Clinical risk factors for increased respiratory drive in intubated hypoxemic patients

Elena Spinelli, Antonio Pesenti, Douglas Slobod, Carla Fornari, Roberto Fumagalli, Giacomo Grasselli, Carlo Alberto Volta, Giuseppe Foti, Paolo Navalesi, Rihard Knafelj, Paolo Pelosi, Jordi Mancebo, Laurent Brochard, Tommaso Mauri, Elena Spinelli, Antonio Pesenti, Douglas Slobod, Carla Fornari, Roberto Fumagalli, Giacomo Grasselli, Carlo Alberto Volta, Giuseppe Foti, Paolo Navalesi, Rihard Knafelj, Paolo Pelosi, Jordi Mancebo, Laurent Brochard, Tommaso Mauri

Abstract

Background: There is very limited evidence identifying factors that increase respiratory drive in hypoxemic intubated patients. Most physiological determinants of respiratory drive cannot be directly assessed at the bedside (e.g., neural inputs from chemo- or mechano-receptors), but clinical risk factors commonly measured in intubated patients could be correlated with increased drive. We aimed to identify clinical risk factors independently associated with increased respiratory drive in intubated hypoxemic patients.

Methods: We analyzed the physiological dataset from a multicenter trial on intubated hypoxemic patients on pressure support (PS). Patients with simultaneous assessment of the inspiratory drop in airway pressure at 0.1-s during an occlusion (P0.1) and risk factors for increased respiratory drive on day 1 were included. We evaluated the independent correlation of the following clinical risk factors for increased drive with P0.1: severity of lung injury (unilateral vs. bilateral pulmonary infiltrates, PaO2/FiO2, ventilatory ratio); arterial blood gases (PaO2, PaCO2 and pHa); sedation (RASS score and drug type); SOFA score; arterial lactate; ventilation settings (PEEP, level of PS, addition of sigh breaths).

Results: Two-hundred seventeen patients were included. Clinical risk factors independently correlated with higher P0.1 were bilateral infiltrates (increase ratio [IR] 1.233, 95%CI 1.047-1.451, p = 0.012); lower PaO2/FiO2 (IR 0.998, 95%CI 0.997-0.999, p = 0.004); higher ventilatory ratio (IR 1.538, 95%CI 1.267-1.867, p < 0.001); lower pHa (IR 0.104, 95%CI 0.024-0.464, p = 0.003). Higher PEEP was correlated with lower P0.1 (IR 0.951, 95%CI 0.921-0.982, p = 0.002), while sedation depth and drugs were not associated with P0.1.

Conclusions: Independent clinical risk factors for higher respiratory drive in intubated hypoxemic patients include the extent of lung edema and of ventilation-perfusion mismatch, lower pHa, and lower PEEP, while sedation strategy does not affect drive. These data underline the multifactorial nature of increased respiratory drive.

Keywords: Acute respiratory failure; Positive end-expiratory pressure; Respiratory drive; Risk factors.

Conflict of interest statement

PN received personal fees for lectures from Fisher and Paykel, Mindray, Hamilton, outside of the submitted work. TM received personal fees for lectures from Drager, Mindray and Fisher and Paykel, outside of the submitted work. All other authors declare that they have no competing interests.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Association between severity of lung injury (ventilation/perfusion mismatch) and P0.1. Results of bivariate analyses show that P0.1 was inversely associated to PaO2/FiO2 and directly associated with ventilatory ratio, indicating that impairment in oxygenation and CO2 clearance are clinical risk factors for increased respiratory drive
Fig. 2
Fig. 2
Association between arterial blood gases and P0.1. Results of bivariate analyses show that P0.1 was inversely associated with both PaO2 and PaCO2, while the association with arterial pH was not statistically significant
Fig. 3
Fig. 3
Impact of sedation depth on P0.1. No significant association was found between P0.1 and RASS category at bivariate analysis
Fig. 4
Fig. 4
Impact of PEEP on P0.1. Clinically set PEEP was inversely associated with P0.1, indicating that lower PEEP is a risk factor for increased respiratory drive in these patients

References

    1. Del Negro CA, Funk GD, Feldman JL. Breathing matters. Nat Rev Neurosci. 2018;19:351–367. doi: 10.1038/s41583-018-0003-6.
    1. Clark FJ, von Euler C. On the regulation of depth and rate of breathing. J Physiol. 1972;222:267–295. doi: 10.1113/jphysiol.1972.sp009797.
    1. Bruce EN, Cherniack NS. Central chemoreceptors. J Appl Physiol. 1985;1987(62):389–402.
    1. Forster HV, Pan LG, Lowry TF, Serra A, Wenninger J, Martino P. Important role of carotid chemoreceptor afferents in control of breathing of adult and neonatal mammals. Respir Physiol. 2000;119:199–208. doi: 10.1016/S0034-5687(99)00115-2.
    1. Sant'Ambrogio G. Nervous receptors of the tracheobronchial tree. Annu Rev Physiol. 1987;49:611–627. doi: 10.1146/annurev.ph.49.030187.003143.
    1. Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46:606–618. doi: 10.1007/s00134-020-05942-6.
    1. Whitelaw WA, Derenne JP, Milic-Emili J. Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol. 1975;23:181–199. doi: 10.1016/0034-5687(75)90059-6.
    1. Telias I, Junhasavasdikul D, Rittayamai N, Piquilloud L, Chen L, Ferguson ND, Goligher EC, Brochard L. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am J Respir Crit Care Med. 2020;201:1086–1098. doi: 10.1164/rccm.201907-1425OC.
    1. Dzierba AL, Khalil AM, Derry KL, Madahar P, Beitler JR. Discordance between respiratory drive and sedation depth in critically Ill patients receiving mechanical ventilation. Crit Care Med. 2021;49:2090–2101. doi: 10.1097/CCM.0000000000005113.
    1. Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, Yoshida T, Vaporidi K, Grieco DL, Schepens T, Grasselli G, Spadaro S, Dianti J, Amato M, Bellani G, Demoule A, Fan E, Ferguson ND, Georgopoulos D, Guerin C, Khemani RG, Laghi F, Mercat A, Mojoli F, Ottenheijm CAC, Jaber S, Heunks L, Mancebo J, Mauri T, Pesenti A, Brochard L. Lung- and diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020;202:950–961. doi: 10.1164/rccm.202003-0655CP.
    1. Dianti J, Fard S, Wong J, Chan TCY, Del Sorbo L, Fan E, Amato MBP, Granton J, Burry L, Reid WD, Zhang B, Ratano D, Keshavjee S, Slutsky AS, Brochard LJ, Ferguson ND, Goligher EC. Strategies for lung- and diaphragm-protective ventilation in acute hypoxemic respiratory failure: a physiological trial. Crit Care. 2022;26:259. doi: 10.1186/s13054-022-04123-9.
    1. Berger KI, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Mechanism of relief of tachypnea during pressure support ventilation. Chest. 1996;109:1320–1327. doi: 10.1378/chest.109.5.1320.
    1. Morais CCA, Koyama Y, Yoshida T, Plens GM, Gomes S, Lima CAS, Ramos OPS, Pereira SM, Kawaguchi N, Yamamoto H, Uchiyama A, Borges JB, Vidal Melo MF, Tucci MR, Amato MBP, Kavanagh BP, Costa ELV, Fujino Y. High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med. 2018;197:1285–1296. doi: 10.1164/rccm.201706-1244OC.
    1. Pellegrini M, Hedenstierna G, Roneus A, Segelsjo M, Larsson A, Perchiazzi G. The diaphragm acts as a brake during expiration to prevent lung collapse. Am J Respir Crit Care Med. 2017;195:1608–1616. doi: 10.1164/rccm.201605-0992OC.
    1. Magalhaes PAF, Padilha GA, Moraes L, Santos CL, Maia LA, Braga CL, Duarte M, Andrade LB, Schanaider A, Capellozzi VL, Huhle R, de Abreu MG, Pelosi P, Rocco PRM, Silva PL. Effects of pressure support ventilation on ventilator-induced lung injury in mild acute respiratory distress syndrome depend on level of positive end-expiratory pressure: A randomised animal study. Eur J Anaesthesiol. 2018;35:298–306. doi: 10.1097/EJA.0000000000000763.
    1. Perez J, Dorado JH, Navarro E, Morais CCA, Accoce M. Mechanisms of lung and diaphragmatic protection by high PEEP in obese COVID-19 ARDS: role of the body mass index. Crit Care. 2022;26:182. doi: 10.1186/s13054-022-04051-8.
    1. Mauri T, Foti G, Fornari C, Grasselli G, Pinciroli R, Lovisari F, Tubiolo D, Volta CA, Spadaro S, Rona R, Rondelli E, Navalesi P, Garofalo E, Knafelj R, Gorjup V, Colombo R, Cortegiani A, Zhou JX, D'Andrea R, Calamai I, Vidal Gonzalez A, Roca O, Grieco DL, Jovaisa T, Bampalis D, Becher T, Battaglini D, Ge H, Luz M, Constantin JM, Ranieri M, Guerin C, Mancebo J, Pelosi P, Fumagalli R, Brochard L, Pesenti A, Collaborators PT. Sigh in patients with acute hypoxemic respiratory failure and ARDS: the PROTECTION pilot randomized clinical trial. Chest. 2021;159:1426–1436. doi: 10.1016/j.chest.2020.10.079.
    1. Mauri T, Foti G, Fornari C, Constantin JM, Guerin C, Pelosi P, Ranieri M, Conti S, Tubiolo D, Rondelli E, Lovisari F, Fossali T, Spadaro S, Grieco DL, Navalesi P, Calamai I, Becher T, Roca O, Wang YM, Knafelj R, Cortegiani A, Mancebo J, Brochard L, Pesenti A, Protection Study G. Pressure support ventilation + sigh in acute hypoxemic respiratory failure patients: study protocol for a pilot randomized controlled trial, the PROTECTION trial. Trials 2018; 19: 460
    1. Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O'Neal PV, Keane KA, Tesoro EP, Elswick RK. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–1344. doi: 10.1164/rccm.2107138.
    1. Bertoni M, Telias I, Urner M, Long M, Del Sorbo L, Fan E, Sinderby C, Beck J, Liu L, Qiu H, Wong J, Slutsky AS, Ferguson ND, Brochard LJ, Goligher EC. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019;23:346. doi: 10.1186/s13054-019-2617-0.
    1. Mauri T, Langer T, Zanella A, Grasselli G, Pesenti A. Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Med. 2016;42:2101–2103. doi: 10.1007/s00134-016-4470-9.
    1. Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40:1578–1585. doi: 10.1097/CCM.0b013e3182451c40.
    1. Beitler JR, Sands SA, Loring SH, Owens RL, Malhotra A, Spragg RG, Matthay MA, Thompson BT, Talmor D. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 2016;42:1427–1436. doi: 10.1007/s00134-016-4423-3.
    1. Schmidt M, Demoule A, Polito A, Porchet R, Aboab J, Siami S, Morelot-Panzini C, Similowski T, Sharshar T. Dyspnea in mechanically ventilated critically ill patients. Crit Care Med. 2011;39:2059–2065. doi: 10.1097/CCM.0b013e31821e8779.
    1. Spinelli E, Kircher M, Stender B, Ottaviani I, Basile MC, Marongiu I, Colussi G, Grasselli G, Pesenti A, Mauri T. Unmatched ventilation and perfusion measured by electrical impedance tomography predicts the outcome of ARDS. Crit Care. 2021;25:192. doi: 10.1186/s13054-021-03615-4.
    1. Morrell MJ, Shea SA, Adams L, Guz A. Effects of inspiratory support upon breathing in humans during wakefulness and sleep. Respir Physiol. 1993;93:57–70. doi: 10.1016/0034-5687(93)90068-L.
    1. Georgopoulos DB, Anastasaki M, Katsanoulas K. Effects of mechanical ventilation on control of breathing. Monaldi Arch Chest Dis. 1997;52:253–262.
    1. Vicka V, Januskeviciute E, Krauklyte J, Aleknaviciene A, Ringaitiene D, Jancoriene L, Sipylaite J. Determinants of increased effort of breathing in non-intubated critical COVID-19 patients. Medicina (Kaunas) 2022;58:1133. doi: 10.3390/medicina58081133.
    1. Pesenti A, Rossi N, Calori A, Foti G, Rossi GP. Effects of short-term oxygenation changes on acute lung injury patients undergoing pressure support ventilation. Chest. 1993;103:1185–1189. doi: 10.1378/chest.103.4.1185.
    1. Gonzalez C, Almaraz L, Obeso A, Rigual R. Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends Neurosci. 1992;15:146–153. doi: 10.1016/0166-2236(92)90357-E.
    1. Mauri T, Spinelli E, Pavlovsky B, Grieco DL, Ottaviani I, Basile MC, Dalla Corte F, Pintaudi G, Garofalo E, Rundo A, Volta CA, Pesenti A, Spadaro S. Respiratory drive in patients with sepsis and septic shock: modulation by high-flow nasal cannula. Anesthesiology. 2021;135:1066–1075. doi: 10.1097/ALN.0000000000004010.
    1. Vitacca M, Bianchi L, Zanotti E, Vianello A, Barbano L, Porta R, Clini E. Assessment of physiologic variables and subjective comfort under different levels of pressure support ventilation. Chest. 2004;126:851–859. doi: 10.1378/chest.126.3.851.
    1. Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995;21:547–553. doi: 10.1007/BF01700158.
    1. MacIntyre NR, Leatherman NE. Ventilatory muscle loads and the frequency-tidal volume pattern during inspiratory pressure-assisted (pressure-supported) ventilation. Am Rev Respir Dis. 1990;141:327–331. doi: 10.1164/ajrccm/141.2.327.
    1. Perrigault PF, Pouzeratte YH, Jaber S, Capdevila XJ, Hayot M, Boccara G, Ramonatxo M, Colson P. Changes in occlusion pressure (P0.1) and breathing pattern during pressure support ventilation. Thorax. 1999;54:119–123. doi: 10.1136/thx.54.2.119.
    1. Carteaux G, Cordoba-Izquierdo A, Lyazidi A, Heunks L, Thille AW, Brochard L. Comparison between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory effort. Crit Care Med. 2016;44:503–511. doi: 10.1097/CCM.0000000000001418.
    1. Doorduin J, Sinderby CA, Beck J, van der Hoeven JG, Heunks LM. Assisted ventilation in patients with acute respiratory distress syndrome: lung-distending pressure and patient-ventilator interaction. Anesthesiology. 2015;123:181–190. doi: 10.1097/ALN.0000000000000694.
    1. Doorduin J, Nollet JL, Roesthuis LH, van Hees HW, Brochard LJ, Sinderby CA, van der Hoeven JG, Heunks LM. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med. 2017;195:1033–1042. doi: 10.1164/rccm.201605-1016OC.
    1. Spinelli E, Mauri T, Lissoni A, Crotti S, Langer T, Albanese M, Volta CA, Fornari C, Tagliabue P, Grasselli G, Pesenti A. Spontaneous breathing patterns during maximum extracorporeal CO2 removal in subjects with early severe ARDS. Respir Care. 2020;65:911–919. doi: 10.4187/respcare.07391.
    1. Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2016;315:2435–2441. doi: 10.1001/jama.2016.6338.
    1. Beloncle F, Piquilloud L, Olivier PY, Vuillermoz A, Yvin E, Mercat A, Richard JC. Accuracy of P0.1 measurements performed by ICU ventilators: a bench study. Ann Intensive Care. 2019;9:104. doi: 10.1186/s13613-019-0576-x.

Source: PubMed

3
Abonner