The Normal Menstrual Cycle and the Control of Ovulation

Beverly G Reed, Bruce R Carr, Kenneth R Feingold, Bradley Anawalt, Marc R Blackman, Alison Boyce, George Chrousos, Emiliano Corpas, Wouter W de Herder, Ketan Dhatariya, Kathleen Dungan, Johannes Hofland, Sanjay Kalra, Gregory Kaltsas, Nitin Kapoor, Christian Koch, Peter Kopp, Márta Korbonits, Christopher S Kovacs, Wendy Kuohung, Blandine Laferrère, Miles Levy, Elizabeth A McGee, Robert McLachlan, Maria New, Jonathan Purnell, Rakesh Sahay, Amy S Shah, Frederick Singer, Mark A Sperling, Constantine A Stratakis, Dace L Trence, Don P Wilson, Beverly G Reed, Bruce R Carr, Kenneth R Feingold, Bradley Anawalt, Marc R Blackman, Alison Boyce, George Chrousos, Emiliano Corpas, Wouter W de Herder, Ketan Dhatariya, Kathleen Dungan, Johannes Hofland, Sanjay Kalra, Gregory Kaltsas, Nitin Kapoor, Christian Koch, Peter Kopp, Márta Korbonits, Christopher S Kovacs, Wendy Kuohung, Blandine Laferrère, Miles Levy, Elizabeth A McGee, Robert McLachlan, Maria New, Jonathan Purnell, Rakesh Sahay, Amy S Shah, Frederick Singer, Mark A Sperling, Constantine A Stratakis, Dace L Trence, Don P Wilson

Excerpt

Menstruation is the cyclic, orderly sloughing of the uterine lining, in response to the interactions of hormones produced by the hypothalamus, pituitary, and ovaries. The menstrual cycle may be divided into two phases: (1) follicular or proliferative phase, and (2) the luteal or secretory phase. The length of a menstrual cycle is the number of days between the first day of menstrual bleeding of one cycle to the onset of menses of the next cycle. The median duration of a menstrual cycle is 28 days with most cycle lengths between 25 to 30 days (1-3. Patients who experience menstrual cycles that occur at intervals less than 21 days are termed polymenorrheic, while patients who experience prolonged menstrual cycles greater than 35 days, are termed oligomenorrheic. The typical volume of blood lost during menstruation is approximately 30 mL (4). Any amount greater than 80 mL is considered abnormal (4). The menstrual cycle is typically most irregular around the extremes of reproductive life (menarche and menopause) due to anovulation and inadequate follicular development (5-7). The luteal phase of the cycle is relatively constant in all women, with a duration of 14 days. The variability of cycle length is usually derived from varying lengths of the follicular phase of the cycle, which can range from 10 to 16 days. For complete coverage of this and related topics, please visit www.endotext.org.

Copyright © 2000-2024, MDText.com, Inc.

References

    1. Treloar A.E., et al. Variation of the human menstrual cycle through reproductive life. Int J Fertil. 1967;12(1 Pt 2):77–126.
    1. Vollman R.F., The Menstrual Cycle . 1977, WB Saunders: Philadelphia.
    1. Presser, H.B., Temporal data relating to the human menstrual cycle, in Biorhythms and Human Reproduction, M. Ferin, et al., Editors. 1974, John Wiley and Sons: New York. p. 145-160.
    1. Hallberg L., et al. Menstrual blood loss--a population study. Variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand. 1966;45(3):320–351.
    1. Apter D., et al. Follicular growth in relation to serum hormonal patterns in adolescent compared with adult menstrual cycles. Fertil Steril. 1987;47(1):82–88.
    1. Fraser I.S., et al. Pituitary gonadotropins and ovarian function in adolescent dysfunctional uterine bleeding. J Clin Endocrinol Metab. 1973;37(3):407–414.
    1. Lenton E.A., et al. Normal variation in the length of the follicular phase of the menstrual cycle: effect of chronological age. Br J Obstet Gynaecol. 1984;91(7):681–684.
    1. Groome N.P., et al. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab. 1996;81(4):1401–1405.
    1. Welt C.K., et al. Control of follicle-stimulating hormone by estradiol and the inhibins: critical role of estradiol at the hypothalamus during the luteal-follicular transition. J Clin Endocrinol Metab. 2003;88(4):1766–1771.
    1. Tsafriri, A., Local nonsteroidal regulators of ovarian function, in The physiology of reproduction, E. Knobil, J.D. Neill, and et al., Editors. 1994, Raven: New York. p. 817-860.
    1. Sawetawan C., et al. Inhibin and activin differentially regulate androgen production and 17 alpha-hydroxylase expression in human ovarian thecal-like tumor cells. J Endocrinol. 1996;148(2):213–221.
    1. Welt C.K., et al. Frequency modulation of follicle-stimulating hormone (FSH) during the luteal-follicular transition: evidence for FSH control of inhibin B in normal women. J Clin Endocrinol Metab. 1997;82(8):2645–2652.
    1. Durlinger A.L., et al. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology. 1999;140(12):5789–96.
    1. Hampl R., Snajderova M., Mardesic T. Antimullerian hormone (AMH) not only a marker for prediction of ovarian reserve. Physiol Res. 2011;60(2):217–23.
    1. Amsterdam A., Rotmensch S. Structure-function relationships during granulosa cell differentiation. Endocr.Rev. 1987;8(3):309–337.
    1. Nimrod A., Erickson G.F., Ryan K.J. A specific FSH receptor in rat granulosa cells: properties of binding in vitro. Endocrinology. 1976;98(1):56–64.
    1. Fink, G., Gonadotropin secretion and its control, in The physiology of reproduction, E. Knobil, J.D. Neill, and et al., Editors. 1988, Raven: New York. p. 1349-1377.
    1. Zeleznik A.J., Midgley A.R., Jr, Reichert L.E., Jr Granulosa cell maturation in the rat: increased binding of human chorionic gonadotropin following treatment with follicle-stimulating hormone in vivo. Endocrinology. 1974;95(3):818–825.
    1. Erickson G.F., Wang C., Hsueh A.J. FSH induction of functional LH receptors in granulosa cells cultured in a chemically defined medium. Nature. 1979;279(5711):336–338.
    1. McNatty K.P., et al. Metabolism of androstenedione by human ovarian tissues in vitro with particular reference to reductase and aromatase activity. Steroids. 1979;34(4):429–443.
    1. Young J.R., Jaffe R.B. Strength-duration characteristics of estrogen effects on gonadotropin response to gonadotropin-releasing hormone in women. II. Effects of varying concentrations of estradiol. J Clin Endocrinol Metab. 1976;42(3):432–442.
    1. Reame N., et al. Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J Clin Endocrinol Metab. 1984;59(2):328–337.
    1. Zhou J., Bondy C. Anatomy of the human ovarian insulin-like growth factor system. Biol Reprod. 1993;48(3):467–482.
    1. Maruo T., et al. Expression of epidermal growth factor and its receptor in the human ovary during follicular growth and regression. Endocrinology. 1993;132(2):924–931.
    1. Thierry van Dessel H.J., et al. Serum and follicular fluid levels of insulin-like growth factor I (IGF-I), IGF-II, and IGF-binding protein-1 and -3 during the normal menstrual cycle. J Clin Endocrinol Metab. 1996;81(3):1224–31.
    1. Hillier S.G., et al. Intraovarian sex steroid hormone interactions and the regulation of follicular maturation: aromatization of androgens by human granulosa cells in vitro. J Clin Endocrinol Metab. 1980;50(4):640–647.
    1. Pauerstein C.J., et al. Temporal relationships of estrogen, progesterone, and luteinizing hormone levels to ovulation in women and infrahuman primates. Am J Obstet Gynecol. 1978;130(8):876–886.
    1. Cahill D.J., et al. Onset of the preovulatory luteinizing hormone surge: diurnal timing and critical follicular prerequisites. Fertil Steril. 1998;70(1):56–59.
    1. Hoff J.D., Quigley M.E., Yen S.S. Hormonal dynamics at midcycle: a reevaluation. J Clin Endocrinol Metab. 1983;57(4):792–796.
    1. Channing, C.P., et al., Ovarian follicular and luteal physiology, in International Review of Physiology, R.O. Greep, Editor. 1980, University Park Press: Baltimore. p. 117.
    1. Espey, L.L. and H. Lipner, Ovulation, in The Physiology of Reproduction, E. Knobil and J.D. Neill, Editors. 1994, Raven: New York. p. 725.
    1. Espey L.L. Ovarian proteolytic enzymes and ovulation. Biol Reprod. 1974;10(2):216–235.
    1. Lousse J.C., Donnez J. Laparoscopic observation of spontaneous human ovulation. Fertil Steril. 2008;90(3):833–834.
    1. Fukuda M., et al. Right-sided ovulation favours pregnancy more than left-sided ovulation. Hum Reprod. 2000;15(9):1921–1926.
    1. Lumsden M.A., et al. Changes in the concentration of prostaglandins in preovulatory human follicles after administration of hCG. J Reprod Fertil. 1986;77(1):119–124.
    1. Espey L.L., et al. Ovarian hydroxyeicosatetraenoic acids compared with prostanoids and steroids during ovulation in rats. Am J Physiol. 1991;260(2 Pt 1):E163–E169.
    1. Sherman B.M., West J.H., Korenman S.G. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab. 1976;42(4):629–636.
    1. O'Grady J.P., et al. The effects of an inhibitor of prostaglandin synthesis (indomethacin) on ovulation, pregnancy, and pseudopregnancy in the rabbit. Prostaglandins. 1972;1(2):97–106.
    1. Killick S., Elstein M. Pharmacologic production of luteinized unruptured follicles by prostaglandin synthetase inhibitors. Fertil Steril. 1987;47(5):773–777.
    1. Pall M., Friden B.E., Brannstrom M. Induction of delayed follicular rupture in the human by the selective COX-2 inhibitor rofecoxib: a randomized double-blind study. Hum Reprod. 2001;16(7):1323–1328.
    1. Doody, K.J. and B.R. Carr, Diagnosis and treatment of luteal dysfunction, in Ovarian Endocrinology, S.G. Hillier, Editor. 1991, Blackwell Scientific: London. p. 260.
    1. Katt J.A., et al. The frequency of gonadotropin-releasing hormone stimulation determines the number of pituitary gonadotropin-releasing hormone receptors. Endocrinology. 1985;116(5):2113–2115.
    1. Koos R.D. Potential relevance of angiogenic factors to ovarian physiology. Semin Reprod Endocrinol. 1989;7:29.
    1. Niswender, G.D. and T.M. Nett, The corpus luteum and its control in infraprimate species, in The Physiology of Reproduction, E. Knobil and J.D. Neill, Editors. 1994, Raven: New York. p. 781.
    1. Retamales I., et al. Morpho-functional study of human luteal cell subpopulations. Hum Reprod. 1994;9(4):591–596.
    1. Khan-Dawood F.S., et al. Human corpus luteum secretion of relaxin, oxytocin, and progesterone. J Clin Endocrinol Metab. 1989;68(3):627–631.
    1. Carr B.R., et al. The effect of transforming growth factor-beta on steroidogenesis and expression of key steroidogenic enzymes with a human ovarian thecal-like tumor cell model. Am J Obstet Gynecol. 1996;174(4):1109–1116.
    1. Vande Wiele R.L., et al. Mechanisms regulating the menstrual cycle in women. Recent.Prog.Horm.Res. 1970;26:63–103.
    1. Segaloff A., Sternberg W.H., Gaskill C.J. Effects of luteotropic dose of chorionic gonadotropin in women. J Clin Endocrinol Metab. 1951;11(9):936–944.
    1. Filicori M., Butler J.P., Crowley W.F., Jr Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsatile progesterone secretion. J Clin Invest. 1984;73(6):1638–1647.
    1. McNeely M.J., Soules M.R. The diagnosis of luteal phase deficiency: a critical review. Fertil Steril. 1988;50(1):1–15.
    1. Stouffer R.L., Hodgen G.D. Induction of luteal phase defects in rhesus monkeys by follicular fluid administration at the onset of the menstrual cycle. J Clin Endocrinol Metab. 1980;51(3):669–671.
    1. Sheehan K.L., Casper R.F., Yen S.S. Luteal phase defects induced by an agonist of luteinizing hormone-releasing factor: a model for fertility control. Science. 1982;215(4529):170–172.
    1. Keyes P.L., Wiltbank M.C. Endocrine regulation of the corpus luteum. Annu.Rev Physiol. 1988;50:465–482.
    1. Cooke I.D. The corpus luteum. Hum Reprod. 1988;3(2):153–156.
    1. Auletta F.J., Flint A.P. Mechanisms controlling corpus luteum function in sheep, cows, nonhuman primates, and women especially in relation to the time of luteolysis. Endocr.Rev. 1988;9(1):88–105.
    1. Hodgen G.D. Surrogate embryo transfer combined with estrogen-progesterone therapy in monkeys. Implantation, gestation, and delivery without ovaries. JAMA. 1983;250(16):2167–2171.
    1. Gore B.Z., Caldwell B.V., Speroff L. Estrogen-induced human luteolysis. J Clin Endocrinol Metab. 1973;36(3):615–617.
    1. Iwai T., et al. Immunohistochemical localization of oestrogen receptors and progesterone receptors in the human ovary throughout the menstrual cycle. Virchows Arch A Pathol Anat Histopathol. 1990;417(5):369–375.
    1. Wentz A.C., Jones G.S. Transient luteolytic effect of prostaglandin F2alpha in the human. Obstet Gynecol. 1973;42(2):172–181.
    1. Schoonmaker J.N., et al. Estradiol-induced luteal regression in the rhesus monkey: evidence for an extraovarian site of action. Endocrinology. 1982;110(5):1708–1715.
    1. Shikone T., et al. Apoptosis of human corpora lutea during cyclic luteal regression and early pregnancy. J Clin Endocrinol Metab. 1996;81(6):2376–2380.
    1. Khan-Dawood F.S., Huang J.C., Dawood M.Y. Baboon corpus luteum oxytocin: an intragonadal peptide modulator of luteal function. Am J Obstet Gynecol. 1988;158(4):882–891.
    1. Young K.A., Hennebold J.D., Stouffer R.L. Dynamic expression of mRNAs and proteins for matrix metalloproteinases and their tissue inhibitors in the primate corpus luteum during the menstrual cycle. Mol Hum Reprod. 2002;8(9):833–840.
    1. Judd H.L., Yen S.S. Serum androstenedione and testosterone levels during the menstrual cycle. J Clin Endocrinol Metab. 1973;36(3):475–481.
    1. Genazzani A.R., et al. Pattern of plasma ACTH, hGH, and cortisol during menstrual cycle. J Clin Endocrinol Metab. 1975;41(3):431–437.
    1. Carr B.R., et al. Plasma levels of adrenocorticotropin and cortisol in women receiving oral contraceptive steroid treatment. J Clin Endocrinol Metab. 1979;49(3):346–349.
    1. Carr, B.R. and J.D. Wilson, Disorders of the ovary and the female reproductive tract, in Harrison's Principles of Internal Medicine, E. Braunwald, et al., Editors. 1987, McGraw-Hill: New York. p. 1818.
    1. Casey M.L., MacDonald P.C. Extraadrenal formation of a mineralocorticosteroid: deoxycorticosterone and deoxycorticosterone sulfate biosynthesis and metabolism. Endocr.Rev. 1982;3(4):396–403.
    1. Parker C.R., Jr, et al. Plasma concentrations of 11-deoxycorticosterone in women during the menstrual cycle. Obstet Gynecol. 1981;58(1):26–30.
    1. Noyes R.W., Hertig A.T., Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263.
    1. Lessey B.A., et al. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab. 1988;67(2):334–340.
    1. Tseng L., Liu H.C. Stimulation of arylsulfotransferase activity by progestins in human endometrium in vitro. J Clin Endocrinol Metab. 1981;53(2):418–421.
    1. Chan RWS, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738–50.
    1. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2015;22:dmv051.
    1. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG: Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant 2008 [cited 2018 Mar 13];17:303–11
    1. Rebar, R.E., Practical evaluation of hormonal status, in Reproductive Endocrinology: Physiology, Pathophysiology and Clinical Management, S.S.C. Yen and R.B. Jaffe, Editors. 1991, WB Saunders: Philadelphia. p. 830.
    1. Gaudefroy M. Cytologic criteria of estrogen effect. Acta Cytol. 1958;(2):347.
    1. Henzl M.R., et al. Lysosomal concept of menstrual bleeding in humans. J Clin Endocrinol Metab. 1972;34(5):860–875.
    1. Turksoy R.N., Safaii H.S. Immediate effect of prostaglandin F2alpha during the luteal phase of the menstrual cycle. Fertil Steril. 1975;26(7):634–637.
    1. Edman C.D. The effects of steroids on the endometrium. Semin Reprod Endocrinol. 1983;1(3):179.
    1. Curry T.E., Jr, Osteen K.G. Cyclic changes in the matrix metalloproteinase system in the ovary and uterus. Biol Reprod. 2001;64(5):1285–1296.
    1. Cutolo M. Gender and the rheumatic diseases: Epidemiological evidence and possible biologic mechanisms. Annals of the Rheumatic Diseases. 2003;62:3–3.
    1. Anker J.J., Carroll M.E. Females are more vulnerable to drug abuse than males: evidence from preclinical studies and the role of ovarian hormones. Curr Top Behav Neurosci. 2011;8:73–96.

Source: PubMed

3
Abonner