beduneau G., Thille A.W., Brochard L. Bedside Adjustment of Proportional Assist Ventilation to Target a Predefined Range of Respiratory Effort. Crit. Care Med. 2013;41:2125–2132. doi: 10.1097/CCM.0b013e31828a42e5.
    1. Beck J., Gottfried S.B., Navalesi P., Skrobik Y., Comtois N., Rossini M., Sinderby C. Electrical Activity of the Diaphragm during Pressure Support Ventilation in Acute Respiratory Failure. Am. J. Respir. Crit. Care Med. 2001;164:419–424. doi: 10.1164/ajrccm.164.3.2009018.
    1. Beck J., Sinderby C., Lindström L., Grassino A. Effects of Lung Volume on Diaphragm EMG Signal Strength during Voluntary Contractions. J. Appl. Physiol. 1998;85:1123–1134. doi: 10.1152/jappl.1998.85.3.1123.
    1. Sinderby C., Beck J., Spahija J., Weinberg J., Grassino A. Voluntary Activation of the Human Diaphragm in Health and Disease. J. Appl. Physiol. 1998;85:2146–2158. doi: 10.1152/jappl.1998.85.6.2146.
    1. Carteaux G., Córdoba-Izquierdo A., Lyazidi A., Heunks L., Thille A.W., Brochard L. Comparison Between Neurally Adjusted Ventilatory Assist and Pressure Support Ventilation Levels in Terms of Respiratory Effort. Crit. Care Med. 2016;44:503–511. doi: 10.1097/CCM.0000000000001418.
    1. Bellani G., Mauri T., Coppadoro A., Grasselli G., Patroniti N., Spadaro S., Sala V., Foti G., Pesenti A. Estimation of Patient’s Inspiratory Effort From the Electrical Activity of the Diaphragm. Crit. Care Med. 2013;41:1483–1491. doi: 10.1097/CCM.0b013e31827caba0.
    1. Rittayamai N., Beloncle F., Goligher E.C., Chen L., Mancebo J., Richard J.-C.M., Brochard L. Effect of Inspiratory Synchronization during Pressure-Controlled Ventilation on Lung Distension and Inspiratory Effort. Ann. Intensive Care. 2017;7 doi: 10.1186/s13613-017-0324-z.
    1. Telias I., Junhasavasdikul D., Rittayamai N., Piquilloud L., Chen L., Ferguson N.D., Goligher E.C., Brochard L. Airway Occlusion Pressure As an Estimate of Respiratory Drive and Inspiratory Effort during Assisted Ventilation. Am. J. Respir. Crit. Care Med. 2020;201:1086–1098. doi: 10.1164/rccm.201907-1425OC.
    1. Beloncle F., Akoumianaki E., Rittayamai N., Lyazidi A., Brochard L. Accuracy of Delivered Airway Pressure and Work of Breathing Estimation during Proportional Assist Ventilation: A Bench Study. Ann. Intensive Care. 2016;6 doi: 10.1186/s13613-016-0131-y.
    1. Bertoni M., Telias I., Urner M., Long M., Del Sorbo L., Fan E., Sinderby C., Beck J., Liu L., Qiu H., et al. A Novel Non-Invasive Method to Detect Excessively High Respiratory Effort and Dynamic Transpulmonary Driving Pressure during Mechanical Ventilation. Crit. Care. 2019;23:346. doi: 10.1186/s13054-019-2617-0.
    1. Dianti J., Bertoni M., Goligher E.C. Monitoring Patient–Ventilator Interaction by an End-Expiratory Occlusion Maneuver. Intensive Care Med. 2020;46:2338–2341. doi: 10.1007/s00134-020-06167-3.
    1. Tuinman P.R., Jonkman A.H., Dres M., Shi Z.-H., Goligher E.C., Goffi A., de Korte C., Demoule A., Heunks L. Respiratory Muscle Ultrasonography: Methodology, Basic and Advanced Principles and Clinical Applications in ICU and ED Patients—A Narrative Review. Intensive Care Med. 2020;46:594–605. doi: 10.1007/s00134-019-05892-8.
    1. Younes M., Webster K., Kun J., Roberts D., Masiowski B. A Method for Measuring Passive Elastance during Proportional Assist Ventilation. Am. J. Respir. Crit. Care Med. 2001;164:50–60. doi: 10.1164/ajrccm.164.1.2010068.
    1. Younes M., Kun J., Masiowski B., Webster K., Roberts D. A Method for Noninvasive Determination of Inspiratory Resistance during Proportional Assist Ventilation. Am. J. Respir. Crit. Care Med. 2001;163:829–839. doi: 10.1164/ajrccm.163.4.2005063.
    1. Jonkman A.H., Rauseo M., Carteaux G., Telias I., Sklar M.C., Heunks L., Brochard L.J. Proportional Modes of Ventilation: Technology to Assist Physiology. Intensive Care Med. 2020;46:2301–2313. doi: 10.1007/s00134-020-06206-z.
    1. Ward M.E., Corbeil C., Gibbons W., Newman S., Macklem P.T. Optimization of Respiratory Muscle Relaxation during Mechanical Ventilation. Anesthesiology. 1988;69:29–35. doi: 10.1097/00000542-198807000-00005.
    1. Beitler J.R., Sands S.A., Loring S.H., Owens R.L., Malhotra A., Spragg R.G., Matthay M.A., Thompson B.T., Talmor D. Quantifying Unintended Exposure to High Tidal Volumes from Breath Stacking Dyssynchrony in ARDS: The BREATHE Criteria. Intensive Care Med. 2016;42:1427–1436. doi: 10.1007/s00134-016-4423-3.
    1. Forster A., Gardaz J.P., Suter P.M., Gemperle M. Respiratory Depression by Midazolam and Diazepam. Anesthesiology. 1980;53:494–497. doi: 10.1097/00000542-198012000-00010.
    1. Pandharipande P., Pun B.T., Bernard G.R. Lorazepam Is an Independent Risk Factor for Transitioning to Delirium in Intensive Care Unit Patients. Anesthesiology. 2006;104:6. doi: 10.1097/00000542-200601000-00005.
    1. Vaschetto R., Cammarota G., Colombo D., Longhini F., Grossi F., Giovanniello A., Della Corte F., Navalesi P. Effects of Propofol on Patient-Ventilator Synchrony and Interaction During Pressure Support Ventilation and Neurally Adjusted Ventilatory Assist. Crit. Care Med. 2014;42:74–82. doi: 10.1097/CCM.0b013e31829e53dc.
    1. Belleville J.P., Ward D.S., Bloor B.C., Maze M. Effects of Intravenous Dexmedetomidine in Humans. I. Sedation, Ventilation, and Metabolic Rate. Anesthesiology. 1992;77:1125–1133. doi: 10.1097/00000542-199212000-00013.
    1. Morais C.C.A., Koyama Y., Yoshida T., Plens G.M., Gomes S., Lima C.A.S., Ramos O.P.S., Pereira S.M., Kawaguchi N., Yamamoto H., et al. High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious. Am. J. Respir. Crit. Care Med. 2018;197:1285–1296. doi: 10.1164/rccm.201706-1244OC.
    1. Pengelly L.D., Alderson A.M., Milic-Emili J. Mechanics of the Diaphragm. J. Appl. Physiol. 1971;30:797–805. doi: 10.1152/jappl.1971.30.6.797.
    1. Tonelli R., Fantini R., Tabbì L., Castaniere I., Pisani L., Pellegrino M.R., Della Casa G., D’Amico R., Girardis M., Nava S., et al. Inspiratory Effort Assessment by Esophageal Manometry Early Predicts Noninvasive Ventilation Outcome in de Novo Respiratory Failure: A Pilot Study. Am. J. Respir. Crit. Care Med. 2020 doi: 10.1164/rccm.201912-2512OC.
    1. Tuffet S., Mekontso Dessap A., Carteaux G. Noninvasive Ventilation for De Novo Respiratory Failure: Impact of Ventilator Setting Adjustments. Am. J. Respir. Crit. Care Med. 2020;202:769–770. doi: 10.1164/rccm.202005-1565LE.
    1. Frat J.-P., Thille A.W., Mercat A., Girault C., Ragot S., Perbet S., Prat G., Boulain T., Morawiec E., Cottereau A., et al. High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure. New Engl. J. Med. 2015;372:2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Möller W., Celik G., Feng S., Bartenstein P., Meyer G., Eickelberg O., Schmid O., Tatkov S. Nasal High Flow Clears Anatomical Dead Space in Upper Airway Models. J. Appl. Physiol. 2015;118:1525–1532. doi: 10.1152/japplphysiol.00934.2014.
    1. Mauri T., Turrini C., Eronia N., Grasselli G., Volta C.A., Bellani G., Pesenti A. Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017;195:1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Roca O., Caralt B., Messika J., Samper M., Sztrymf B., Hernández G., García-de-Acilu M., Frat J.-P., Masclans J.R., Ricard J.-D. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. Am. J. Respir. Crit. Care Med. 2019;199:1368–1376. doi: 10.1164/rccm.201803-0589OC.
    1. Cruces P., Retamal J., Hurtado D.E., Erranz B., Iturrieta P., González C., Díaz F. A Physiological Approach to Understand the Role of Respiratory Effort in the Progression of Lung Injury in SARS-CoV-2 Infection. Crit. Care. 2020;24:494. doi: 10.1186/s13054-020-03197-7.
    1. Carteaux G., Pons M., Morin F., Tuffet S., Lesimple A., Badat B., Haudebourg A.-F., Perier F., Deplante Y., Guillaud C., et al. Continuous Positive Airway Pressure for Respiratory Support during COVID-19 Pandemic: A Frugal Approach from Bench to Bedside. Ann. Intensive Care. 2021;11:38. doi: 10.1186/s13613-021-00828-2.
    1. Alviset S., Riller Q., Aboab J., Dilworth K., Billy P.-A., Lombardi Y., Azzi M., Ferreira Vargas L., Laine L., Lermuzeaux M., et al. Continuous Positive Airway Pressure (CPAP) Face-Mask Ventilation Is an Easy and Cheap Option to Manage a Massive Influx of Patients Presenting Acute Respiratory Failure during the SARS-CoV-2 Outbreak: A Retrospective Cohort Study. PLoS ONE. 2020;15:e0240645. doi: 10.1371/journal.pone.0240645.
    1. Oranger M., Gonzalez-Bermejo J., Dacosta-Noble P., Llontop C., Guerder A., Trosini-Desert V., Faure M., Raux M., Decavele M., Demoule A., et al. Continuous Positive Airway Pressure to Avoid Intubation in SARS-CoV-2 Pneumonia: A Two-Period Retrospective Case-Control Study. Eur. Respir. J. 2020:2001692. doi: 10.1183/13993003.01692-2020.
    1. Demoule A., Vieillard Baron A., Darmon M., Beurton A., Géri G., Voiriot G., Dupont T., Zafrani L., Girodias L., Labbé V., et al. High-Flow Nasal Cannula in Critically III Patients with Severe COVID-19. Am. J. Respir. Crit. Care Med. 2020;202:1039–1042. doi: 10.1164/rccm.202005-2007LE.
    1. Hernandez-Romieu A.C., Adelman M.W., Hockstein M.A., Robichaux C.J., Edwards J.A., Fazio J.C., Blum J.M., Jabaley C.S., Caridi-Scheible M., Martin G.S., et al. Timing of Intubation and Mortality Among Critically Ill Coronavirus Disease 2019 Patients: A Single-Center Cohort Study. Crit. Care Med. 2020;48:e1045–e1053. doi: 10.1097/CCM.0000000000004600.
    1. Pandya A., Kaur N.A., Sacher D., O’Corragain O., Salerno D., Desai P., Sehgal S., Gordon M., Gupta R., Marchetti N., et al. Ventilatory Mechanics in Early vs Late Intubation in a Cohort of Coronavirus Disease 2019 Patients With ARDS. Chest. 2021;159:653–656. doi: 10.1016/j.chest.2020.08.2084.
    1. Papoutsi E., Giannakoulis V.G., Xourgia E., Routsi C., Kotanidou A., Siempos I.I. Effect of Timing of Intubation on Clinical Outcomes of Critically Ill Patients with COVID-19: A Systematic Review and Meta-Analysis of Non-Randomized Cohort Studies. Crit Care. 2021;25:121. doi: 10.1186/s13054-021-03540-6.

Source: PubMed

3
Abonner