Monoamine Oxidase Inhibition by Plant-Derived β-Carbolines; Implications for the Psychopharmacology of Tobacco and Ayahuasca

Ilana Berlowitz, Klemens Egger, Paul Cumming, Ilana Berlowitz, Klemens Egger, Paul Cumming

Abstract

The monoamine oxidases (MAOs) are flavin-containing amine oxidoreductases responsible for metabolism of many biogenic amine molecules in the brain and peripheral tissues. Whereas serotonin is the preferred substrate of MAO-A, phenylethylamine is metabolized by MAO-B, and dopamine and tyramine are nearly ambivalent with respect to the two isozymes. β-Carboline alkaloids such as harmine, harman(e), and norharman(e) are MAO inhibitors present in many plant materials, including foodstuffs, medicinal plants, and intoxicants, notably in tobacco (Nicotiana spp.) and in Banisteriopsis caapi, a vine used in the Amazonian ayahuasca brew. The β-carbolines present in B. caapi may have effects on neurogenesis and intrinsic antidepressant properties, in addition to potentiating the bioavailability of the hallucinogen N,N-dimethyltryptamine (DMT), which is often present in admixture plants of ayahuasca such as Psychotria viridis. Tobacco also contains physiologically relevant concentrations of β-carbolines, which potentially contribute to its psychopharmacology. However, in both cases, the threshold of MAO inhibition sufficient to interact with biogenic amine neurotransmission remains to be established. An important class of antidepressant medications provoke a complete and irreversible inhibition of MAO-A/B, and such complete inhibition is almost unattainable with reversible and competitive inhibitors such as β-carbolines. However, the preclinical and clinical observations with synthetic MAO inhibitors present a background for obtaining a better understanding of the polypharmacologies of tobacco and ayahuasca. Furthermore, MAO inhibitors of diverse structures are present in a wide variety of medicinal plants, but their pharmacological relevance in many instances remains to be established.

Keywords: Banisteriopsis caapi; Nicotiana; ayahuasca; dimethyltryptamine (DMT); harmine; monoamine oxidase (MAO); tobacco; β-carbolines.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Berlowitz, Egger and Cumming.

Figures

FIGURE 1
FIGURE 1
Structures of the alkaloid β-carboline, its common naturally occurring derivatives and metabolites, as well as of the hallucinogen N,N-dimethyltryptamine.

References

    1. Achour S. (2012). Peganum Harmala L. Poisoning in Morocco: about 200 Cases. Therapie 67 (1), 53–58. 10.2515/therapie/2012003
    1. Ametamey S. M. (1996). Radiosynthesis of [11C]brofaromine, a Potential Tracer for Imaging Monoamine Oxidase A. Nucl. Med. Biol. 23 (3), 229–234. 10.1016/0969-8051(95)02051-9
    1. Baldinger-Melich P. (2019). The Effect of Electroconvulsive Therapy on Cerebral Monoamine Oxidase A Expression in Treatment-Resistant Depression Investigated Using Positron Emission Tomography. Brain Stimul 12 (3), 714–723. 10.1016/j.brs.2018.12.976
    1. Bench C. J. (1991). Measurement of Human Cerebral Monoamine Oxidase Type B (MAO-B) Activity with Positron Emission Tomography (PET): a Dose Ranging Study with the Reversible Inhibitor Ro 19-6327. Eur. J. Clin. Pharmacol. 40 (2), 169–173. 10.1007/BF00280072
    1. Bergström M., Westerberg G., Långström B. (1997). 11C-harmine as a Tracer for Monoamine Oxidase A (MAO-A): In Vitro and In Vivo Studies. Nucl. Med. Biol. 24 (4), 287
    1. Berlowitz I. (2020). Tobacco Is The Chief Medicinal Plant In My Work”: Therapeutic Uses Of Tobacco In Peruvian Amazonian Medicine Exemplified By the Work Of a Maestro Tabaquero. Front. Pharmacol. 11. 10.3389/fphar.2020.594591
    1. Bernard S. (1996). Synthesis and In Vivo Studies of a Specific Monoamine Oxidase B Inhibitor: 5-[4-(benzyloxy)phenyl]-3-(2-Cyanoethyl)- 1,3,4-Oxadiazol-[11c]-2(3h)-One. Eur. J. Nucl. Med. 23 (2), 150–156. 10.1007/BF01731838
    1. Bladt S., Wagner H. (1994). Inhibition of MAO by Fractions and Constituents of hypericum Extract. J. Geriatr. Psychiatry Neurol. 7 (Suppl. 1), S57–S59. 10.1177/089198879400700115
    1. Blaha C. D., Coury A., Phillips A. G. (1996). Does Monoamine Oxidase Inhibition by Pargyline Increase Extracellular Dopamine Concentrations in the Striatum? Neuroscience 75 (2), 543–550. 10.1016/0306-4522(96)00289-8
    1. Bortolato M., (2013). Monoamine Oxidase A and A/B Knockout Mice Display Autistic-like Features. Int. J. Neuropsychopharmacol. 16 (4), 869–888. 10.1017/S1461145712000715
    1. Breyer-Pfaff U., (1996). Elevated Norharman Plasma Levels in Alcoholic Patients and Controls Resulting from Tobacco Smoking. Life Sci. 58 (17), 1425–1432. 10.1016/0024-3205(96)00112-9
    1. Brito-da-Costa A. M., (2020). Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact. Pharmaceuticals (Basel) 13 (11). 10.3390/ph13110334
    1. Brown E. E., (1991). Interstitial 3-methoxytyramine Reflects Striatal Dopamine Release: an In Vivo Microdialysis Study. J. Neurochem. 57 (2), 701–707. 10.1111/j.1471-4159.1991.tb03802.x
    1. Brunner H. G. (1993). Abnormal Behavior Associated with a point Mutation in the Structural Gene for Monoamine Oxidase A. Science 262 (5133), 578–580. 10.1126/science.8211186
    1. Busto U. E. (2009). Dopaminergic Activity in Depressed Smokers: a Positron Emission Tomography Study. Synapse 63 (8), 681–689. 10.1002/syn.20646
    1. Buu N. T., Lussier C. (1989). Consequences of Monoamine Oxidase Inhibition: Increased Vesicular Accumulation of Dopamine and Norepinephrine and Increased Metabolism by Catechol-O-Methyltransferase and Phenolsulfotransferase. Prog. Neuropsychopharmacol. Biol. Psychiatry 13 (3-4), 563–568. 10.1016/0278-5846(89)90147-4
    1. Callaway J. C. (2006). A Demand for Clarity Regarding a Case Report on the Ingestion of 5-Methoxy-N, N-Dimethyltryptamine (5-MeO-DMT) in an Ayahuasca Preparation. J. Anal. Toxicol. 30 (6), 406–407. 10.1093/jat/30.6.406
    1. Callaway J. C., Brito G. S., Neves E. S. (2005). Phytochemical Analyses of Banisteriopsis Caapi and Psychotria Viridis. J. Psychoactive Drugs 37 (2), 145–150. 10.1080/02791072.2005.10399795
    1. Callaway J. C. (1999). Pharmacokinetics of Hoasca Alkaloids in Healthy Humans. J. Ethnopharmacol 65 (3), 243–256. 10.1016/s0378-8741(98)00168-8
    1. Carbonaro T. M., Gatch M. B. (2016). Neuropharmacology of N,N-dimethyltryptamine. Brain Res. Bull. 126 (Pt 1), 74–88. 10.1016/j.brainresbull.2016.04.016
    1. Castagnoli K., Murugesan T. (2004). Tobacco Leaf, Smoke and Smoking, MAO Inhibitors, Parkinson's Disease and Neuroprotection; Are There Links? Neurotoxicology 25 (1-2), 279–291. 10.1016/S0161-813X(03)00107-4
    1. Cumming P., (1992). Formation and Clearance of Interstitial Metabolites of Dopamine and Serotonin in the Rat Striatum: an In Vivo Microdialysis Study. J. Neurochem. 59 (5), 1905–1914. 10.1111/j.1471-4159.1992.tb11026.x
    1. Cumming P., (2021). Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans. Molecules 26 (9). 10.3390/molecules26092451
    1. Dhiman P., Malik N., Khatkar A. (2019). Lead Optimization for Promising Monoamine Oxidase Inhibitor from Eugenol for the Treatment of Neurological Disorder: Synthesis and In Silico Based Study. BMC Chem. 13 (1), 38. 10.1186/s13065-019-0552-4
    1. Durden D. A., Philips S. R. (1980). Kinetic Measurements of the Turnover Rates of Phenylethylamine and Tryptamine In Vivo in the Rat Brain. J. Neurochem. 34 (6), 1725–1732. 10.1111/j.1471-4159.1980.tb11267.x
    1. Farzin D., Mansouri N. (2006). Antidepressant-like Effect of Harmane and Other β-carbolines in the Mouse Forced Swim Test. Eur. Neuropsychopharmacol. 16 (5), 324–328. 10.1016/j.euroneuro.2005.08.005
    1. Fekkes D., (2001). Tryptophan: a Precursor for the Endogenous Synthesis of Norharman in Man. Neurosci. Lett. 303 (3), 145–148. 10.1016/s0304-3940(01)01750-5
    1. Fornai F., (1999). Striatal Dopamine Metabolism in Monoamine Oxidase B-Deficient Mice: a Brain Dialysis Study. J. Neurochem. 73 (6), 2434–2440. 10.1046/j.1471-4159.1999.0732434.x
    1. Fowler J. S., (1996). Brain Monoamine Oxidase A Inhibition in Cigarette Smokers. Proc. Natl. Acad. Sci. U S A. 93 (24), 14065–14069. 10.1073/pnas.93.24.14065
    1. Fowler J. S., (1987). Mapping Human Brain Monoamine Oxidase A and B with 11C-Labeled Suicide Inactivators and PET. Science 235 (4787), 481–485. 10.1126/science.3099392
    1. Fowler J. S., (1988). Mechanistic Positron Emission Tomography Studies: Demonstration of a Deuterium Isotope Effect in the Monoamine Oxidase-Catalyzed Binding of [11C]L-Deprenyl in Living Baboon Brain. J. Neurochem. 51 (5), 1524–1534. 10.1111/j.1471-4159.1988.tb01121.x
    1. Fowler J. S., (1993). Monoamine Oxidase B (MAO B) Inhibitor Therapy in Parkinson's Disease: the Degree and Reversibility of Human Brain MAO B Inhibition by Ro 19 6327. Neurology 43 (10), 1984–1992. 10.1212/wnl.43.10.1984
    1. Fowler J. S., (1998). Neuropharmacological Actions of Cigarette Smoke: Brain Monoamine Oxidase B (MAO B) Inhibition. J. Addict. Dis. 17 (1), 23–34. 10.1300/J069v17n01_03
    1. Fowler J. S., (2001). Non-MAO A Binding of Clorgyline in white Matter in Human Brain. J. Neurochem. 79 (5), 1039–1046. 10.1046/j.1471-4159.2001.00649.x
    1. Fowler J. S. (2002). PET Imaging of Monoamine Oxidase B in Peripheral Organs in Humans. J. Nucl. Med. 43 (10), 1331
    1. Fowler J. S. (1995). Selective Reduction of Radiotracer Trapping by Deuterium Substitution: Comparison of Carbon-11-L-Deprenyl and Carbon-11-Deprenyl-D2 for MAO B Mapping. J. Nucl. Med. 36 (7), 1255
    1. Fowler J. S. (1999). Smoking a Single Cigarette Does Not Produce a Measurable Reduction in Brain MAO B in Non-smokers. Nicotine Tob. Res. 1 (4), 325–329. 10.1080/14622299050011451
    1. Gainetdinov R. R., Hoener M. C., Berry M. D. (2018). Trace Amines and Their Receptors. Pharmacol. Rev. 70 (3), 549–620. 10.1124/pr.117.015305
    1. Ghizlane E. A. (2021). Fatal Poisoning of Pregnant Women by Peganum Harmala L.: A Case Reports. Ann. Med. Surg. (Lond) 68, 102649. 10.1016/j.amsu.2021.102649
    1. Gillman P. K. (2011). Advances Pertaining to the Pharmacology and Interactions of Irreversible Nonselective Monoamine Oxidase Inhibitors. J. Clin. Psychopharmacol. 31 (1), 66–74. 10.1097/JCP.0b013e31820469ea
    1. Godar S. C. (2014). The Aggression and Behavioral Abnormalities Associated with Monoamine Oxidase A Deficiency Are Rescued by Acute Inhibition of Serotonin Reuptake. J. Psychiatr. Res. 56, 1–9. 10.1016/j.jpsychires.2014.04.014
    1. Goller L. (1995). Mao-a Enzyme Binding in Bladder-Cancer Characterized with [C-11] Harmine in Frozen-Section Autoradiography. Oncol. Rep. 2 (5), 717–721. 10.3892/or.2.5.717
    1. Gryglewski G. (2014). Meta-analysis of Molecular Imaging of Serotonin Transporters in Major Depression. J. Cereb. Blood Flow Metab. 34 (7), 1096–1103. 10.1038/jcbfm.2014.82
    1. Guillem K. (2006). Monoamine Oxidase A rather Than Monoamine Oxidase B Inhibition Increases Nicotine Reinforcement in Rats. Eur. J. Neurosci. 24 (12), 3532–3540. 10.1111/j.1460-9568.2006.05217.x
    1. Harris A. C., Muelken P., LeSage M. G. (2020). β-Carbolines Found in Cigarette Smoke Elevate Intracranial Self-Stimulation Thresholds in Rats. Pharmacol. Biochem. Behav. 198, 173041. 10.1016/j.pbb.2020.173041
    1. Hartvig P. (1986). Influence of Monoamine Oxidase Inhibitors and a Dopamine Uptake Blocker on the Distribution of 11C-N-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine, 11C-MPTP, in the Head of the Rhesus Monkey. Acta Neurol. Scand. 74 (1), 10–16. 10.1111/j.1600-0404.1986.tb04618.x
    1. Herraiz T., Chaparro C. (2005). Human Monoamine Oxidase Is Inhibited by Tobacco Smoke: Beta-Carboline Alkaloids Act as Potent and Reversible Inhibitors. Biochem. Biophys. Res. Commun. 326 (2), 378–386. 10.1016/j.bbrc.2004.11.033
    1. Herraiz T., Guillén H. (2018). Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions. Biomed. Res. Int. 2018, 4810394. 10.1155/2018/4810394
    1. Herraiz T. (2004). Relative Exposure to Beta-Carbolines Norharman and Harman from Foods and Tobacco Smoke. Food Addit Contam. 21 (11), 1041–1050. 10.1080/02652030400019844
    1. Janiger O., de Rios M. D. (1973). Suggestive Hallucinogenic Properties of Tobacco. Med. Anthropol. Newsl. 4 (4), 6–11. 10.1525/maq.1973.4.4.02a00050
    1. Jensen S. B. (2006). Effect of Monoamine Oxidase Inhibition on Amphetamine-Evoked Changes in Dopamine Receptor Availability in the Living Pig: a Dual Tracer PET Study with [11C]harmine and [11C]raclopride. Synapse 59 (7), 427–434. 10.1002/syn.20258
    1. Jeong G. S. (2021). Selective Inhibition of Human Monoamine Oxidase B by 5-Hydroxy-2-Methyl-Chroman-4-One Isolated from an Endogenous Lichen Fungus Daldinia Fissa. J. Fungi (Basel) 7 (2). 10.3390/jof7020084
    1. Khalil A. A., Davies B., Castagnoli N., Jr. (2006). Isolation and Characterization of a Monoamine Oxidase B Selective Inhibitor from Tobacco Smoke. Bioorg. Med. Chem. 14 (10), 3392–3398. 10.1016/j.bmc.2005.12.057
    1. Kitanaka N. (2010). Low-dose Pretreatment with Clorgyline Decreases the Levels of 3-Methoxy-4-Hydroxyphenylglycol in the Striatum and Nucleus Accumbens and Attenuates Methamphetamine-Induced Conditioned Place Preference in Rats. Neuroscience 165 (4), 1370–1376. 10.1016/j.neuroscience.2009.11.058
    1. Kitanaka N. (2006). Methamphetamine Reward in Mice as Assessed by Conditioned Place Preference Test with Supermex Sensors: Effect of Subchronic Clorgyline Pretreatment. Neurochem. Res. 31 (6), 805–813. 10.1007/s11064-006-9081-3
    1. Koyiparambath V. P. (2021). Deciphering the Detailed Structure-Activity Relationship of Coumarins as Monoamine Oxidase Enzyme Inhibitors-An Updated Review. Chem. Biol. Drug Des. 98 (4), 655–673. 10.1111/cbdd.13919
    1. Kranz G. S., (2021). High-dose Testosterone Treatment Reduces Monoamine Oxidase A Levels in the Human Brain: A Preliminary Report. Psychoneuroendocrinology 133, 105381. 10.1016/j.psyneuen.2021.105381
    1. Kumlien E. (1995). Positron Emission Tomography with [11C]deuterium-Deprenyl in Temporal Lobe Epilepsy. Epilepsia 36 (7), 712–721. 10.1111/j.1528-1157.1995.tb01051.x
    1. Lammertsma A. A. (1991). Measurement of Cerebral Monoamine Oxidase B Activity Using L-[11C]deprenyl and Dynamic Positron Emission Tomography. J. Cereb. Blood Flow Metab. 11 (4), 545–556. 10.1038/jcbfm.1991.103
    1. Larisch R. (2003). Influence of Synaptic Serotonin Level on [18F]altanserin Binding to 5HT2 Receptors in Man. Behav. Brain Res. 139 (1-2), 21–29. 10.1016/s0166-4328(01)00412-0
    1. Leenders K. L. (1988). Unilateral MPTP Lesion in a Rhesus Monkey: Effects on the Striatal Dopaminergic System Measured In Vivo with PET Using Various Novel Tracers. Brain Res. 445 (1), 61–67. 10.1016/0006-8993(88)91074-8
    1. Leroy C. (2009). Cerebral Monoamine Oxidase A Inhibition in Tobacco Smokers Confirmed with PET and [11C]befloxatone. J. Clin. Psychopharmacol. 29 (1), 86–88. 10.1097/JCP.0b013e31819e98f
    1. Lewis A. J. (2012). Monoamine Oxidase Inhibitory Activity in Tobacco Smoke Varies with Tobacco Type. Tob. Control. 21 (1), 39–43. 10.1136/tc.2010.040287
    1. Li S. (2014). Sex Differences in Yohimbine-Induced Increases in the Reinforcing Efficacy of Nicotine in Adolescent Rats. Addict. Biol. 19 (2), 156–164. 10.1111/j.1369-1600.2012.00473.x
    1. Liu W. (2021). Degradation of β-Carbolines Harman and Norharman in Edible Oils during Heating. Molecules 26 (22), 7018. 10.3390/molecules26227018
    1. Ma L., (2020). Purpurin Exerted Antidepressant-like Effects on Behavior and Stress axis Reactivity: Evidence of Serotonergic Engagement. Psychopharmacology (Berl) 237 (3), 887–899. 10.1007/s00213-019-05422-w
    1. Malson J. L. (2003). Clove Cigarette Smoking: Biochemical, Physiological, and Subjective Effects. Pharmacol. Biochem. Behav. 74 (3), 739–745. 10.1016/s0091-3057(02)01076-6
    1. Mappin-Kasirer B., (2020). Tobacco Smoking and the Risk of Parkinson Disease: A 65-year Follow-Up of 30,000 Male British Doctors. Neurology 94 (20), e2132–e2138. 10.1212/WNL.0000000000009437
    1. Maschauer S. (2015). Specific Binding of [(18)F]fluoroethyl-Harmol to Monoamine Oxidase A in Rat Brain Cryostat Sections, and Compartmental Analysis of Binding in Living Brain. J. Neurochem. 135 (5), 908–917. 10.1111/jnc.13370
    1. McKenna D. J. (1984). Monoamine oxidase inhibitors South Am. hallucinogenic plants: tryptamine beta-carboline constituents ayahuasca. J Ethnopharmacol 10 (2), 195–223. 10.1016/0378-8741(84)90003-5
    1. McKenna D. J. (1984b). Monoamine oxidase inhibitors South Am. hallucinogenic plants Part 2: Constituents orally-active Myristicaceous hallucinogens. J Ethnopharmacol 12 (2), 179–211. 10.1016/0378-8741(84)90048-5
    1. Meyer J. H. (2006). Elevated Monoamine Oxidase a Levels in the Brain: an Explanation for the Monoamine Imbalance of Major Depression. Arch. Gen. Psychiatry 63 (11), 1209–1216. 10.1001/archpsyc.63.11.1209
    1. Moerlein S. M. (1986). Regional Cerebral Pharmacokinetics of the Dopaminergic Neurotoxin 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine as Examined by Positron Emission Tomography in a Baboon Is Altered by Tranylcypromine. Neurosci. Lett. 66 (2), 205–209. 10.1016/0304-3940(86)90191-6
    1. Moloudizargari M., (2013). Pharmacological and Therapeutic Effects of Peganum Harmala and its Main Alkaloids. Pharmacogn Rev. 7 (14), 199–212. 10.4103/0973-7847.120524
    1. Morales-García J. A., (2017). The Alkaloids of Banisteriopsis Caapi, the Plant Source of the Amazonian Hallucinogen Ayahuasca, Stimulate Adult Neurogenesis In Vitro . Scientific Rep. 7 (1), 5309.
    1. Murphy D. L., (1990). Marked Amine and Amine Metabolite Changes in Norrie Disease Patients with an X-Chromosomal Deletion Affecting Monoamine Oxidase. J. Neurochem. 54 (1), 242–247. 10.1111/j.1471-4159.1990.tb13307.x
    1. Ona G. S., Dos Santos R. G., Hallak J. E. C., Bouso J. C. (2020). Polypharmacology Or “Pharmacological Promiscuity” in Psychedelic Research: What Are We Missing? ACS Chem. Neurosci. 11 (20), 3191–3193. 10.1021/acschemneuro.0c00614
    1. Oreland L., (1990). Turnover of Monoamine Oxidase B (MAO-B) in Pig Brain by Positron Emission Tomography Using 11C-L-Deprenyl. J. Neural Transm. Suppl. 32, 55–59. 10.1007/978-3-7091-9113-2_6
    1. Ott J. (1999). Pharmahuasca: Human Pharmacology of Oral DMT Plus Harmine. J. Psychoactive Drugs 31 (2), 171–177. 10.1080/02791072.1999.10471741
    1. Pedersen K., (2007). Mapping the Amphetamine-Evoked Changes in [11C]raclopride Binding in Living Rat Using Small Animal PET: Modulation by MAO-Inhibition. Neuroimage 35 (1), 38–46. 10.1016/j.neuroimage.2006.11.038
    1. Poindexter E. H., Carpenter R. D. (1962). The Isolation of Harmane and Norharmane from Tobacco and Cigarette Smoke. Phytochemistry 1 (3), 215–221. 10.1016/s0031-9422(00)82825-3
    1. Politi M., Friso F., Saucedo G., Torres J. (2021). Traditional Use of Banisteriopsis Caapi Alone and its Application in a Context of Drug Addiction Therapy. J. Psychoactive Drugs 53 (1), 76–84. 10.1080/02791072.2020.1820641
    1. Quitkin F., Rifkin A., Klein D. F. (1979). Monoamine Oxidase Inhibitors. A Review of Antidepressant Effectiveness. Arch. Gen. Psychiatry 36 (7), 749–760. 10.1001/archpsyc.1979.01780070027003
    1. Ramadan S. (2021). Dismantling Parkinson's Disease with Herbs: MAO-B Inhibitory Activity and Quantification of Chemical Constituents Using HPLC-MS/MS of Egyptian Local Market Plants. Nat. Prod. Res., 1–6. 10.1080/14786419.2021.2013836
    1. Riba J. (2003). Human Pharmacology of Ayahuasca: Subjective and Cardiovascular Effects, Monoamine Metabolite Excretion, and Pharmacokinetics. J. Pharmacol. Exp. Ther. 306 (1), 73–83. 10.1124/jpet.103.049882
    1. Rodd R. (2008). Reassessing the Cultural and Psychopharmacological Significance of Banisteriopsis Caapi: Preparation, Classification and Use Among the Piaroa of Southern Venezuela. J. Psychoactive Drugs 40 (3), 301–307. 10.1080/02791072.2008.10400645
    1. Rommelspacher H., (2002). The Levels of Norharman Are High Enough after Smoking to Affect Monoamineoxidase B in Platelets. Eur. J. Pharmacol. 441 (1-2), 115–125. 10.1016/s0014-2999(02)01452-8
    1. Sacher J. (2012). Dynamic, Adaptive Changes in MAO-A Binding after Alterations in Substrate Availability: an In Vivo [(11)C]-harmine Positron Emission Tomography Study. J. Cereb. Blood Flow Metab. 32 (3), 443–446. 10.1038/jcbfm.2011.184
    1. Sacher J. (2011). Monoamine Oxidase A Inhibitor Occupancy during Treatment of Major Depressive Episodes with Moclobemide or St. John's Wort: an [11C]-Harmine PET Study. J. Psychiatry Neurosci. 36 (6), 375–382. 10.1503/jpn.100117
    1. Schoepp D. D., Azzaro A. J. (1981). Specificity of Endogenous Substrates for Types A and B Monoamine Oxidase in Rat Striatum. J. Neurochem. 36 (6), 2025–2031. 10.1111/j.1471-4159.1981.tb10829.x
    1. Shih J. C., Chen K. (2004). Regulation of MAO-A and MAO-B Gene Expression. Curr. Med. Chem. 11 (15), 1995–2005. 10.2174/0929867043364757
    1. Shih J. C., Chen K. (1999). MAO-A and -B Gene Knock-Out Mice Exhibit Distinctly Different Behavior. Neurobiology (Bp) 7 (2), 235.
    1. Shih J. C., Chen K., Ridd M. J. (1999). Monoamine Oxidase: from Genes to Behavior. Annu. Rev. Neurosci. 22, 197–217. 10.1146/annurev.neuro.22.1.197
    1. Shinotoh H. (1987). Kinetics of [11C]N,N-dimethylphenylethylamine in Mice and Humans: Potential for Measurement of Brain MAO-B Activity. J. Nucl. Med. 28 (6), 1006.
    1. Shulman K. I., Herrmann N., Walker S. E. (2013). Current Place of Monoamine Oxidase Inhibitors in the Treatment of Depression. CNS Drugs 27 (10), 789–797. 10.1007/s40263-013-0097-3
    1. Simão A. Y. (2019). Toxicological Aspects and Determination of the Main Components of Ayahuasca: A Critical Review. Medicines (Basel) 6 (4).
    1. Sklerov J. (2005). A Fatal Intoxication Following the Ingestion of 5-Methoxy-N,n-Dimethyltryptamine in an Ayahuasca Preparation. J. Anal. Toxicol. 29 (8), 838–841. 10.1093/jat/29.8.838
    1. Slotkin T. A., DiStefano V., Au W. Y. (1970). Blood Levels and Urinary Excretion of Harmine and its Metabolites in Man and Rats. J. Pharmacol. Exp. Ther. 173 (1), 26–30.
    1. Smith T. T. (2015). Effects of MAO Inhibition and a Combination of Minor Alkaloids, β-carbolines, and Acetaldehyde on Nicotine Self-Administration in Adult Male Rats. Drug Alcohol Depend 155, 243–252. 10.1016/j.drugalcdep.2015.07.002
    1. Spijkerman R. (2002). The Impact of Smoking and Drinking on Plasma Levels of Norharman. Eur. Neuropsychopharmacol. 12 (1), 61–71. 10.1016/s0924-977x(01)00143-2
    1. Suzuki O., Oya M., Katsumata Y. (1979). Oxidation of P-, M- and O-Tyramine by Type A and Type B Monoamine Oxidase. Biochem. Pharmacol. 28 (17), 2682–2684. 10.1016/0006-2952(79)90050-9
    1. Tarkowská D. (2020). A Fast and Reliable UHPLC-MS/MS-Based Method for Screening Selected Pharmacologically Significant Natural Plant Indole Alkaloids. Molecules 25 (14), 3274. 10.3390/molecules25143274
    1. Thase M. E., Trivedi M. H., Rush A. J. (1995). MAOIs in the Contemporary Treatment of Depression. Neuropsychopharmacology 12 (3), 185–219. 10.1016/0893-133X(94)00058-8
    1. Truman P., Grounds P., Brennan K. A. (2017). Monoamine Oxidase Inhibitory Activity in Tobacco Particulate Matter: Are Harman and Norharman the Only Physiologically Relevant Inhibitors? Neurotoxicology 59, 22–26. 10.1016/j.neuro.2016.12.010
    1. Truman P. (2019). Monoamine Oxidase Inhibitory Activity of Flavoured E-Cigarette Liquids. Neurotoxicology 75, 123–128. 10.1016/j.neuro.2019.09.010
    1. Ulrich S., Ricken R., Adli M. (2017). Tranylcypromine in Mind (Part I): Review of Pharmacology. Eur. Neuropsychopharmacol. 27 (8), 697–713. 10.1016/j.euroneuro.2017.04.003
    1. van Amsterdam J., (2006). Contribution of Monoamine Oxidase (MAO) Inhibition to Tobacco and Alcohol Addiction. Life Sci. 79 (21), 1969–1973. 10.1016/j.lfs.2006.06.010
    1. Van Den Eijnden R., Spijkerman R., Fekkes D. (2003). Craving for Cigarettes Among Low and High Dependent Smokers: Impact of Norharman. Addict. Biol. 8 (4), 463–472. 10.1080/13556210310001646457
    1. van der Toorn M., (2019). Comparison of Monoamine Oxidase Inhibition by Cigarettes and Modified Risk Tobacco Products. Toxicol. Rep. 6, 1206–1215. 10.1016/j.toxrep.2019.11.008
    1. Varnäs K. (2021). Effects of Sevoflurane Anaesthesia on Radioligand Binding to Monoamine Oxidase-B In Vivo . Br. J. Anaesth. 126 (1), 238–244. 10.1016/j.bja.2020.08.052
    1. Villégier A. S. (2007). Involvement of Alpha1-Adrenergic Receptors in Tranylcypromine Enhancement of Nicotine Self-Administration in Rat. Psychopharmacology (Berl) 193 (4), 457–465. 10.1007/s00213-007-0799
    1. Wang Y. (2019). Subchronic Toxicity and Concomitant Toxicokinetics of Long-Term Oral Administration of Total Alkaloid Extracts from Seeds of Peganum Harmala Linn: A 28-day Study in Rats. J. Ethnopharmacol 238, 111866. 10.1016/j.jep.2019.111866
    1. Yang H. Y., Neff N. H. (1973). Beta-phenylethylamine: a Specific Substrate for Type B Monoamine Oxidase of Brain. J. Pharmacol. Exp. Ther. 187 (2), 365–371.
    1. Youdim M. B., Weinstock M. (2004). Therapeutic Applications of Selective and Non-selective Inhibitors of Monoamine Oxidase A and B that Do Not Cause Significant Tyramine Potentiation. Neurotoxicology 25 (1-2), 243–250. 10.1016/S0161-813X(03)00103-7
    1. Zhang L., Ashley D. L., Watson C. H. (2011). Quantitative Analysis of Six Heterocyclic Aromatic Amines in Mainstream Cigarette Smoke Condensate Using Isotope Dilution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Nicotine Tob. Res. 13 (2), 120–126. 10.1093/ntr/ntq219

Source: PubMed

3
Abonner