A phase 2 trial of N-Acetylcysteine in Biliary atresia after Kasai portoenterostomy

Mary Elizabeth M Tessier, Benjamin L Shneider, Mary L Brandt, Dana N Cerminara, Sanjiv Harpavat, Mary Elizabeth M Tessier, Benjamin L Shneider, Mary L Brandt, Dana N Cerminara, Sanjiv Harpavat

Abstract

Background: Biliary atresia (BA) is a life-threatening liver disease of infancy, characterized by extrahepatic biliary obstruction, bile retention, and progressive liver injury. The Kasai portoenterostomy (KP) is BA's only nontransplant treatment. Its success is variable and depends on restoration of hepatic bile flow. Many adjunctive therapeutics have been studied to improve outcomes after the KP, but none demonstrate effectiveness. This study tests if N-acetylcysteine (NAC), a precursor to the choleretic glutathione, improves bile flow after KP.

Methods: This report describes the design of an open-label, single center, Phase 2 study to determine the effect of NAC following KP on markers of bile flow and outcomes in BA. The intervention is intravenous NAC (150 mg/kg/day) administered continuously for seven days starting 0-24 h after KP. The primary outcome is normalization of total serum bile acid (TSBA) concentrations within 24 weeks of KP. The secondary objectives are to describe NAC therapy's effect on other clinical parameters followed in BA for 24 months and to report adverse events occurring with therapy. This study follows the "minimax" clinical trial design.

Discussion: This is the first clinical trial to test NAC's effectiveness in improving bile flow after KP in BA. It introduces three important concepts for future BA therapeutic trials: (1) the "minimax" study design, a pertinent design for rare diseases because it detects potential effects quickly with small subject size; (2) the more sensitive bile flow marker, TSBAs, which may correlate with positive long-term outcomes better than traditional bile flow markers such as serum bilirubin; and (3) liver enzyme changes immediately after KP, which can be a guideline for potential drug-induced liver injury in other BA peri-operative adjunctive therapeutic trials.

Keywords: ALT, Alanine transaminase; AST, Aspartate aminotransferase; BA, Biliary atresia; Bc, Conjugated bilirubin; Biliary atresia; DILI, Drug-induced liver injury; DSMB, Data and Safety Monitoring Board; DoL, Day of life; Drug-induced liver injury; FDA, Food and Drug administration; GGT, Gamma-glutamlytransferase; IOC, Intraoperative cholangiogram; KP, Kasai portoenterostomy; Kasai portoenterostomy; Minimax design; N-acetylcysteine; NAC, N-acetylcysteine; START, Steroids in Biliary Atresia Randomized Trial; Serum bile acids; TB, Total bilirubin; TCH, Texas Children's Hospital; TSBA, Total serum bile acids.

Figures

Fig. 1
Fig. 1
Trial Design. This is a two-stage Phase 2 trial based on the “minimax” design. In Stage 1, 12 patients will be enrolled. If no patient in Stage 1 achieves a TSBA ≤10 μmol/L, the trial will stop. If at least one patient achieves a normal TSBA, an additional four patients will be enrolled. The trial is designed to detect a change in response rate from 5% without NAC treatment (based on historical controls) to 25% with NAC treatment, with a type I error rate of 5% and power of 80%.
Fig. 2
Fig. 2
Liver Enzyme Changes in the First Seven Days after KP. Thirteen infants undergoing KP had laboratory values followed in the first seven post-operative days. (A and B) AST and ALT rose substantially above baseline on post-operative day 1 and then trended downwards. (C) GGT rose above baseline 5–7 days post-operatively. (D) Bc remained close to baseline in the immediate post-operative period. Dashed lines denote proposed upper limits for DILI.

References

    1. Jimenez-Rivera C., Jolin-Dahel K.S., Fortinsky K.J., Gozdyra P., Benchimol E.I. International incidence and outcomes of biliary atresia. J. Pediatr. Gastroenterol. Nutr. 2013;56:344–354.
    1. Bezerra J.A., Wells R.G., Mack C.L., Karpen S.J., Hoofnagle J.H., Doo E., Sokol R.J. BILIARY ATRESIA: clinical and Research challenges for the 21st century. Hepatology. 2018
    1. Bezerra J.A., Wells R.G., Mack C.L., Karpen S.J., Hoofnagle J.H., Doo E., Sokol R.J. BILIARY ATRESIA: Clinical and Research Challenges for the 21 St Century. Hepatology. 2018
    1. Sundaram S.S., Mack C.L., Feldman A.G., Sokol R.J. Biliary atresia: indications and timing of liver transplantation and optimization of pretransplant care. Liver Transplant. 2017;23:96–109.
    1. Shneider B.L., Brown M.B., Haber B., Whitington P.F., Schwarz K., Squires R., Bezerra J., Shepherd R., Rosenthal P., Hoofnagle J.H., Sokol R.J. A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J. Pediatr. 2006;148:467–474.
    1. Davenport M., Caponcelli E., Livesey E., Hadzic N., Howard E. Surgical outcome in biliary atresia. Ann. Surg. 2008;247:694–698.
    1. Squires R.H., Ng V., Romero R., Ekong U., Hardikar W., Emre S., Mazariegos G.V. Evaluation of the pediatric patient for liver transplantation: 2014 practice guideline by the american association for the study of liver diseases, american society of transplantation and the north american society for pediatric gastroenterology, hepatolo. Hepatology. 2014;60:362–398.
    1. Bezerra J.A., Spino C., Magee J.C., Shneider B.L., Rosenthal P., Wang K.S., Erlichman J., Haber B., Hertel P.M., Karpen S.J., Kerkar N., Loomes K.M., Molleston J.P., Murray K.F., Romero R., Schwarz K.B., Shepherd R., Suchy F.J., Turmelle Y.P., Whitington P.F., Moore J., Sherker A.H., Robuck P.R., Sokol R.J. Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. J. Am. Med. Assoc. 2014;311:1750–1759.
    1. Sokol C.L., Ronald J., Spino Cathie, Moore Jeffrey, Bezerra Jorge, Whitington Peter F., Karpen Saul J., Loomes Kathleen M., Ng Vicky L., Venkat Veena L., Wang Kasper S., Goodhue Catherine J., Sherker Averell H., Magee John C., Mack Intravenous immunoglobulin (IVIG) following portoenterostomy in infants with biliary atresia: a phase 1/2a trial. Hepatology. 2016;64:1123A.
    1. Simon R. Optimal two-stage designs for phase II clinical trials., Control. Clin. Trials. 1989;10:1–10.
    1. Jenkins D.D., Wiest D.B., Mulvihill D.M., Hlavacek A.M., Majstoravich S.J., Brown T.R., Taylor J.J., Buckley J.R., Turner R.P., Rollins L.G., Bentzley J.P., Hope K.E., Barbour A.B., Lowe D.W., Martin R.H., Chang E.Y. Fetal and neonatal effects of N-acetylcysteine when used for neuroprotection in maternal chorioamnionitis. J. Pediatr. 2016;168 67–76.e6.
    1. Kortsalioudaki C., Taylor R.M., Cheeseman P., Bansal S., Mieli-vergani G., Dhawan A. Safety and efficacy of N-acetylcysteine in children with non-acetaminophen-induced acute liver failure. Liver Transplant. 2008;44:25–30.
    1. Wiest D.B., Chang E., Fanning D., Garner S., Cox T., Jenkins D.D. Antenatal pharmacokinetics and placental transfer of N-acetylcysteine in chorioamnionitis for fetal neuroprotection. J. Pediatr. 2014;165:672–677.e2.
    1. Squires R.H., Dhawan A., Alonso E., Narkewicz M.R., Shneider B.L., Rodriguez-Baez N., Olio D.D., Karpen S., Bucuvalas J., Lobritto S., Rand E., Rosenthal P., Horslen S., Ng V., Subbarao G., Kerkar N., Rudnick D., Lopez M.J., Schwarz K., Romero R., Elisofon S., Doo E., Robuck P.R., Lawlor S., Belle S.H. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial. Hepatology. 2013;57:1542–1549.
    1. Ballatori N., Jacob R., Boyer J.L. Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J. Biol. Chem. 1986;261:7860–7865.
    1. Tahan G., Tarcin O., Tahan V., Eren F., Gedik N., Sahan E., Biberoglu N., Guzel S., Bozbas A., Tozun N., Yucel O. The effects of N-acetylcysteine on bile duct ligation–induced liver fibrosis in rats. Dig. Dis. Sci. 2007;52:3348–3354.
    1. Galicia-Moreno M., Rodríguez-Rivera A., Reyes-Gordillo K., Segovia J., Shibayama M., Tsutsumi V., Vergara P., Moreno M.G., Muriel P. N-acetylcysteine prevents carbon tetrachloride-induced liver cirrhosis: role of liver transforming growth factor-beta and oxidative stress. Eur. J. Gastroenterol. Hepatol. 2009;21:908–914.
    1. Galicia-Moreno M., Favari L., Muriel P. Antifibrotic and antioxidant effects of N-acetylcysteine in an experimental cholestatic model. Eur. J. Gastroenterol. Hepatol. 2012;24:179–185.
    1. Hanigan M.H., Ricketts W.A. Extracellular glutathione is a source of cysteine for cells that express gamma-glutamyl transpeptidase. Biochemistry. 1993;32:6302–6306. accessed.
    1. Ballatori N., Jacob R., Barrett C., Boyer J.L. Biliary catabolism of glutathione and differential reabsorption of its amino acid constituents. Am. J. Physiol. 1988;254:G1–G7.
    1. Hanigan M.H. Adv. Cancer Res.; 2014. Gamma-Glutamyl transpeptidase; pp. 103–141.
    1. Gunay Y., Altaner S., Ekmen N. The Role of e-NOS in Chronic Cholestasis-Induced Liver and Renal Injury in Rats: the Effect of N-Acetyl Cysteine. Gastroenterol. Res. Pract. 2014;2014:1–8.
    1. Waisbourd-Zinman O., Koh H., Tsai S., Lavrut P.M., Dang C., Zhao X., Pack M., Cave J., Hawes M., Koo K.A., Porter J.R., Wells R.G. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880–893.
    1. Zhao X., Lorent K., Wilkins B.J., Marchione D.M., Gillespie K., Waisbourd-Zinman O., So J., Koo K.A., Shin D., Porter J.R., Wells R.G., Blair I., Pack M. Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish. Hepatology. 2016;64:894–907.
    1. Ahola T., Fellman V., Laaksonen R., Laitila J., Lapatto R., Neuvonen P.J., Raivio K.O. Pharmacokinetics of intravenous N-acetylcysteine in pre-term new-born infants. Eur. J. Clin. Pharmacol. 1999;55:645–650.
    1. Rodrigues F., Kallas M., Nash R., Cheeseman P., Antiga L.D., Rela M., Heaton N.D. Neonatal hemochromatosis — medical treatment vs . Transplantation . The King ’ s Experience. 2005;11:1417–1424.
    1. Mager D.R., Marcon M., Wales P., Pencharz P.B. Use of N-acetyl cysteine for the treatment of parenteral nutrition-induced liver disease in children receiving home parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2008;46:220–223.
    1. Soghier L.M., Brion L.P. Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst. Rev. 2006:CD004869.
    1. Flynn D.M., Mohan N., McKiernan P., Beath S., Buckels J., Mayer D., Kelly D.A. Progress in treatment and outcome for children with neonatal haemochromatosis. Arch. Dis. Child. Fetal Neonatal Ed. 2003;88:F124–F127.
    1. Ahola T., Lapatto R., Raivio K.O., Selander B., Stigson L., Jonsson B., Jonsbo F., Esberg G., Stövring S., Kjartansson S., Stiris T., Lossius K., Virkola K., Fellman V. N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial. J. Pediatr. 2003;143:713–719.
    1. Mahmoud K.M., Ammar A.S. Effect of N-acetylcysteine on cardiac injury and oxidative stress after abdominal aortic aneurysm repair: a randomized controlled trial. Acta Anaesthesiol. Scand. 2011;55:1015–1021.
    1. E.-H.I., S.L.-M., C.M., P.M., B.D., D.P., C.R., P.P., P.L.P. Effect of intravenous N-acetylcysteine on outcomes after coronary artery bypass surgery: a randomized, double-blind, placebo-controlled clinical trial. J. Thorac. Cardiovasc. Surg. 2007;133:7–12.
    1. Shneider B.L., Magee J.C., Karpen S.J., Rand E.B., Narkewicz M.R., Bass L.M., Schwarz K., Whitington P.F., Bezerra J.A., Kerkar N., Haber B., Rosenthal P., Turmelle Y.P., Molleston J.P., Murray K.F., Ng V.L., Wang K.S., Romero R., Squires R.H., Arnon R., Sherker A.H., Moore J., Ye W., Sokol R.J., Alonso E., Kaurs E., Kelly S., Bove K., Heubi J., Miethke A., Tiao G., Denlinger J., Ferris A., Feldman A., Mack C., Suchy F., Sundaram S., Van Hove J., Hite M., Kantor S., Miller T., Smith J., VanWinkle B., Loomes K., Lin H., Piccoli D., Russo P., Spinner N., Brown L., Elgert E., Erlichman J., Alissa F., Lindblad D., Mazariegos G., Ortiz-Aguayo R., Perlmutter D., Sindhi R., Venkat V., Vockley J., Bukauskas K., Kufen A., Schulte M., Bull L., Fleck S., Langlois C., Teckman J., Kociela V., Postma S., Harris K., Bozic M., Subbarao G., Byam B., Klipsch A., Sawyers C., Horslen S., Hsu E., Cooper K., Young M., Kamath B., DeAngelis M., O'Connor C., VanRoestel K., Parmar A., Quammie C., Hung K., Guthery S., Jensen K., Rutherford A., Kerker N., Michail S., Thomas D., Goodhue C., Gupta N., Vos M., de la Cruz-Tracey L., Hankerson-Dyson D., Tory R., Turner-Green T., Wellons A., Brandt M., Finegold M., Harpavat S., Hertel P., Leung D., Liwanag L., Thompson R., Brown S., Doo E., Hoofnagle J., Hall S., Torrance R., Brown J., Liwanag L., Kafka K., Merion R., Spino C. Total serum bilirubin within 3 Months of hepatoportoenterostomy predicts short-term outcomes in biliary atresia. J. Pediatr. 2016;170 211–217.e2.
    1. Sanjiv Harpavat V., Heubi James E., Karpen Saul J., Lee Ng B.L., David Reginald Setchell Kenneth, Shneider S., Alonso Estella M., Bezerra Jorge A., Guthery J.L., Loomes Kathleen M., Magee John C., Pappas Molleston P.R., Murray Karen F., S R.J., the C.L.D. (ChiLDReN), Averell N., Sherker H., Squires Robert H., Wang Kasper S. Prognostic value of serum bile acids after Kasai portoenterostomy in biliary atresia. Hepatology. 2018;68:85A–86A.
    1. Venkat V.L., Shneider B.L., Magee J.C., Turmelle Y., Arnon R., Bezerra J.A., Hertel P.M., Karpen S.J., Kerkar N., Loomes K.M., Molleston J., Murray K.F., Ng V.L., Raghunathan T., Rosenthal P., Schwartz K., Sherker A.H., Sokol R.J., Teckman J., Wang K., Whitington P.F., Heubi J.E. Total serum bilirubin predicts fat-soluble vitamin deficiency better than serum bile acids in infants with biliary atresia. J. Pediatr. Gastroenterol. Nutr. 2014;59:702–707.

Source: PubMed

3
Abonner