Chlorine dioxide is a size-selective antimicrobial agent

Zoltán Noszticzius, Maria Wittmann, Kristóf Kály-Kullai, Zoltán Beregvári, István Kiss, László Rosivall, János Szegedi, Zoltán Noszticzius, Maria Wittmann, Kristóf Kály-Kullai, Zoltán Beregvári, István Kiss, László Rosivall, János Szegedi

Abstract

Background / aims: ClO2, the so-called "ideal biocide", could also be applied as an antiseptic if it was understood why the solution killing microbes rapidly does not cause any harm to humans or to animals. Our aim was to find the source of that selectivity by studying its reaction-diffusion mechanism both theoretically and experimentally.

Methods: ClO2 permeation measurements through protein membranes were performed and the time delay of ClO2 transport due to reaction and diffusion was determined. To calculate ClO2 penetration depths and estimate bacterial killing times, approximate solutions of the reaction-diffusion equation were derived. In these calculations evaporation rates of ClO2 were also measured and taken into account.

Results: The rate law of the reaction-diffusion model predicts that the killing time is proportional to the square of the characteristic size (e.g. diameter) of a body, thus, small ones will be killed extremely fast. For example, the killing time for a bacterium is on the order of milliseconds in a 300 ppm ClO2 solution. Thus, a few minutes of contact time (limited by the volatility of ClO2) is quite enough to kill all bacteria, but short enough to keep ClO2 penetration into the living tissues of a greater organism safely below 0.1 mm, minimizing cytotoxic effects when applying it as an antiseptic. Additional properties of ClO2, advantageous for an antiseptic, are also discussed. Most importantly, that bacteria are not able to develop resistance against ClO2 as it reacts with biological thiols which play a vital role in all living organisms.

Conclusion: Selectivity of ClO2 between humans and bacteria is based not on their different biochemistry, but on their different size. We hope initiating clinical applications of this promising local antiseptic.

Conflict of interest statement

Competing Interests: ZN, MW and KKK declare competing financial interest as they are co-inventors of the European patent 2069232 “Permeation method and apparatus for preparing fluids containing high purity chlorine dioxide”, see also reference 13. In addition ZN is also a founder of the Solumium Ltd. The other four authors have no competing financial interest. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Apparatus to measure ClO 2…
Figure 1. Apparatus to measure ClO2 transport through gelatine or pig bladder membranes.
The two glass parts of the apparatus are held together by a pair of extension clamps (not shown in the Figure) which are fixed to a support stand by clamp holders. The active cross-section of the membranes is 28 cm2. See text for the working principle.
Figure 2. Permeation of ClO 2 through…
Figure 2. Permeation of ClO2 through a gelatin membrane as a function of time t.
Each point in the diagram represents a „black burst” (see Methods). V is the cumulative volume of the 0.01 M Na2S2O3 titrant added before the burst and N is the amount of ClO2 permeated until time t. TL1 = 627 s and TL2 = 175 s are time lags of the first and the second experiments, respectively. The concentration of ClO2 source in the magnetically stirred aqueous solution was 1360 ppm (mg/kg) or 20.1 mM.
Figure 3. Permeation of ClO 2 through…
Figure 3. Permeation of ClO2 through a pig bladder membrane as a function of time t.
V and N have the same meaning like in Figure 2. TL1 = 2770 s, TL2 = 586 s and TL3 = 226 s are time lags of the experiments performed on the 1st, 2nd, and 3rd day, respectively. The concentration of the ClO2 source was 946 ppm (14.0 mM) in these experiments.

References

    1. Amyes SGB (2010) Antibacterial Chemotherapy. Theory, Problems and Practice. Oxford: Oxford University Press.
    1. Spellberg B (2009) Rising Plague. The Global Threat from Deadly Bacteria and Our Dwindling Arsenal to Fight Them. Amherst, NY: Prometheus Books.
    1. Evans BA, Hamouda A, Amyes SGB (2013) The rise of carbapenem-resistant Acinetobacter baumannii. Curr Pharm Des 19(2): 223-238. doi:10.2174/138161213804070285. PubMed: .
    1. Luo G, Lin L, Ibrahim AS, Baquir B, Pantapalangkoor P et al. (2012) Active and Passive Immunization Protects against Lethal, Extreme Drug Resistant-Acinetobacter baumannii Infection. PLOS ONE 7(1): e29446. doi:10.1371/journal.pone.0029446. PubMed: .
    1. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12: 147–179. PubMed: .
    1. Koburger T, Hübner NO, Braun M, Siebert J, Kramer A (2010) Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 65: 1712–1719. doi:10.1093/jac/dkq212. PubMed: .
    1. Lansdown ABG (2010) Silver in Healthcare: Its Antimicrobial Efficacy and Safety in Use. Issues in Toxicology. Cambridge: RSC Publications.
    1. Das S (2011) Application of ozone therapy in dentistry. Rev Ind J Dent Adv 3: 538–542.
    1. Mehra P, Clancy C, Wu J (2000) Formation of facial hematoma during endodontic therapy. J Am Dent Assoc 131: 67–71. PubMed: .
    1. Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58: 79–110. doi:10.1146/annurev.bi.58.070189.000455. PubMed: .
    1. Harris AG, Hinds FE, Beckhouse AG, Kolesnikow T, Hazell SL (2002) Resistance to hydrogen peroxide in Helicobacter pylori: role of catalase. Microbiology 148: 3813–3825. PubMed: .
    1. Simpson GD, Miller RF, Laxton GD, Clements WR (1993) A focus on chlorine dioxide: the "ideal" biocide. Corrosion 93. New Orleans, La, March 8-12 paper No. 472.. Available: . Accessed 2013 April 15.
    1. Noszticzius Z, Balogh S, Gyökérné Wittmann M, Kály-Kullai K, Megyesi M et al. (2006) Permeation method and apparatus for preparing fluids containing high purity chlorine dioxide. Available: Accessed 2013 April 15.
    1. Solumium website. Available: . Accessed 2013 April 15.
    1. Csikány Cs, Várnai G, Noszticzius Z (2009) SOLUMIUM DENTAL: a hipertiszta klórdioxid oldat és alkalmazása a fogorvosi gyakorlatban II. (SOLUMIUM DENTAL: Application of high purity chlorine dioxide solution in the dental practice II., in Hungarian). Dental Hírek 2009/5: 36-38
    1. Daniel FB, Condie LW, Robinson M, Stober JA, York RG et al. (1990) Comparative 90-day subchronic toxicity studies on three drinking water disinfectants, chlorine, monochloramine and chlorine dioxide in the Sprague-Dawley rats. J Am Water Works Assoc 82: 61–69.
    1. Lubbers JR, Chauan SR, Bianchine JR (1982) Controlled clinical evaluations of chlorine dioxide, chlorite and chlorate in man. Environ Health Perspect 46: 57–62. doi:10.1289/ehp.824657. PubMed: .
    1. Barrette WC Jr, Hannum DM, Wheeler WD, Hurst JK (1989) General mechanism for the bacterial toxicity of hypochlorous acid: abolition of ATP production. Biochemistry 28: 9172–9178. doi:10.1021/bi00449a032. PubMed: .
    1. Smit MJ, Anderson R (1992) Biochemical mechanisms of hydrogen peroxide- and hypochlorous acid-mediated inhibition of human mononuclear leukocyte functions in vitro: protection and reversal by anti-oxidants. Agents Actions 36: 58-65. doi:10.1007/BF01991229. PubMed: .
    1. Eastoe JE (1955) The amino acid composition of mammalian collagen and gelatin. Biochem J 61: 589–600. PubMed: .
    1. Crank J (1975) Mathematics of Diffusion. Oxford: Clarendon. 51 pp.
    1. Ison A, Odeh IN, Margerum DW (2006) Kinetics and mechanisms of chlorine dioxide and chlorite oxidations of cysteine and glutathione. Inorg Chem 45: 8768–8775. doi:10.1021/ic0609554. PubMed: .
    1. Napolitano MJ, Green BJ, Nicoson JS, Margerum DW (2005) Chlorine dioxide oxidations of tyrosine, N-acetyltyrosine, and Dopa. Chem Res Toxicol 18: 501–508. doi:10.1021/tx049697i. PubMed: .
    1. Stewart DJ, Napolitano MJ, Bakhmutova-Albert EV, Margerum DW (2008) Kinetics and mechanisms of chlorine dioxide oxidation of tryptophan. Inorg Chem 47: 1639–1647. doi:10.1021/ic701761p. PubMed: .
    1. Chesney JA, Eaton JW, Mahoney JR (1996) Bacterial glutathione: a sacrificial defense against chlorine compounds. J Bacteriol 178: 2131–2135. PubMed: .
    1. Rosen H, Klebanoff SJ, Wang Y, Brot N, Heinecke JW et al. (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci U S A 106: 18686–18691. 18688 p. Fig. 3B doi:10.1073/pnas.0909464106. PubMed: .
    1. Wikipedia: Skin. Available: . Accessed 2013 April 15.
    1. Wikipedia: Stratum corneum. Available: . Accessed 2013 April 15.
    1. NIH Guide: Research on microbial biofilms. Available: . Accessed 2013 April 15.
    1. Tanner R (1989) Comparative testing and evaluation of hard-surface disinfectants. J Ind Microbiol 4: 145–154. doi:10.1007/BF01569799.
    1. Sanekata T, Fukuda T, Miura T, Morino H, Lee C et al. (2010) Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol Sci 15/2: 45–49. doi:10.4265/bio.15.45. PubMed: .
    1. Junli H, Li W, Nenqi R, Li LX, Fun SR et al. (1997) Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water. Water Res 31: 455–460. doi:10.1016/S0043-1354(96)00276-X.
    1. EPA Guidance Manual, Alternative Disinfectants and Oxidants, 4.4.3.2 Protozoa Inactivation.. Available: . Accessed 2013 April 15.
    1. Loginova IV, Rubtsova SA, Kuchin AV (2008) Oxidation by chlorine dioxide of methionine and cysteine derivatives to sulfoxide. Chem Nat Compd 44: 752–754. doi:10.1007/s10600-009-9182-8.
    1. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263: 17205–17208. PubMed: .
    1. Nauseef WM (2007) How human neutrophils kill and degrade microbes. An integrated view. Immunol Rev 219: 88–102. doi:10.1111/j.1600-065X.2007.00550.x. PubMed: .
    1. Rosen H, Klebanoff SJ, Wang Y, Brot N, Heinecke JW et al. (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci U S A 106: 18686-18691. doi:10.1073/pnas.0909464106. PubMed: .
    1. Wang L, Bassiri M, Najafi R, Najafi K, Yang J et al. (2007) Hypochlorous acid as a potential wound care agent, Part I. J Burns Wounds 6: 65–79.
    1. Robson MC, Payne WG, Ko F, Mentis M, Donati G et al. (2007) Hypochlorous acid as a potential wound care agent, Part II. J Burns Wounds 6: 80–90.
    1. Pattison DI, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14: 1453–1464. doi:10.1021/tx0155451. PubMed: .
    1. Pattison DI, Davies MJ (2006) Reaction of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13: 3271–3190. doi:10.2174/092986706778773095. PubMed: .
    1. Hercegh A, Ghidan Á, Friedreich D, Gyurkovics M, Bedő Zs et al. (2013) Effectiveness of a high purity chlorine dioxide solution in eliminating intercanal Enterococcus faecialis biofim. Acta microbiol Immunol Hung 60(1): 63–75.
    1. Pullar JM, Vissers MCM, Winterbourn CC (2000) Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50: 259–266. doi:10.1080/15216540051080958. PubMed: .
    1. Pullar JM, Vissers MCM, Winterbourn CC (2001) Glutathione oxidation by hypochlorous acid in endothelial cells produces glutathione sulfonamide as a major product but not glutathione disulfide. J Biol Chem 276: 22120–22125. doi:10.1074/jbc.M102088200. PubMed: .
    1. Müller G, Kramer A (2006) Comparative study of in vitro cytotoxicity of povidone-iodine in solution, in ointment or in a liposomal formulation (Repithel) and selected antiseptics.Dermatology 212 Suppl 1: 91-93. doi:10.1159/000090102. PubMed: .
    1. Müller G, Kramer A (2007) Revitalisierung von Säugerzellen nach Einwirkung von Antiseptika. (Revitalisation of mammalian cells exposed to antiseptics, in German). GMS Krankenhaushyg Interdiszip 2007 2(2):Doc35 Available: . Accessed 2013 April 15.
    1. Harwood DT, Kettle AJ, Winterbourn CC (2006) Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC–MS/MS method. Biochem J 399: 161–168. doi:10.1042/BJ20060978. PubMed: .
    1. Ogata N (2007) Denaturation of Protein by Chlorine Dioxide: Oxidative Modification of Tryptophane and Tyrosine Residues. Biochemistry 46: 4898-4911. doi:10.1021/bi061827u. PubMed: .
    1. KLO2-UCD-HU_ 2010. ssued by the Hungarian National Health and Medical Officer Service (ANTSZ) following the suggestion of the Scientific Committee named ETT TUKEB. Available: .

Source: PubMed

3
Abonner