Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

Antonio Zorzano, Marc Claret, Antonio Zorzano, Marc Claret

Abstract

Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

Keywords: food intake; mitochondrial fission; mitochondrial fusion; mitofusin 2; neurodegenerative diseases; obesity.

Figures

Figure 1
Figure 1
ER–mitochondria contact sites. The ER interacts with mitochondria through close contacts that permit the transfer of calcium from the ER to mitochondria and that permit the exchange of lipids between those two organelles (A). The ER also interacts with mitochondria through mitochondrial fission sites (B).
Figure 2
Figure 2
Proteins and processes involved in the ER-mitochondria contact sites. Contact sites involve, among others, the exchange of phosphatidylserine (PS) and phosphatidylethanolamine (PE) between the ER and mitochondria and the formation of complexes between the ER and mitochondrial proteins, as shown.
Figure 3
Figure 3
Roles of Mfn2 on ER-mitochondria contact sites. Mfn2 participates in the tethering of mitochondria and the ER at contact sites. In addition, Mfn2 negatively regulates PERK, a protein kinase involved in the Unfolded Protein Response (UPR) and activated upon ER stress.
Figure 4
Figure 4
Excess nutrient availability alters ER-mitochondria contacts and mitochondrial dynamics in POMC and AgRP neurons. High-fat diet (HFD) administration increases mitochondrial fragmentation and impairs ER-mitochondria contacts in POMC neurons (A,B). In contrast, AgRP neurons under HFD conditions show increased fusion and unaltered ER-mitochondria contacts (C,D).
Figure 5
Figure 5
Graphical summary of the consequences of Mfn2 loss in POMC neurons. (A) Under normal physiological conditions, leptin signaling in POMC neurons is adequately transmitted, thereby enhancing POMC transcription in the nucleus (1) and subsequent synthesis in the ER (2). POMC precursor is sorted into secretory granules and processed into α-MSH (3). This neuropeptide is then released into target areas by POMC neuron axonal terminals thus mediating the anorexigenic effects of leptin (4). (B) Deletion of Mfn2 specifically in POMC neurons causes loss of ER-mitochondria contacts, thus leading to ER stress which interferes with proper POMC folding (2). Missfolded POMC precursor can not be adequately sorted or processed into α-MSH (3). As a consequence, leptin signaling (1) and leptin-mediated anorexigenic effects are blunted (4). LepR; leptin receptor; Mfn2: mitofusin 2; POMC: proopiomelanocortin; α.MSH: alpha- melanocyte stimulating hormone.

References

    1. Akepati V. R., Muller E. C., Otto A., Strauss H. M., Portwich M., Alexander C. (2008). Characterization of OPA1 isoforms isolated from mouse tissues. J. Neurochem. 106, 372–383. 10.1111/j.1471-4159.2008.05401.x
    1. Alavi M. V., Bette S., Schimpf S., Schuettauf F., Schraermeyer U., Wehrl H. F., et al. . (2007). A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130, 1029–1042. 10.1093/brain/awm005
    1. Al-Qassab H., Smith M. A., Irvine E. E., Guillermet-Guibert J., Claret M., Choudhury A. I., et al. . (2009). Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab. 10, 343–354. 10.1016/j.cmet.2009.09.008
    1. Amati-Bonneau P., Valentino M. L., Reynier P., Gallardo M. E., Bornstein B., Boissière A., et al. . (2008). OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 131, 338–351. 10.1093/brain/awm298
    1. Amiott E. A., Lott P., Soto J., Kang P. B., McCaffery J. M., DiMauro S., et al. . (2008). Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Exp. Neurol. 211, 115–127. 10.1016/j.expneurol.2008.01.010
    1. Ammar N., Nelis E., Merlini L., Barisic N., Amouri R., Ceuterick C., et al. . (2003). Identification of novel GDAP1 mutations causing autosomal recessive Charcot-Marie-Tooth disease. Neuromuscul. Disord. 13, 720–728. 10.1016/S0960-8966(03)00093-2
    1. Andrews Z. B., Liu Z. W., Walllingford N., Erion D. M., Borok E., Friedman J. M., et al. . (2008). UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851. 10.1038/nature07181
    1. Area-Gomez E., Del Carmen Lara Castillo M., Tambini M. D., Guardia-Laguarta C., de Groof A. J., Madra M., et al. . (2012). Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123. 10.1038/emboj.2012.202
    1. Atasoy D., Betley J. N., Su H. H., Sternson S. M. (2012). Deconstruction of a neural circuit for hunger. Nature 488, 172–177. 10.1038/nature11270
    1. Bach D., Pich S., Soriano F. X., Vega N., Baumgartner B., Oriola J., et al. . (2003). Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190–17197. 10.1074/jbc.M212754200
    1. Baloh R. H., Schmidt R. E., Pestronk A., Milbrandt J. (2007). Altered axonal mitochondrial transport in the pathogenesis of charcot-marie-tooth disease from mitofusin 2 mutations. J. Neurosci. 27, 422–430. 10.1523/JNEUROSCI.4798-06.2007
    1. Baricault L., Segui B., Guegand L., Olichon A., Valette A., Larminat F., et al. . (2007). OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp. Cell Res. 313, 3800–3808. 10.1016/j.yexcr.2007.08.008
    1. Baris O., Delettre C., Amati-Bonneau P., Surget M.-O., Charlin J.-F., Catier A., et al. . (2003). Fourteen novel OPA1 mutations in autosomal dominant optic atrophy including two de novo mutations in sporadic optic atrophy. Hum. Mutat. 21, 656. 10.1002/humu.9152
    1. Barsoum M. J., Yuan H., Gerencser A. A., Liot G., Kushnareva Y., Graber S., et al. . (2006). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J. 25, 3900–3911. 10.1038/sj.emboj.7601253
    1. Baxter R. V., Ben Othmane K., Rochelle J. M., Stajich J. E., Hulette C., Dew-Knight S., et al. . (2002). Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat. Genet. 30, 21–22. 10.1038/ng796
    1. Bereiter-Hahn J., Voth M. (1994). Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 27, 198–219. 10.1002/jemt.1070270303
    1. Berger P., Young P., Suter U. (2002). Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics 4, 1–15. 10.1007/s10048-002-0130-z
    1. Berridge M. J. (2002). The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235–249. 10.1016/S0143416002001823
    1. Bleazard W., McCaffery J. M., King E. J., Bale S., Mozdy A., Tieu Q., et al. . (1999). The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298–304. 10.1038/13014
    1. Boerkoel C. F., Takashima H., Nakagawa M., Izumo S., Armstrong D., Butler I., et al. . (2003). CMT4A: identification of a hispanic GDAP1 founder mutation. Ann. Neurol. 53, 400–405. 10.1002/ana.10505
    1. Brouillet E., Hantraye P., Ferrante R. J., Dolan R., Leroy-Willig A., Kowall N. W., et al. . (1995). Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl. Acad. Sci. U.S.A. 92, 7105–7109. 10.1073/pnas.92.15.7105
    1. Cardenas C., Miller R. A., Smith I., Bui T., Molgo J., Muller M., et al. . (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283. 10.1016/j.cell.2010.06.007
    1. Cassereau J., Chevrollier A., Gueguen N., Desquiret V., Verny C., Nicolas G., et al. . (2011). Mitochondrial dysfunction and pathophysiology of Charcot-Marie-Tooth disease involving GDAP1 mutations. Exp. Neurol. 227, 31–41. 10.1016/j.expneurol.2010.09.006
    1. Cereghetti G. M., Stangherlin A., Martins De Brito O., Chang C. R., Blackstone C., Bernardi P., et al. . (2008). Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl. Acad. Sci. U.S.A. 105, 15803–15808. 10.1073/pnas.0808249105
    1. Chami M., Oules B., Szabadkai G., Tacine R., Rizzuto R., Paterlini-Brechot P. (2008). Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol. Cell. 32, 641–651. 10.1016/j.molcel.2008.11.014
    1. Chan N. C., Salazar A. M., Pham A. H., Sweredoski M. J., Kolawa N. J., Graham R. L., et al. . (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726–1737. 10.1093/hmg/ddr048
    1. Chang C. R., Blackstone C. (2007). Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583–21587. 10.1074/jbc.C700083200
    1. Chen H., Chan D. C. (2005). Emerging functions of mammalian mitochondrial fusion and fission. Hum. Mol. Genet. 14, R283–R289. 10.1093/hmg/ddi270
    1. Chen H., Chomyn A., Chan D. C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192. 10.1074/jbc.M503062200
    1. Chen H., Detmer S. A., Ewald A. J., Griffin E. E., Fraser S. E., Chan D. C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200. 10.1083/jcb.200211046
    1. Chen H., McCaffery J. M., Chan D. C. (2007). Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548–562. 10.1016/j.cell.2007.06.026
    1. Chen H. Y., Trumbauer M. E., Chen A. S., Weingarth D. T., Adams J. R., Frazier E. G., et al. . (2004b). Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 145, 2607–2612. 10.1210/en.2003-1596
    1. Chen K. H., Dasgupta A., Ding J., Indig F. E., Ghosh P., Longo D. L. (2014). Role of mitofusin 2 (Mfn2) in controlling cellular proliferation. FASEB J. 28, 382–394. 10.1096/fj.13-230037
    1. Chen K. H., Guo X., Ma D., Guo Y., Li Q., Yang D., et al. . (2004a). Dysregulation of HSG triggers vascular proliferative disorders. Nat. Cell Biol. 6, 872–883. 10.1038/ncb1161
    1. Cheung C. C., Clifton D. K., Steiner R. A. (1997). Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138, 4489–4492. 10.1210/endo.138.10.5570
    1. Cho D.-H., Nakamura T., Fang J., Cieplak P., Godzik A., Gu Z., et al. . (2009). S-Nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102–105. 10.1126/science.1171091
    1. Chung K. W., Kim S. B., Park K. D., Choi K. G., Lee J. H., Eun H. W., et al. . (2006). Early onset severe and late-onset mild Charcot–Marie–Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129, 2103–2118. 10.1093/brain/awl174
    1. Cipolat S., De Brito O. M., Dal Zilio B., Scorrano L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U.S.A. 101, 15927–15932. 10.1073/pnas.0407043101
    1. Claret M., Smith M. A., Batterham R. L., Selman C., Choudhury A. I., Fryer L. G., et al. . (2007). AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336. 10.1172/JCI31516
    1. Cogliati S., Frezza C., Soriano M. E., Varanita T., Quintana-Cabrera R., Corrado M., et al. . (2013). Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171. 10.1016/j.cell.2013.08.032
    1. Coppola A., Liu Z. W., Andrews Z. B., Paradis E., Roy M. C., Friedman J. M., et al. . (2007). A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 5, 21–33. 10.1016/j.cmet.2006.12.002
    1. Cortese J. D., Voglino L. A., Hackenbrock C. R. (1998). Novel fluorescence membrane fusion assays reveal GTP-dependent fusogenic properties of outer mitochondrial membrane-derived proteins. Biochim. Biophys. Acta 1371, 185–198. 10.1016/S0005-2736(97)00266-6
    1. Costa V., Giacomello M., Hudec R., Lopreiato R., Ermak G., Lim D., et al. . (2010). Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Mol. Med. 2, 490–503. 10.1002/emmm.201000102
    1. Cowley M. A., Smart J. L., Rubinstein M., Cerdan M. G., Diano S., Horvath T. L., et al. . (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484. 10.1038/35078085
    1. Cowley M. A., Smith R. G., Diano S., Tschop M., Pronchuk N., Grove K. L., et al. . (2003). The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661. 10.1016/S0896-6273(03)00063-1
    1. Cribbs J. T., Strack S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939–944. 10.1038/sj.embor.7401062
    1. Cuesta A., Pedrola L., Sevilla T., Garcia-Planells J., Chumillas M. J., Mayordomo F., et al. . (2002). The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat. Genet. 30, 22–25. 10.1038/ng798
    1. Cyr N. E., Toorie A. M., Steger J. S., Sochat M. M., Hyner S., Perello M., et al. . (2013). Mechanisms by which the orexigen NPY regulates anorexigenic alpha-MSH and TRH. Am. J. Physiol. Endocrinol. Metab. 304, E640–E650. 10.1152/ajpendo.00448.2012
    1. Davies V. J., Hollins A. J., Piechota M. J., Yip W., Davies J. R., White K. E., et al. . (2007). Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum. Mol. Genet. 16, 1307–1318. 10.1093/hmg/ddm079
    1. de Brito O. M., Scorrano L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610. 10.1038/nature07534
    1. Delettre C., Griffoin J. M., Kaplan J., Dollfus H., Lorenz B., Faivre L., et al. . (2001). Mutation spectrum and splicing variants in the OPA1 gene. Hum. Genet. 109, 584–591. 10.1007/s00439-001-0633-y
    1. Delettre C., Lenaers G., Griffoin J. M., Gigarel N., Lorenzo C., Belenguer P., et al. . (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207–210. 10.1038/79936
    1. De Sandre-Giovannoli A., Chaouch M., Boccaccio I., Bernard R., Delague V., Grid D., et al. . (2003). Phenotypic and genetic exploration of severe demyelinating and secondary axonal neuropathies resulting from GDAP1 nonsense and splicing mutations. J. Med. Genet. 40:e87. 10.1136/jmg.40.7.e87
    1. Detmer S. A., Chan D. C. (2007). Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J. Cell Biol. 176, 405–414. 10.1083/jcb.200611080
    1. Detmer S. A., Velde C. V., Cleveland D. W., Chan D. C. (2008). Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot–Marie–Tooth type 2A. Hum. Mol. Genet. 17, 367–375. 10.1093/hmg/ddm314
    1. DeVay R. M., Dominguez-Ramirez L., Lackner L. L., Hoppins S., Stahlberg H., Nunnari J. (2009). Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J. Cell Biol. 186, 793–803. 10.1083/jcb.200906098
    1. Diano S., Liu Z. W., Jeong J. K., Dietrich M. O., Ruan H. B., Kim E., et al. . (2011). Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat. Med. 17, 1121–1127. 10.1038/nm.2421
    1. Dietrich M. O., Liu Z. W., Horvath T. L. (2013). Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155, 188–199. 10.1016/j.cell.2013.09.004
    1. Dohm J. A., Lee S. J., Hardwick J. M., Hill R. B., Gittis A. G. (2004). Cytosolic domain of the human mitochondrial fission protein fis1 adopts a TPR fold. Proteins Struct. Funct. Bioinformatics 54, 153–156. 10.1002/prot.10524
    1. Dyck P. J., Lambert E. H. (1968). Lower motor and primary sensory neuron diseases with peroneal muscular atrophy: I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch. Neurol. 18, 603–618. 10.1001/archneur.1968.00470360025002
    1. Ehses S., Raschke I., Mancuso G., Bernacchia A., Geimer S., Tondera D., et al. . (2009). Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 187, 1023–1036. 10.1083/jcb.200906084
    1. Elias C. F., Aschkenasi C., Lee C., Kelly J., Ahima R. S., Bjorbaek C., et al. . (1999). Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786. 10.1016/S0896-6273(01)80035-0
    1. Engelfried K., Vorgerd M., Hagedorn M., Haas G., Gilles J., Epplen J., et al. . (2006). Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2). BMC Med. Genet. 7:53. 10.1186/1471-2350-7-53
    1. Eura Y., Ishihara N., Oka T., Mihara K. (2006). Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J. Cell Sci. 119, 4913–4925. 10.1242/jcs.03253
    1. Eura Y., Ishihara N., Yokota S., Mihara K. (2003). Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 134, 333–344. 10.1093/jb/mvg150
    1. Exner N., Treske B., Paquet D., Holmstrom K., Schiesling C., Gispert S., et al. . (2007). Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27, 12413–12418. 10.1523/JNEUROSCI.0719-07.2007
    1. Ferreira I. L., Resende R., Ferreiro E., Rego A. C., Pereira C. F. (2010). Multiple defects in energy metabolism in Alzheimer's disease. Curr. Drug Targets 11, 1193–1206. 10.2174/1389450111007011193
    1. Ferré M., Amati-Bonneau P., Tourmen Y., Malthièry Y., Reynier P. (2005). eOPA1: an online database for OPA1 mutations. Hum. Mutat. 25, 423–428. 10.1002/humu.20161
    1. Frezza C., Cipolat S., Martins de Brito O., Micaroni M., Beznoussenko G. V., Rudka T., et al. . (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189. 10.1016/j.cell.2006.06.025
    1. Friedman J. R., Lackner L. L., West M., DiBenedetto J. R., Nunnari J., Voeltz G. K. (2011). ER tubules mark sites of mitochondrial division. Science 334, 358–362. 10.1126/science.1207385
    1. Gandre-Babbe S., van der Bliek A. M. (2008). The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell. 19, 2402–2412. 10.1091/mbc.E07-12-1287
    1. Gao A. W., Canto C., Houtkooper R. H. (2014). Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol. Med. 6, 580–589. 10.1002/emmm.201303782
    1. Gegg M. E., Cooper J. M., Chau K. Y., Rojo M., Schapira A. H., Taanman J. W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870. 10.1093/hmg/ddq419
    1. Gomez-Lazaro M., Bonekamp N. A., Galindo M. F., Jordan J., Schrader M. (2008). 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic. Biol. Med. 44, 1960–1969. 10.1016/j.freeradbiomed.2008.03.009
    1. Griparic L., Kanazawa T., van der Bliek A. M. (2007). Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol. 178, 757–764. 10.1083/jcb.200704112
    1. Griparic L., van der Wel N. N., Orozco I. J., Peters P. J., van der Bliek A. M. (2004). Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J. Biol. Chem. 279, 18792–18798. 10.1074/jbc.M400920200
    1. Grunewald A., Gegg M. E., Taanman J. W., King R. H., Kock N., Klein C., et al. . (2009). Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp. Neurol. 219, 266–273. 10.1016/j.expneurol.2009.05.027
    1. Hales K. G., Fuller M. T. (1997). Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129. 10.1016/S0092-8674(00)80319-0
    1. Harder Z., Zunino R., McBride H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14, 340–345. 10.1016/j.cub.2004.02.004
    1. Hayashi T., Su T. P. (2007). Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131, 596–610. 10.1016/j.cell.2007.08.036
    1. Head B., Griparic L., Amiri M., Gandre-Babbe S., van der Bliek A. M. (2009). Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol. 187, 959–966. 10.1083/jcb.200906083
    1. Hernandez-Alvarez M. I., Paz J. C., Sebastian D., Munoz J. P., Liesa M., Segales J., et al. . (2013). Glucocorticoid modulation of mitochondrial function in hepatoma cells requires the mitochondrial fission protein Drp1. Antioxid. Redox Signal. 19, 366–378. 10.1089/ars.2011.4269
    1. Hill J. W., Williams K. W., Ye C., Luo J., Balthasar N., Coppari R., et al. . (2008). Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Invest. 118, 1796–1805. 10.1172/JCI32964
    1. Hoozemans J. J. M., Veerhuis R., Van Haastert E. S., Rozemuller J. M., Baas F., Eikelenboom P., et al. . (2005). The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol. 110, 165–172. 10.1007/s00401-005-1038-0
    1. Hoyt C. (1980). Autosomal dominant optic atrophy. A spectrum of disability. Ophthalmology 87, 245–251. 10.1016/S0161-6420(80)35247-0
    1. Hudson G., Amati-Bonneau P., Blakely E. L., Stewart J. D., He L., Schaefer A. M., et al. . (2008). Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131, 329–337. 10.1093/brain/awm272
    1. Ibrahim N., Bosch M. A., Smart J. L., Qiu J., Rubinstein M., Ronnekleiv O. K., et al. . (2003). Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology 144, 1331–1340. 10.1210/en.2002-221033
    1. Ingerman E., Perkins E. M., Marino M., Mears J. A., McCaffery J. M., Hinshaw J. E., et al. . (2005). Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027. 10.1083/jcb.200506078
    1. Ishihara N., Eura Y., Mihara K. (2004). Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535–6546. 10.1242/jcs.01565
    1. Ishihara N., Fujita Y., Oka T., Mihara K. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977. 10.1038/sj.emboj.7601184
    1. Ishihara N., Nomura M., Jofuku A., Kato H., Suzuki S. O., Masuda K., et al. . (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11, 958–966. 10.1038/ncb1907
    1. Iwasawa R., Mahul-Mellier A. L., Datler C., Pazarentzos E., Grimm S. (2011). Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30, 556–568. 10.1038/emboj.2010.346
    1. Jahani-Asl A., Pilon-Larose K., Xu W., MacLaurin J. G., Park D. S., McBride H. M., et al. . (2011). The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J. Biol. Chem. 286, 4772–4782. 10.1074/jbc.M110.167155
    1. Jofuku A., Ishihara N., Mihara K. (2005). Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein. Biochem. Biophys. Res. Commun. 333, 650–659. 10.1016/j.bbrc.2005.05.154
    1. Johnston P., Gaster R., Smith V., Tripathi R. (1979). A clinicopathologic study of autosomal dominant optic atrophy. Am. J. Ophthalmol. 88, 868–875. 10.1016/0002-9394(79)90565-8
    1. Johnston R. L., Seller M. J., Behnam J. T., Burdon M. A., Spalton D. J. (1999). Dominant optic atrophy: refining the clinical diagnostic criteria in light of genetic linkage studies. Ophthalmology 106, 123–128. 10.1016/S0161-6420(99)90013-1
    1. Kamegai J., Tamura H., Shimizu T., Ishii S., Sugihara H., Wakabayashi I. (2001). Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 50, 2438–2443. 10.2337/diabetes.50.11.2438
    1. Karbowski M., Neutzner A., Youle R. J. (2007). The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 178, 71–84. 10.1083/jcb.200611064
    1. Karren M. A., Coonrod E. M., Anderson T. K., Shaw J. M. (2005). The role of Fis1p-Mdv1p interactions in mitochondrial fission complex assembly. J. Cell Biol. 171, 291–301. 10.1083/jcb.200506158
    1. Kijima K., Numakura C., Izumino H., Umetsu K., Nezu A., Shiiki T., et al. . (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot–Marie–Tooth neuropathy type 2A. Hum. Genet. 116, 23–27. 10.1007/s00439-004-1199-2
    1. Kim I., Rodriguez-Enriquez S., Lemasters J. J. (2007). Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253. 10.1016/j.abb.2007.03.034
    1. Kim J. Y., Hwang J.-M., Ko H. S., Seong M.-W., Park B.-J., Park S. S. (2005). Mitochondrial DNA content is decreased in autosomal dominant optic atrophy. Neurology 64, 966–972. 10.1212/01.WNL.0000157282.76715.B1
    1. Kjer P., Jensen O., Klinken L. (1983). Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol. 61, 300–312. 10.1111/j.1755-3768.1983.tb01424.x
    1. Koshiba T., Detmer S. A., Kaiser J. T., Chen H., McCaffery J. M., Chan D. C. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862. 10.1126/science.1099793
    1. Lackner L. L., Horner J. S., Nunnari J. (2009). Mechanistic analysis of a dynamin effector. Science 325, 874–877. 10.1126/science.1176921
    1. Lawson V. H., Graham B. V., Flanigan K. M. (2005). Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology 65, 197–204. 10.1212/01.wnl.0000168898.76071.70
    1. Leboucher G. P., Tsai Y. C., Yang M., Shaw K. C., Zhou M., Veenstra T. D., et al. . (2012). Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol. Cell. 47, 547–557. 10.1016/j.molcel.2012.05.041
    1. Lee J. Y., Kapur M., Li M., Choi M. C., Choi S., Kim H. J., et al. . (2014). MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J. Cell Sci. 127, 4954–4963. 10.1242/jcs.157321
    1. Lee S., Sterky F. H., Mourier A., Terzioglu M., Cullheim S., Olson L., et al. . (2012). Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum. Mol. Genet. 21, 4827–4835. 10.1093/hmg/dds352
    1. Lee Y. J., Jeong S. Y., Karbowski M., Smith C. L., Youle R. J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, Opa1 in apoptosis. Mol. Biol. Cell. 15, 5001–5011. 10.1091/mbc.E04-04-0294
    1. Legesse-Miller A., Massol R. H., Kirchhausen T. (2003). Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. Mol. Biol. Cell. 14, 1953–1963. 10.1091/mbc.E02-10-0657
    1. Lelliott C. J., Medina-Gomez G., Petrovic N., Kis A., Feldmann H. M., Bjursell M., et al. . (2006). Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 4:e369. 10.1371/journal.pbio.0040369
    1. Li J., Li Y., Jiao J., Wang J., Qin D., Li P. (2014). Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol. Cell. Biol. 34, 1788–1799. 10.1128/MCB.00774-13
    1. Li Z., Okamoto K., Hayashi Y., Sheng M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887. 10.1016/j.cell.2004.11.003
    1. Liesa M., Borda-d'Agua B., Medina-Gomez G., Lelliott C. J., Paz J. C., Rojo M., et al. . (2008). Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS ONE 3:e3613. 10.1371/journal.pone.0003613
    1. Liesa M., Shirihai O. S. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506. 10.1016/j.cmet.2013.03.002
    1. Loiseau D., Chevrollier A., Verny C., Guillet V., Gueguen N., Pou de Crescenzo M. A., et al. . (2007). Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Ann. Neurol. 61, 315–323. 10.1002/ana.21086
    1. Lokireddy S., Wijesoma I. W., Teng S., Bonala S., Gluckman P. D., McFarlane C., et al. . (2012). The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab. 16, 613–624. 10.1016/j.cmet.2012.10.005
    1. Long L., Toda C., Jeong J. K., Horvath T. L., Diano S. (2014). PPARgamma ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. J. Clin. Invest. 124, 4017–4027. 10.1172/JCI76220
    1. Lopez M., Lage R., Saha A. K., Perez-Tilve D., Vazquez M. J., Varela L., et al. . (2008). Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399. 10.1016/j.cmet.2008.03.006
    1. Lopez Del Amo V., Seco-Cervera M., Garcia-Gimenez J. L., Whitworth A. J., Pallardo F. V., Galindo M. I. (2015). Mitochondrial defects and neuromuscular degeneration caused by altered expression of Drosophila Gdap1: implications for the Charcot-Marie-Tooth neuropathy. Hum. Mol. Genet. 24, 21–36. 10.1093/hmg/ddu416
    1. Loson O. C., Song Z., Chen H., Chan D. C. (2013). Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell. 24, 659–667. 10.1091/mbc.E12-10-0721
    1. Luquet S., Phillips C. T., Palmiter R. D. (2007). NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 28, 214–225. 10.1016/j.peptides.2006.08.036
    1. Lutz A. K., Exner N., Fett M. E., Schlehe J. S., Kloos K., Lammermann K., et al. . (2009). Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 284, 22938–22951. 10.1074/jbc.M109.035774
    1. Mailloux R. J., Harper M. E. (2011). Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 51, 1106–1115. 10.1016/j.freeradbiomed.2011.06.022
    1. Martin O. J., Lai L., Soundarapandian M. M., Leone T. C., Zorzano A., Keller M. P., et al. . (2014). A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ. Res. 114, 626–636. 10.1161/CIRCRESAHA.114.302562
    1. Martorell-Riera A., Segarra-Mondejar M., Munoz J. P., Ginet V., Olloquequi J., Perez-Clausell J., et al. . (2014). Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO J. 33, 2388–2407. 10.15252/embj.201488327
    1. Mears J. A., Lackner L. L., Fang S., Ingerman E., Nunnari J., Hinshaw J. E. (2011). Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20–26. 10.1038/nsmb.1949
    1. Meeusen S., McCaffery J. M., Nunnari J. (2004). Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752. 10.1126/science.1100612
    1. Misaka T., Miyashita T., Kubo Y. (2002). Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J. Biol. Chem. 277, 15834–15842. 10.1074/jbc.M109260200
    1. Mizuno T. M., Kleopoulos S. P., Bergen H. T., Roberts J. L., Priest C. A., Mobbs C. V. (1998). Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47, 294–297. 10.2337/diab.47.2.294
    1. Mizuno T. M., Mobbs C. V. (1999). Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 140, 814–817. 10.1210/en.140.2.814
    1. Mozdy A. D., McCaffery J. M., Shaw J. M. (2000). Dnm1p Gtpase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–380. 10.1083/jcb.151.2.367
    1. Munoz J. P., Ivanova S., Sanchez-Wandelmer J., Martinez-Cristobal P., Noguera E., Sancho A., et al. . (2013). Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32, 2348–2361. 10.1038/emboj.2013.168
    1. Nakazato M., Murakami N., Date Y., Kojima M., Matsuo H., Kangawa K., et al. . (2001). A role for ghrelin in the central regulation of feeding. Nature 409, 194–198. 10.1038/35051587
    1. Narendra D. P., Jin S. M., Tanaka A., Suen D.-F., Gautier C. A., Shen J., et al. . (2010). PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 8:e1000298. 10.1371/journal.pbio.1000298
    1. Nelis E., Erdem S., Van den Bergh P. Y. K., Belpaire–Dethiou M.-C., Ceuterick C., Van Gerwen V., et al. . (2002). Mutations in GDAP1. Neurology 59, 1865–1872. 10.1212/01.WNL.0000036272.36047.54
    1. Niemann A., Ruegg M., La Padula V., Schenone A., Suter U. (2005). Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J. Cell Biol. 170, 1067–1078. 10.1083/jcb.200507087
    1. Nunnari J., Marshall W., Straight A., Murray A., Sedat J., Walter P. (1997). Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell 8, 1233–1242. 10.1091/mbc.8.7.1233
    1. Olichon A., Baricault L., Gas N., Guillou E., Valette A., Belenguer P., et al. . (2003). Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746. 10.1074/jbc.C200677200
    1. Olichon A., Elachouri G., Baricault L., Delettre C., Belenguer P., Lenaers G. (2007). OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death Differ. 14, 682–692. 10.1038/sj.cdd.4402048
    1. Olichon A., Emorine L. J., Descoins E., Pelloquin L., Brichese L., Gas N., et al. . (2002). The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett.. 523, 171–176. 10.1016/S0014-5793(02)02985-X
    1. Olichon A., Guillou E., Delettre C., Landes T., Arnauné-Pelloquin L., Emorine L. J., et al. . (2006). Mitochondrial dynamics and disease, OPA1. Biochim. Biophys. Acta 1763, 500–509. 10.1016/j.bbamcr.2006.04.003
    1. Ollmann M. M., Wilson B. D., Yang Y. K., Kerns J. A., Chen Y., Gantz I., et al. . (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138. 10.1126/science.278.5335.135
    1. Otera H., Wang C., Cleland M. M., Setoguchi K., Yokota S., Youle R. J., et al. . (2010). Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141–1158. 10.1083/jcb.201007152
    1. Ozcan L., Ergin A. S., Lu A., Chung J., Sarkar S., Nie D., et al. . (2009). Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51. 10.1016/j.cmet.2008.12.004
    1. Palmer C. S., Osellame L. D., Laine D., Koutsopoulos O. S., Frazier A. E., Ryan M. T. (2011). MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12, 565–573. 10.1038/embor.2011.54
    1. Panov A. V., Gutekunst C. A., Leavitt B. R., Hayden M. R., Burke J. R., Strittmatter W. J., et al. . (2002). Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 5, 731–736. 10.1038/nn884
    1. Papanicolaou K. N., Khairallah R. J., Ngoh G. A., Chikando A., Luptak I., O'Shea K. M., et al. . (2011). Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol. Cell. Biol. 31, 1309–1328.
    1. Papanicolaou K. N., Ngoh G. A., Dabkowski E. R., O'Connell K. A., Ribeiro R. F., Jr., Stanley W. C., et al. . (2012). Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am. J. Physiol. Heart Circ. Physiol. 302, H167–H179.
    1. Park Y. Y., Cho H. (2012). Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div. 7, 25. 10.1186/1747-1028-7-25
    1. Park Y. Y., Lee S., Karbowski M., Neutzner A., Youle R. J., Cho H. (2010). Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 123, 619–626. 10.1242/jcs.061481
    1. Parone P. A., Da Cruz S., Tondera D., Mattenberger Y., James D. I., Maechler P., et al. . (2008). Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 3:e3257. 10.1371/journal.pone.0003257
    1. Parton L. E., Ye C. P., Coppari R., Enriori P. J., Choi B., Zhang C. Y., et al. . (2007). Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449, 228–232. 10.1038/nature06098
    1. Pesch U. E. A., Leo-Kottler B., Mayer S., Jurklies B., Kellner U., Apfelstedt-Sylla E., et al. . (2001). OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum. Mol. Genet. 10, 1359–1368. 10.1093/hmg/10.13.1359
    1. Pham A. H., Meng S., Chu Q. N., Chan D. C. (2012). Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum. Mol. Genet. 21, 4817–4826. 10.1093/hmg/dds311
    1. Pich S., Bach D., Briones P., Liesa M., Camps M., Testar X., et al. . (2005). The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum. Mol. Genet. 14, 1405–1415. 10.1093/hmg/ddi149
    1. Pickrell A. M., Youle R. J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in parkinson's disease. Neuron 85, 257–273. 10.1016/j.neuron.2014.12.007
    1. Pitts K. R., Yoon Y., Krueger E. W., McNiven M. A. (1999). The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell. 10, 4403–4417. 10.1091/mbc.10.12.4403
    1. Poggioli R., Vergoni A. V., Bertolini A. (1986). ACTH-(1-24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonists. Peptides 7, 843–848. 10.1016/0196-9781(86)90104-X
    1. Poole A. C., Thomas R. E., Yu S., Vincow E. S., Pallanck L. (2010). The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE 5:e10054. 10.1371/journal.pone.0010054
    1. Poston C. N., Krishnan S. C., Bazemore-Walker C. R. (2013). In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). J. Proteomics 79, 219–230. 10.1016/j.jprot.2012.12.018
    1. Quiros P. M., Ramsay A. J., Sala D., Fernandez-Vizarra E., Rodriguez F., Peinado J. R., et al. . (2012). Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J. 31, 2117–2133. 10.1038/emboj.2012.70
    1. Reddy P. H., Reddy T. P., Manczak M., Calkins M. J., Shirendeb U., Mao P. (2011). Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res. Rev. 67, 103–118. 10.1016/j.brainresrev.2010.11.004
    1. Rojo M., Legros F., Chateau D., Lombès A. (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663–1674.
    1. Roseberry A. G., Liu H., Jackson A. C., Cai X., Friedman J. M. (2004). Neuropeptide Y-mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice. Neuron 41, 711–722. 10.1016/S0896-6273(04)00074-1
    1. Rui Y., Tiwari P., Xie Z., Zheng J. Q. (2006). Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J. Neurosci. 26, 10480–10487. 10.1523/JNEUROSCI.3231-06.2006
    1. Sandebring A., Thomas K. J., Beilina A., van der Brug M., Cleland M. M., Ahmad R., et al. . (2009). Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE 4:e5701. 10.1371/journal.pone.0005701
    1. Santel A., Frank S., Gaume B., Herrler M., Youle R. J., Fuller M. T. (2003). Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116, 2763–2774. 10.1242/jcs.00479
    1. Sarzi E., Angebault C., Seveno M., Gueguen N., Chaix B., Bielicki G., et al. . (2012). The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain 135, 3599–3613. 10.1093/brain/aws303
    1. Satoh M., Hamamoto T., Seo N., Kagawa Y., Endo H. (2003). Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem. Biophys. Res. Commun. 300, 482–493. 10.1016/S0006-291X(02)02874-7
    1. Scarpulla R. C., Vega R. B., Kelly D. P. (2012). Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459–466. 10.1016/j.tem.2012.06.006
    1. Schapira A. H., Bezard E., Brotchie J., Calon F., Collingridge G. L., Ferger B., et al. . (2006). Novel pharmacological targets for the treatment of Parkinson's disease. Nat. Rev. Drug Discov. 5, 845–854. 10.1038/nrd2087
    1. Schapira A. H., Olanow C. W., Greenamyre J. T., Bezard E. (2014). Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet 384, 545–555. 10.1016/S0140-6736(14)61010-2
    1. Schneeberger M., Dietrich M. O., Sebastian D., Imbernon M., Castano C., Garcia A., et al. . (2013). Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187. 10.1016/j.cell.2013.09.003
    1. Schneeberger M., Gomis R., Claret M. (2014). Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol. 220, T25–T46. 10.1530/joe-13-0398
    1. Schon E. A., Area-Gomez E. (2010). Is Alzheimer's disease a disorder of mitochondria-associated membranes? J. Alzheimer's Dis. 20, S281–S292. 10.3233/JAD-2010-100495
    1. Schwartz M. W., Baskin D. G., Bukowski T. R., Kuijper J. L., Foster D., Lasser G., et al. . (1996). Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45, 531–535. 10.2337/diab.45.4.531
    1. Schwartz M. W., Seeley R. J., Woods S. C., Weigle D. S., Campfield L. A., Burn P., et al. . (1997). Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123. 10.2337/diab.46.12.2119
    1. Sebastian D., Hernandez-Alvarez M. I., Segales J., Sorianello E., Munoz J. P., Sala D., et al. . (2012). Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. U.S.A. 109, 5523–5528. 10.1073/pnas.1108220109
    1. Senderek J., Bergmann C., Ramaekers V. T., Nelis E., Bernert G., Makowski A., et al. . (2003). Mutations in the ganglioside−induced differentiation−associated protein−1 (GDAP1) gene in intermediate type autosomal recessive Charcot–Marie–Tooth neuropathy. Brain 126, 642–649. 10.1093/brain/awg068
    1. Sevilla T., Cuesta A., Chumillas M. J., Mayordomo F., Pedrola L., Palau F., et al. . (2003). Clinical, electrophysiological and morphological findings of Charcot–Marie–Tooth neuropathy with vocal cord palsy and mutations in the GDAP1 gene. Brain 126, 2023–2033. 10.1093/brain/awg202
    1. Shirendeb U., Reddy A. P., Manczak M., Calkins M. J., Mao P., Tagle D. A., et al. . (2011). Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum. Mol. Genet. 20, 1438–1455. 10.1093/hmg/ddr024
    1. Simmen T., Aslan J. E., Blagoveshchenskaya A. D., Thomas L., Wan L., Xiang Y., et al. . (2005). PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24, 717–729. 10.1038/sj.emboj.7600559
    1. Simpson J. C., Wellenreuther R., Poustka A., Pepperkok R., Wiemann S. (2000). Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292. 10.1093/embo-reports/kvd058
    1. Skre H. (1974). Genetic and clinical aspects of Charcot-Marie-Tooth's disease. Clin. Genet. 6, 98–118. 10.1111/j.1399-0004.1974.tb00638.x
    1. Smith M. A., Hisadome K., Al-Qassab H., Heffron H., Withers D. J., Ashford M. L. (2007). Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances. J. Physiol. 578(Pt 2), 425–38. 10.1113/jphysiol.2006.119479
    1. Song W., Chen J., Petrilli A., Liot G., Klinglmayr E., Zhou Y., et al. . (2011). Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med. 17, 377–382. 10.1038/nm.2313
    1. Song Z., Chen H., Fiket M., Alexander C., Chan D. C. (2007). OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178, 749–755. 10.1083/jcb.200704110
    1. Sorianello E., Soriano F. X., Fernandez-Pascual S., Sancho A., Naon D., Vila-Caballer M., et al. . (2012). The promoter activity of human Mfn2 depends on Sp1 in vascular smooth muscle cells. Cardiovasc. Res. 94, 38–47. 10.1093/cvr/cvs006
    1. Soriano F. X., Liesa M., Bach D., Chan D. C., Palacin M., Zorzano A. (2006). Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 55, 1783–1791. 10.2337/db05-0509
    1. Stephens T. W., Basinski M., Bristow P. K., Bue-Valleskey J. M., Burgett S. G., Craft L., et al. . (1995). The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377, 530–532. 10.1038/377530a0
    1. Stojanovski D., Koutsopoulos O. S., Okamoto K., Ryan M. T. (2004). Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J. Cell Sci. 117, 1201–1210. 10.1242/jcs.01058
    1. Stone S. J., Vance J. E. (2000). Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J. Biol. Chem. 275, 34534–34540. 10.1074/jbc.M002865200
    1. Sugiura A., Nagashima S., Tokuyama T., Amo T., Matsuki Y., Ishido S., et al. . (2013). MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol. Cell. 51, 20–34. 10.1016/j.molcel.2013.04.023
    1. Supnet C., Bezprozvanny I. (2010). Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease. J. Alzheimer's Dis. 20, S487–S498. 10.3233/JAD-2010-100306
    1. Sutendra G., Dromparis P., Wright P., Bonnet S., Haromy A., Hao Z., et al. . (2011). The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci. Transl. Med. 3:88ra55. 10.1126/scitranslmed.3002194
    1. Suter U., Scherer S. S. (2003). Disease mechanisms in inherited neuropathies. Nat. Rev. Neurosci. 4, 714–726. 10.1038/nrn1196
    1. Suzuki M., Jeong S.-Y., Karbowski M., Youle R. J., Tjandra N. (2003). The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J. Mol. Biol. 334, 445–458. 10.1016/j.jmb.2003.09.064
    1. Szabadkai G., Bianchi K., Varnai P., De Stefani D., Wieckowski M. R., Cavagna D., et al. . (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911. 10.1083/jcb.200608073
    1. Tabrizi S. J., Cleeter M. W., Xuereb J., Taanman J. W., Cooper J. M., Schapira A. H. (1999). Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol. 45, 25–32.
    1. Taguchi N., Ishihara N., Jofuku A., Oka T., Mihara K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529. 10.1074/jbc.M607279200
    1. Tanaka A., Cleland M. M., Xu S., Narendra D. P., Suen D. F., Karbowski M., et al. . (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380. 10.1083/jcb.201007013
    1. Thornton J. E., Cheung C. C., Clifton D. K., Steiner R. A. (1997). Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 138, 5063–5066. 10.1210/endo.138.11.5651
    1. Tondera D., Grandemange S., Jourdain A., Karbowski M., Mattenberger Y., Herzig S., et al. . (2009). SlP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600. 10.1038/emboj.2009.89
    1. Twig G., Elorza A., Molina A. J., Mohamed H., Wikstrom J. D., Walzer G., et al. . (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446. 10.1038/sj.emboj.7601963
    1. Vance J. E. (1990). Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265, 7248–7256.
    1. Van Der Bliek A. M. (1999). Functional diversity in the dynamin family. Trends Cell Biol. 9, 96–102. 10.1016/S0962-8924(98)01490-1
    1. Verhoeven K., Claeys K. G., Züchner S., Schröder J. M., Weis J., Ceuterick C., et al. . (2006). MFN2 mutation distribution and genotype/phenotype correlation in Charcot–Marie–Tooth type 2. Brain 129, 2093–2102. 10.1093/brain/awl126
    1. Vong L., Ye C., Yang Z., Choi B., Chua S., Jr., Lowell B. B. (2011). Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154. 10.1016/j.neuron.2011.05.028
    1. Votruba M., Fitzke F. W., Holder G. E., Carter A., Bhattacharya S. S., Moore A. T. (1998). Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch. Ophthalmol. 116, 351–358. 10.1001/archopht.116.3.351
    1. Wang H., Lim P. J., Karbowski M., Monteiro M. J. (2009b). Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum. Mol. Genet. 18, 737–752. 10.1093/hmg/ddn404
    1. Wang H., Song P., Du L., Tian W., Yue W., Liu M., et al. . (2011). Parkin ubiquitinates Drp1 for proteasome-dependent degradation. J. Biol. Chem. 286, 11649–11658. 10.1074/jbc.M110.144238
    1. Wang Q., Liu C., Uchida A., Chuang J. C., Walker A., Liu T., et al. . (2014). Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol Metab. 3, 64–72. 10.1016/j.molmet.2013.10.001
    1. Wang X., Su B., Lee H. G., Li X., Perry G., Smith M. A., et al. . (2009a). Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J. Neurosci. 29, 9090–9103. 10.1523/JNEUROSCI.1357-09.2009
    1. Wang X., Su B., Siedlak S. L., Moreira P. I., Fujioka H., Wang Y., et al. . (2008). Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. U.S.A. 105, 19318–19323. 10.1073/pnas.0804871105
    1. Wasiak S., Zunino R., McBride H. M. (2007). Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439–450. 10.1083/jcb.200610042
    1. Willesen M. G., Kristensen P., Romer J. (1999). Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70, 306–316. 10.1159/000054491
    1. Williams P. A., Morgan J. E., Votruba M. (2010). Opa1 deficiency in a mouse model of dominant optic atrophy leads to retinal ganglion cell dendropathy. Brain 133, 2942–2951. 10.1093/brain/awq218
    1. Wirth M. M., Olszewski P. K., Yu C., Levine A. S., Giraudo S. Q. (2001). Paraventricular hypothalamic alpha-melanocyte-stimulating hormone and MTII reduce feeding without causing aversive effects. Peptides 22, 129–134. 10.1016/S0196-9781(00)00367-3
    1. Yaffe M. P. (1999). The machinery of mitochondrial inheritance and behavior. Science 283, 1493–1497. 10.1126/science.283.5407.1493
    1. Yang Y., Atasoy D., Su H. H., Sternson S. M. (2011). Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003. 10.1016/j.cell.2011.07.039
    1. Yoon Y., Krueger E. W., Oswald B. J., McNiven M. A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell. Biol. 23, 5409–5420. 10.1128/MCB.23.15.5409-5420.2003
    1. Yue W., Chen Z., Liu H., Yan C., Chen M., Feng D., et al. . (2014). A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 24, 482–496. 10.1038/cr.2014.20
    1. Zhang X., Zhang G., Zhang H., Karin M., Bai H., Cai D. (2008). Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73. 10.1016/j.cell.2008.07.043
    1. Zhu D., Kennerson M. L., Walizada G., Züchner S., Vance J. M., Nicholson G. A. (2005). Charcot–Marie–Tooth with pyramidal signs is genetically heterogeneous: families with and without MFN2 mutations. Neurology 65, 496–497. 10.1212/01.wnl.0000171345.62270.29
    1. Zhu X. H., Qiao H., Du F., Xiong Q., Liu X., Zhang X., et al. . (2012). Quantitative imaging of energy expenditure in human brain. Neuroimage 60, 2107–2117. 10.1016/j.neuroimage.2012.02.013
    1. Ziviani E., Tao R. N., Whitworth A. J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U.S.A. 107, 5018–5023. 10.1073/pnas.0913485107
    1. Zuchner S., Mersiyanova I. V., Muglia M., Bissar-Tadmouri N., Rochelle J., Dadali E. L., et al. . (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449–451. 10.1038/ng1341
    1. Zunino R., Braschi E., Xu L., McBride H. M. (2009). Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J. Biol. Chem. 284, 17783–17795. 10.1074/jbc.M901902200

Source: PubMed

3
Abonner