Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee

Sunhee Jang, Kijun Lee, Ji Hyeon Ju, Sunhee Jang, Kijun Lee, Ji Hyeon Ju

Abstract

Osteoarthritis (OA) is a degenerative and chronic joint disease characterized by clinical symptoms and distortion of joint tissues. It primarily damages joint cartilage, causing pain, swelling, and stiffness around the joint. It is the major cause of disability and pain. The prevalence of OA is expected to increase gradually with the aging population and increasing prevalence of obesity. Many potential therapeutic advances have been made in recent years due to the improved understanding of the underlying mechanisms, diagnosis, and management of OA. Embryonic stem cells and induced pluripotent stem cells differentiate into chondrocytes or mesenchymal stem cells (MSCs) and can be used as a source of injectable treatments in the OA joint cavity. MSCs are known to be the most studied cell therapy products in cell-based OA therapy owing to their ability to differentiate into chondrocytes and their immunomodulatory properties. They have the potential to improve cartilage recovery and ultimately restore healthy joints. However, despite currently available therapies and advances in research, unfulfilled medical needs persist for OA treatment. In this review, we focused on the contents of non-cellular and cellular therapies for OA, and briefly summarized the results of clinical trials for cell-based OA therapy to lay a solid application basis for clinical research.

Keywords: cell therapy; diagnosis; embryonic stem cells; induced pluripotent stem cells; management; mesenchymal stem cells; osteoarthritis; surgery.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mechanisms for the osteoarthritis of the knee. Healthy articular cartilage (Left)—Because of absence of vessels within cartilage, chondrocytes can live in a hypoxic environment. Hypoxia is important for chondrocyte function and survival. The main function of cartilage is the absorption and the removal of mechanical load, which is necessary to maintain cartilage homeostasis. Osteoarthritis articular cartilage (Right)—Development of vessels (called vascular channels) are supposed to facilitate biochemical communication between the bone and the cartilage (such as cytokines, chemokines, alarmins). It initiates a vicious cycle of cartilage degradation.
Figure 2
Figure 2
The example of the Kellgren–Lawrence (KL) scale. KL classification is the most widely used radiographic scale. The radiograph was recorded at St. Mary’s Hospital in Seoul.
Figure 3
Figure 3
Schematic diagram of various cell-based therapy for osteoarthritis. Embryonic stem cells (ESC), induced pluripotent stem cells (iPSC), and mesenchymal stem cells (MSC) are potential candidates for cartilage regeneration for the OA treatment. MSC can be isolated from bone marrow, adipose tissue, umbilical cord, synovium. Pluripotent stem cells (PSC), including ESC and iPSC, are considered sources for the derivation of chondrocytes and MSC.

References

    1. Zhang Y., Jordan J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010;26:355–369. doi: 10.1016/j.cger.2010.03.001.
    1. Kellgren J.H., Jeffrey M.R., Ball J. The Epidemiology of Chronic Rheumatism: A Symposium. Blackwell Scientific Publications; Oxford, UK: 1963.
    1. Hannan M.T., Felson D.T., Pincus T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 2000;27:1513–1517.
    1. Mora J.C., Przkora R., Cruz-Almeida Y. Knee osteoarthritis: Pathophysiology and current treatment modalities. J. Pain Res. 2018;11:2189–2196. doi: 10.2147/JPR.S154002.
    1. Rubin B.R. Management of osteoarthritic knee pain. J. Am. Osteopath. Assoc. 2005;105:S23–S28.
    1. Martel-Pelletier J., Barr A.J., Cicuttini F.M., Conaghan P.G., Cooper C., Goldring M.B., Goldring S.R., Jones G., Teichtahl A.J., Pelletier J.P. Osteoarthritis. Nat. Rev. Dis. Primers. 2016;2:16072. doi: 10.1038/nrdp.2016.72.
    1. Netter F.H., Hansen J.T. Atlas of Human Anatomy. 3rd ed. Icon Learning Systems; Teterboro, NJ, USA: 2003.
    1. Houard X., Goldring M.B., Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr. Rheumatol. Rep. 2013;15:375. doi: 10.1007/s11926-013-0375-6.
    1. Troeberg L., Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta. 2012;1824:133–145. doi: 10.1016/j.bbapap.2011.06.020.
    1. Glasson S.S., Askew R., Sheppard B., Carito B., Blanchet T., Ma H.L., Flannery C.R., Peluso D., Kanki K., Yang Z., et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434:644–648. doi: 10.1038/nature03369.
    1. Little C.B., Barai A., Burkhardt D., Smith S.M., Fosang A.J., Werb Z., Shah M., Thompson E.W. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 2009;60:3723–3733. doi: 10.1002/art.25002.
    1. Gosset M., Berenbaum F., Levy A., Pigenet A., Thirion S., Cavadias S., Jacques C. Mechanical stress and prostaglandin E2 synthesis in cartilage. Biorheology. 2008;45:301–320. doi: 10.3233/BIR-2008-0494.
    1. Suri S., Gill S.E., Massena de Camin S., Wilson D., McWilliams D.F., Walsh D.A. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis. 2007;66:1423–1428. doi: 10.1136/ard.2006.063354.
    1. Macchi V., Stocco E., Stecco C., Belluzzi E., Favero M., Porzionato A., De Caro R. The infrapatellar fat pad and the synovial membrane: An anatomo-functional unit. J. Anat. 2018;233:146–154. doi: 10.1111/joa.12820.
    1. Belluzzi E., Macchi V., Fontanella C.G., Carniel E.L., Olivotto E., Filardo G., Sarasin G., Porzionato A., Granzotto M., Pozzuoli A., et al. Infrapatellar Fat Pad Gene Expression and Protein Production in Patients with and without Osteoarthritis. Int. J. Mol. Sci. 2020;21:6016. doi: 10.3390/ijms21176016.
    1. Kim H.A., Cho M.L., Choi H.Y., Yoon C.S., Jhun J.Y., Oh H.J., Kim H.Y. The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheumatol. 2006;54:2152–2163. doi: 10.1002/art.21951.
    1. Wu C.W., Morrell M.R., Heinze E., Concoff A.L., Wollaston S.J., Arnold E.L., Singh R., Charles C., Skovrun M.L., FitzGerald J.D., et al. Validation of American College of Rheumatology classification criteria for knee osteoarthritis using arthroscopically defined cartilage damage scores. Semin. Arthritis Rheum. 2005;35:197–201. doi: 10.1016/j.semarthrit.2005.06.002.
    1. Schiphof D., van Middelkoop M., de Klerk B.M., Oei E.H., Hofman A., Koes B.W., Weinans H., Bierma-Zeinstra S.M. Crepitus is a first indication of patellofemoral osteoarthritis (and not of tibiofemoral osteoarthritis) Osteoarthr. Cartil. 2014;22:631–638. doi: 10.1016/j.joca.2014.02.008.
    1. Ike R., O’Rourke K.S. Compartment-directed physical examination of the knee can predict articular cartilage abnormalities disclosed by needle arthroscopy. Arthritis Rheumatol. 1995;38:917–925. doi: 10.1002/art.1780380707.
    1. Kohn M.D., Sassoon A.A., Fernando N.D. Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clin. Orthop. Relat. Res. 2016;474:1886–1893. doi: 10.1007/s11999-016-4732-4.
    1. Hernandez-Vaquero D., Fernandez-Carreira J.M. Relationship between radiological grading and clinical status in knee osteoarthritis. A multicentric study. BMC Musculoskelet Disord. 2012;13:194. doi: 10.1186/1471-2474-13-194.
    1. Oosthuizen C.R., Takahashi T., Rogan M., Snyckers C.H., Vermaak D.P., Jones G.G., Porteous A., Maposa I., Pandit H. The Knee Osteoarthritis Grading System for Arthroplasty. J. Arthroplast. 2019;34:450–455. doi: 10.1016/j.arth.2018.11.011.
    1. Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Casp. J. Intern. Med. 2011;2:205–212.
    1. McAlindon T.E., Bannuru R.R., Sullivan M.C., Arden N.K., Berenbaum F., Bierma-Zeinstra S.M., Hawker G.A., Henrotin Y., Hunter D.J., Kawaguchi H., et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr. Cartil. 2014;22:363–388. doi: 10.1016/j.joca.2014.01.003.
    1. Kolasinski S.L., Neogi T., Hochberg M.C., Oatis C., Guyatt G., Block J., Callahan L., Copenhaver C., Dodge C., Felson D., et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Rheumatol. 2020;72:220–233. doi: 10.1002/art.41142.
    1. Jevsevar D.S., Brown G.A., Jones D.L., Matzkin E.G., Manner P.A., Mooar P., Schousboe J.T., Stovitz S., Sanders J.O., Bozic K.J., et al. The American Academy of Orthopaedic Surgeons evidence-based guideline on: Treatment of osteoarthritis of the knee, 2nd edition. J. Bone Jt. Surg. Am. 2013;95:1885–1886. doi: 10.2106/00004623-201310160-00010.
    1. Bannuru R.R., Schmid C.H., Kent D.M., Vaysbrot E.E., Wong J.B., McAlindon T.E. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: A systematic review and network meta-analysis. Ann. Intern. Med. 2015;162:46–54. doi: 10.7326/M14-1231.
    1. Ayhan E., Kesmezacar H., Akgun I. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J. Orthop. 2014;5:351–361. doi: 10.5312/wjo.v5.i3.351.
    1. Georgiev T. Multimodal approach to intraarticular drug delivery in knee osteoarthritis. Rheumatol. Int. 2020;40:1763–1769. doi: 10.1007/s00296-020-04681-7.
    1. Rozental T.D., Sculco T.P. Intra-articular corticosteroids: An updated overview. Am. J. Orthop. 2000;29:18–23.
    1. Osteoarthritis: National Clinical Guideline for Care and Management in Adults, London. [(accessed on 3 March 2021)];2008 Available online:
    1. McArthur B.A., Dy C.J., Fabricant P.D., Valle A.G. Long term safety, efficacy, and patient acceptability of hyaluronic acid injection in patients with painful osteoarthritis of the knee. Patient Prefer. Adherence. 2012;6:905–910.
    1. Strauss E.J., Hart J.A., Miller M.D., Altman R.D., Rosen J.E. Hyaluronic acid viscosupplementation and osteoarthritis: Current uses and future directions. Am. J. Sports Med. 2009;37:1636–1644. doi: 10.1177/0363546508326984.
    1. Pourcho A.M., Smith J., Wisniewski S.J., Sellon J.L. Intraarticular platelet-rich plasma injection in the treatment of knee osteoarthritis: Review and recommendations. Am. J. Phys. Med. Rehabil. 2014;93:S108–S121. doi: 10.1097/PHM.0000000000000115.
    1. Leopold S.S. Minimally invasive total knee arthroplasty for osteoarthritis. N. Engl. J. Med. 2009;360:1749–1758. doi: 10.1056/NEJMct0806027.
    1. Skou S.T., Roos E.M., Laursen M.B., Rathleff M.S., Arendt-Nielsen L., Simonsen O., Rasmussen S. A Randomized, Controlled Trial of Total Knee Replacement. N. Engl. J. Med. 2015;373:1597–1606. doi: 10.1056/NEJMoa1505467.
    1. Sun C., Zhang X., Lee W.G., Tu Y., Li H., Cai X., Yang H. Infrapatellar fat pad resection or preservation during total knee arthroplasty: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2020;15:297. doi: 10.1186/s13018-020-01823-2.
    1. Rodriguez-Merchan E.C., Gomez-Cardero P. Unicompartmental knee arthroplasty: Current indications, technical issues and results. Efort Open Rev. 2018;3:363–373. doi: 10.1302/2058-5241.3.170048.
    1. Liu X., Chen Z., Gao Y., Zhang J., Jin Z. High Tibial Osteotomy: Review of Techniques and Biomechanics. J. Healthc. Eng. 2019;2019:8363128. doi: 10.1155/2019/8363128.
    1. Chua M.J., Hart A.J., Mittal R., Harris I.A., Xuan W., Naylor J.M. Early mobilisation after total hip or knee arthroplasty: A multicentre prospective observational study. PLoS ONE. 2017;12:e0179820. doi: 10.1371/journal.pone.0179820.
    1. Richter D.L., Schenck R.C., Jr., Wascher D.C., Treme G. Knee Articular Cartilage Repair and Restoration Techniques: A Review of the Literature. Sports Health. 2016;8:153–160. doi: 10.1177/1941738115611350.
    1. Nam Y., Rim Y.A., Lee J., Ju J.H. Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int. 2018;2018:8490489. doi: 10.1155/2018/8490489.
    1. Nazempour A., Van Wie B.J. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine. Ann. Biomed. Eng. 2016;44:1325–1354. doi: 10.1007/s10439-016-1575-9.
    1. Mobasheri A., Kalamegam G., Musumeci G., Batt M.E. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 2014;78:188–198. doi: 10.1016/j.maturitas.2014.04.017.
    1. Viste A., Piperno M., Desmarchelier R., Grosclaude S., Moyen B., Fessy M.H. Autologous chondrocyte implantation for traumatic full-thickness cartilage defects of the knee in 14 patients: 6-year functional outcomes. Orthop. Traumatol. Surg. Res. 2012;98:737–743. doi: 10.1016/j.otsr.2012.04.019.
    1. Caron M.M., Emans P.J., Coolsen M.M., Voss L., Surtel D.A., Cremers A., van Rhijn L.W., Welting T.J. Redifferentiation of dedifferentiated human articular chondrocytes: Comparison of 2D and 3D cultures. Osteoarthr. Cartil. 2012;20:1170–1178. doi: 10.1016/j.joca.2012.06.016.
    1. Zakrzewski W., Dobrzynski M., Szymonowicz M., Rybak Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019;10:68. doi: 10.1186/s13287-019-1165-5.
    1. Siegel G., Schafer R., Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation. 2009;87:S45–S49. doi: 10.1097/TP.0b013e3181a285b0.
    1. Craft A.M., Ahmed N., Rockel J.S., Baht G.S., Alman B.A., Kandel R.A., Grigoriadis A.E., Keller G.M. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development. 2013;140:2597–2610. doi: 10.1242/dev.087890.
    1. Lach M., Trzeciak T., Richter M., Pawlicz J., Suchorska W.M. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment. J. Tissue Eng. 2014;5:2041731414552701. doi: 10.1177/2041731414552701.
    1. de Almeida P.E., Ransohoff J.D., Nahid A., Wu J.C. Immunogenicity of pluripotent stem cells and their derivatives. Circ. Res. 2013;112:549–561. doi: 10.1161/CIRCRESAHA.111.249243.
    1. Kim S.H., Ha C.W., Park Y.B., Nam E., Lee J.E., Lee H.J. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: A meta-analysis of randomized controlled trials. Arch. Orthop. Trauma Surg. 2019;139:971–980. doi: 10.1007/s00402-019-03140-8.
    1. Gnecchi M., Melo L.G. Bone marrow-derived mesenchymal stem cells: Isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol. 2009;482:281–294.
    1. Gruber H.E., Deepe R., Hoelscher G.L., Ingram J.A., Norton H.J., Scannell B., Loeffler B.J., Zinchenko N., Hanley E.N., Tapp H. Human adipose-derived mesenchymal stem cells: Direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng. Part. A. 2010;16:2843–2860. doi: 10.1089/ten.tea.2009.0709.
    1. Ishige I., Nagamura-Inoue T., Honda M.J., Harnprasopwat R., Kido M., Sugimoto M., Nakauchi H., Tojo A. Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int. J. Hematol. 2009;90:261–269. doi: 10.1007/s12185-009-0377-3.
    1. Shariatzadeh M., Song J., Wilson S.L. The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis. Cell Tissue Res. 2019;378:399–410. doi: 10.1007/s00441-019-03069-9.
    1. Iijima H., Isho T., Kuroki H., Takahashi M., Aoyama T. Effectiveness of mesenchymal stem cells for treating patients with knee osteoarthritis: A meta-analysis toward the establishment of effective regenerative rehabilitation. NPJ Regen. Med. 2018;3:15. doi: 10.1038/s41536-018-0041-8.
    1. Wang A.T., Feng Y., Jia H.H., Zhao M., Yu H. Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: A concise review. World J. Stem Cells. 2019;11:222–235. doi: 10.4252/wjsc.v11.i4.222.
    1. do Amaral R., Almeida H.V., Kelly D.J., O’Brien F.J., Kearney C.J. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy. Stem Cells Int. 2017;2017:6843727. doi: 10.1155/2017/6843727.
    1. Stocco E., Barbon S., Piccione M., Belluzzi E., Petrelli L., Pozzuoli A., Ramonda R., Rossato M., Favero M., Ruggieri P., et al. Infrapatellar Fat Pad Stem Cells Responsiveness to Microenvironment in Osteoarthritis: From Morphology to Function. Front. Cell Dev. Biol. 2019;7:323. doi: 10.3389/fcell.2019.00323.
    1. Kim S., Kim T.M. Generation of mesenchymal stem-like cells for producing extracellular vesicles. World J. Stem Cells. 2019;11:270–280. doi: 10.4252/wjsc.v11.i5.270.
    1. Lian Q., Lye E., Suan Yeo K., Khia Way Tan E., Salto-Tellez M., Liu T.M., Palanisamy N., El Oakley R.M., Lee E.H., Lim B., et al. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells. 2007;25:425–436. doi: 10.1634/stemcells.2006-0420.
    1. Hwang N.S., Varghese S., Lee H.J., Zhang Z., Ye Z., Bae J., Cheng L., Elisseeff J. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc. Natl. Acad. Sci. USA. 2008;105:20641–20646. doi: 10.1073/pnas.0809680106.
    1. Hwang N.S., Varghese S., Zhang Z., Elisseeff J. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng. 2006;12:2695–2706. doi: 10.1089/ten.2006.12.2695.
    1. Toh W.S., Lee E.H., Guo X.M., Chan J.K., Yeow C.H., Choo A.B., Cao T. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials. 2010;31:6968–6980. doi: 10.1016/j.biomaterials.2010.05.064.
    1. Jiang B., Fu X., Yan L., Li S., Zhao D., Wang X., Duan Y., Yan Y., Li E., Wu K., et al. Transplantation of human ESC-derived mesenchymal stem cell spheroids ameliorates spontaneous osteoarthritis in rhesus macaques. Theranostics. 2019;9:6587–6600. doi: 10.7150/thno.35391.
    1. Gibson J.D., O’Sullivan M.B., Alaee F., Paglia D.N., Yoshida R., Guzzo R.M., Drissi H. Regeneration of Articular Cartilage by Human ESC-Derived Mesenchymal Progenitors Treated Sequentially with BMP-2 and Wnt5a. Stem Cells Transl. Med. 2017;6:40–50. doi: 10.5966/sctm.2016-0020.
    1. Wang Y., Yu D., Liu Z., Zhou F., Dai J., Wu B., Zhou J., Heng B.C., Zou X.H., Ouyang H., et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. Ther. 2017;8:189. doi: 10.1186/s13287-017-0632-0.
    1. Narsinh K.H., Plews J., Wu J.C. Comparison of human induced pluripotent and embryonic stem cells: Fraternal or identical twins? Mol. Ther. 2011;19:635–638. doi: 10.1038/mt.2011.41.
    1. Chin M.H., Mason M.J., Xie W., Volinia S., Singer M., Peterson C., Ambartsumyan G., Aimiuwu O., Richter L., Zhang J., et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009;5:111–123. doi: 10.1016/j.stem.2009.06.008.
    1. Puri M.C., Nagy A. Concise review: Embryonic stem cells versus induced pluripotent stem cells: The game is on. Stem Cells. 2012;30:10–14. doi: 10.1002/stem.788.
    1. Lietman S.A. Induced pluripotent stem cells in cartilage repair. World J. Orthop. 2016;7:149–155. doi: 10.5312/wjo.v7.i3.149.
    1. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019.
    1. Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. doi: 10.1126/science.1151526.
    1. Wei Y., Zeng W., Wan R., Wang J., Zhou Q., Qiu S., Singh S.R. Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur. Cell Mater. 2012;23:1–12. doi: 10.22203/eCM.v023a01.
    1. Moradi S., Mahdizadeh H., Saric T., Kim J., Harati J., Shahsavarani H., Greber B., Moore J.B., IV. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Res. Ther. 2019;10:341. doi: 10.1186/s13287-019-1455-y.
    1. Deng X.Y., Wang H., Wang T., Fang X.T., Zou L.L., Li Z.Y., Liu C.B. Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr. Stem Cell Res. Ther. 2015;10:153–158. doi: 10.2174/1574888X09666140923101914.
    1. Stadtfeld M., Nagaya M., Utikal J., Weir G., Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–949. doi: 10.1126/science.1162494.
    1. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143.
    1. Friedenstein A.J., Chailakhyan R.K., Gerasimov U.V. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20:263–272. doi: 10.1111/j.1365-2184.1987.tb01309.x.
    1. Lv F.J., Tuan R.S., Cheung K.M., Leung V.Y. Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–1419. doi: 10.1002/stem.1681.
    1. Pittenger M.F., Discher D.E., Peault B.M., Phinney D.G., Hare J.M., Caplan A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019;4:22. doi: 10.1038/s41536-019-0083-6.
    1. Wang M., Yuan Q., Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624. doi: 10.1155/2018/3057624.
    1. Kim C., Keating A. Cell Therapy for Knee Osteoarthritis: Mesenchymal Stromal Cells. Gerontology. 2019;65:294–298. doi: 10.1159/000496605.
    1. Berebichez-Fridman R., Montero-Olvera P.R. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 2018;18:e264–e277. doi: 10.18295/squmj.2018.18.03.002.
    1. Ramakrishnan A., Torok-Storb B., Pillai M.M. Primary marrow-derived stromal cells: Isolation and manipulation. Methods Mol. Biol. 2013;1035:75–101.
    1. Koh Y.G., Choi Y.J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19:902–907. doi: 10.1016/j.knee.2012.04.001.
    1. Koh Y.G., Jo S.B., Kwon O.R., Suh D.S., Lee S.W., Park S.H., Choi Y.J. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29:748–755. doi: 10.1016/j.arthro.2012.11.017.
    1. Cianca J.C., Jayaram P. Musculoskeletal Injuries and Regenerative Medicine in the Elderly Patient. Phys. Med. Rehabil. Clin. N. Am. 2017;28:777–794. doi: 10.1016/j.pmr.2017.06.010.
    1. Shah K., Zhao A.G., Sumer H. New Approaches to Treat Osteoarthritis with Mesenchymal Stem Cells. Stem Cells Int. 2018;2018:5373294. doi: 10.1155/2018/5373294.
    1. Wakitani S., Okabe T., Horibe S., Mitsuoka T., Saito M., Koyama T., Nawata M., Tensho K., Kato H., Uematsu K., et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J. Tissue Eng. Regen. Med. 2011;5:146–150. doi: 10.1002/term.299.
    1. Davatchi F., Abdollahi B.S., Mohyeddin M., Shahram F., Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J. Rheum. Dis. 2011;14:211–215. doi: 10.1111/j.1756-185X.2011.01599.x.
    1. Wong K.L., Lee K.B., Tai B.C., Law P., Lee E.H., Hui J.H. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: A prospective, randomized controlled clinical trial with 2 years follow-up. Arthroscopy. 2013;29:2020–2028. doi: 10.1016/j.arthro.2013.09.074.
    1. Orozco L., Munar A., Soler R., Alberca M., Soler F., Huguet M., Sentis J., Sanchez A., Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: A pilot study. Transplantation. 2013;95:1535–1541. doi: 10.1097/TP.0b013e318291a2da.
    1. Orozco L., Munar A., Soler R., Alberca M., Soler F., Huguet M., Sentis J., Sanchez A., Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: Two-year follow-up results. Transplantation. 2014;97:e66–e68. doi: 10.1097/TP.0000000000000167.
    1. Davatchi F., Sadeghi Abdollahi B., Mohyeddin M., Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int. J. Rheum. Dis. 2016;19:219–225. doi: 10.1111/1756-185X.12670.
    1. Jo C.H., Lee Y.G., Shin W.H., Kim H., Chai J.W., Jeong E.C., Kim J.E., Shim H., Shin J.S., Shin I.S., et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells. 2014;32:1254–1266. doi: 10.1002/stem.1634.
    1. Pak J., Chang J.J., Lee J.H., Lee S.H. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet Disord. 2013;14:337. doi: 10.1186/1471-2474-14-337.
    1. Kim Y.S., Kwon O.R., Choi Y.J., Suh D.S., Heo D.B., Koh Y.G. Comparative Matched-Pair Analysis of the Injection Versus Implantation of Mesenchymal Stem Cells for Knee Osteoarthritis. Am. J. Sports Med. 2015;43:2738–2746. doi: 10.1177/0363546515599632.
    1. Pers Y.M., Rackwitz L., Ferreira R., Pullig O., Delfour C., Barry F., Sensebe L., Casteilla L., Fleury S., Bourin P., et al. Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Transl. Med. 2016;5:847–856. doi: 10.5966/sctm.2015-0245.
    1. Lee W.S., Kim H.J., Kim K.I., Kim G.B., Jin W. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial. Stem Cells Transl. Med. 2019;8:504–511. doi: 10.1002/sctm.18-0122.
    1. Mianehsaz E., Mirzaei H.R., Mahjoubin-Tehran M., Rezaee A., Sahebnasagh R., Pourhanifeh M.H., Mirzaei H., Hamblin M.R. Mesenchymal stem cell-derived exosomes: A new therapeutic approach to osteoarthritis? Stem Cell Res. Ther. 2019;10:340. doi: 10.1186/s13287-019-1445-0.
    1. Ni Z., Zhou S., Li S., Kuang L., Chen H., Luo X., Ouyang J., He M., Du X., Chen L. Exosomes: Roles and therapeutic potential in osteoarthritis. Bone Res. 2020;8:25. doi: 10.1038/s41413-020-0100-9.
    1. Cosenza S., Ruiz M., Toupet K., Jorgensen C., Noel D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci. Rep. 2017;7:16214. doi: 10.1038/s41598-017-15376-8.
    1. Ha D.H., Kim H.K., Lee J., Kwon H.H., Park G.H., Yang S.H., Jung J.Y., Choi H., Lee J.H., Sung S., et al. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells. 2020;9:1157. doi: 10.3390/cells9051157.
    1. Roseti L., Desando G., Cavallo C., Petretta M., Grigolo B. Articular Cartilage Regeneration in Osteoarthritis. Cells. 2019;8:1305. doi: 10.3390/cells8111305.
    1. Evans C.H., Ghivizzani S.C., Robbins P.D. Gene Delivery to Joints by Intra-Articular Injection. Hum. Gene Ther. 2018;29:2–14. doi: 10.1089/hum.2017.181.
    1. Kim M.K., Ha C.W., In Y., Cho S.D., Choi E.S., Ha J.K., Lee J.H., Yoo J.D., Bin S.I., Choi C.H., et al. A Multicenter, Double-Blind, Phase III Clinical Trial to Evaluate the Efficacy and Safety of a Cell and Gene Therapy in Knee Osteoarthritis Patients. Hum. Gene Ther. Clin. Dev. 2018;29:48–59. doi: 10.1089/humc.2017.249.

Source: PubMed

3
Abonner