Neurometabolites and associations with cognitive deficits in mild cognitive impairment: a magnetic resonance spectroscopy study at 7 Tesla

Georg Oeltzschner, S Andrea Wijtenburg, Mark Mikkelsen, Richard A E Edden, Peter B Barker, Jin Hui Joo, Jeannie-Marie S Leoutsakos, Laura M Rowland, Clifford I Workman, Gwenn S Smith, Georg Oeltzschner, S Andrea Wijtenburg, Mark Mikkelsen, Richard A E Edden, Peter B Barker, Jin Hui Joo, Jeannie-Marie S Leoutsakos, Laura M Rowland, Clifford I Workman, Gwenn S Smith

Abstract

The levels of several brain metabolites were investigated in the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) in 13 healthy controls (HC) and 13 patients with mild cognitive impairment (MCI) using single-voxel magnetic resonance spectroscopy at 7T. Levels of γ-aminobutyric acid (GABA), glutamate (Glu), glutathione (GSH), N-acetylaspartylglutamate (NAAG), N-acetylaspartate (NAA), and myo-inositol (mI) were quantified relative to total creatine (tCr). The effect of diagnosis on metabolite levels, and relationships between metabolite levels and memory and executive function, correcting for age, were investigated. MCI patients showed significantly decreased GABA/tCr (ACC, PCC), Glu/tCr (PCC), and NAA/tCr (PCC), and significantly increased mI/tCr (ACC). In the combined group, worse episodic verbal memory performance was correlated with lower Glu/tCr (PCC), lower NAA/tCr (PCC), and higher mI/tCr (ACC, PCC). Worse verbal fluency performance was correlated with lower GSH/tCr (PCC). In summary, MCI is associated with decreased GABA and Glu, most consistently in the PCC. Further studies in larger patient samples should be undertaken to determine the utility of 7T magnetic resonance spectroscopy in detecting MCI-related neurochemical changes.

Keywords: 7T; Anterior cingulate cortex; GABA; Glutamate; Magnetic resonance spectroscopy; Mild cognitive impairment; Posterior cingulate cortex.

Copyright © 2018 Elsevier Inc. All rights reserved.

Figures

Figure 1.
Figure 1.
Voxel placement in the ACC (upper panel) and PCC (lower panel). For both voxels, dimensions were 28 mm (anterior-posterior) × 20 mm (left-right) × 16 mm (caudal-cranial).
Figure 2.
Figure 2.
Representative spectra (black) and LCModel fits (red) for STEAM data from ACC (left panel) and PCC (right panel). Fit residuals are shown at the top of the respective panel.

References

    1. Adalsteinsson E, Sullivan E, Kleinhans N, Spielman D, Pfefferbaum A, 2000. Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease. Lancet 355, 1696–1697. doi:
    1. Alzheimer’s Association, 2015. 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dement 11, 332–384. doi:
    1. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW, 1991. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with alzheimer’s disease. Cereb. Cortex 1, 103–116. doi:
    1. Bai X, Edden RA, Gao F, Wang G, Wu L, Zhao B, Wang M, Chan Q, Chen W, Barker PB, 2014. Decreased gamma-aminobutyric acid levels in the parietal region of patients with Alzheimer’s disease. J Magn Reson Imaging doi:
    1. Benedict RHB, 1997. The Brief Visuospatial Memory Test - Revised. Psychol. Assess 145–153. doi:
    1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM, 2007. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement 3, 186–191. doi:
    1. Butterfield D, 2002. Amyloid β-peptide (1–42)-induced Oxidative Stress and Neurotoxicity: Implications for Neurodegeneration in Alzheimer’s Disease Brain. A Review. Free Radic. Res 36, 1307–1313. doi:
    1. Chang L, Munsaka SM, Kraft-Terry S, Ernst T, 2013. Magnetic Resonance Spectroscopy to Assess NeuroInflammation and Neuropathic Pain. J. Neuroimmune Pharmacol 8, 576–593. doi:
    1. Chiang GC, Mao X, Kang G, Chang E, Pandya S, Vallabhajosula S, Isaacson R, Ravdin LD, Shungu DC, 2017. Relationships among cortical glutathione levels, brain amyloidosis, and memory in healthy older adults investigated in vivo with 1H-MRS and Pittsburgh compound-B PET. Am. J. Neuroradiol 38, 1130–1137. doi:
    1. Choi C, Dimitrov IE, Douglas D, Patel A, Kaiser LG, Amezcua CA, Maher EA, 2010. Improvement of resolution for brain coupled metabolites by optimized 1H MRS at 7 T. NMR Biomed. 23, 1044–1052. doi:
    1. Delis DC, Kaplan E, Kramer JH, 2001. Delis-Kaplan Executive Function System®(DKEFS®): Examiner’s Manual: Flexibility of Thinking, Concept Formation, Problem Solving, Planning, Creativity, Impluse Control, Inhibition. Pearson.
    1. Delis DC, Kramer JH, Kaplan E, Ober BA, 2000. CVLT-II: California verbal learning test: adult version. Psychological Corporation.
    1. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK, 2006. Accumulation of Amyloid Precursor Protein in the Mitochondrial Import Channels of Human Alzheimer’s Disease Brain Is Associated with Mitochondrial Dysfunction. J. Neurosci 26.
    1. Duffy SL, Lagopoulos J, Hickie IB, Diamond K, Graeber MB, Lewis SJG, Naismith SL, 2014. Glutathione relates to neuropsychological functioning in mild cognitive impairment. Alzheimers. Dement 10, 67–75. doi:
    1. Edden RA, Pomper MG, Barker PB, 2007. In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla. Magn Reson Med 57, 977–982. doi:
    1. Edden RA, Puts NA, Harris AD, Barker PB, Evans CJ, 2014. Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J Magn Reson Imaging 40, 1445–1452. doi:
    1. Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K, 2011. Brain Glutamate Levels Are Decreased in Alzheimer’s Disease. Am. J. Alzheimer’s Dis. Other Dementiasr 26, 450–456. doi:
    1. First M, Gibbon M, Spitzer R, Benjamin L, 1997. User’s guide for the structured clinical interview for DSM-IV axis II personality disorders: SCID-II.
    1. Folstein MF, Folstein SE, McHugh PR, 1975. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res 12, 189–198. doi:
    1. Friedman SD, Baker LD, Borson S, Jensen JE, Barsness SM, Craft S, Merriam GR, Otto RK, Novotny EJ, Vitiello MV, 2013. Growth hormone-releasing hormone effects on brain γ-aminobutyric acid levels in mild cognitive impairment and healthy aging. JAMA Neurol 70, 883–90. doi:
    1. Friston KJ, 2007. Statistical parametric mapping the analysis of funtional brain images. Elsevier/Academic Press, Amsterdam; Boston.
    1. Gao F, Barker PB, 2014. Various MRS Application Tools for Alzheimer Disease and Mild Cognitive Impairment. Am. J. Neuroradiol 35.
    1. Hattori N, Abe K, Sakoda S, Sawada T, 2002. Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease. Neuroreport 13, 183–6. doi:
    1. Hirao K, Pontone GM, Smith GS, 2015. Molecular imaging of neuropsychiatric symptoms in Alzheimer’s and Parkinson’s disease. Neurosci. Biobehav. Rev 49. doi:
    1. Huang D, Liu D, Yin J, Qian T, Shrestha S, Ni H, 2017. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment. Eur. Radiol 27, 2698–2705. doi:
    1. Jaarsma D, Veenma-van der Duin L, Korf J, 1994. N-Acetylaspartate and N-acetylaspartylglutamate levels in Alzheimer’s disease post-mortem brain tissue. J. Neurol. Sci 127, 230–233. doi:
    1. Kantarci K, Lowe V, Przybelski SA, Senjem ML, Weigand SD, Ivnik RJ, Roberts R, Geda YE, Boeve BF, Knopman DS, Petersen RC, Jack CR, 2011. Magnetic resonance spectroscopy, -amyloid load, and cognition in a population-based sample of cognitively normal older adults. Neurology 77, 951–958. doi:
    1. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang G-F, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B, 2004. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol 55, 306–319. doi:
    1. Labak M, Foniok T, Kirk D, Rushforth D, Tomanek B, Jasiński A, Grieb P, 2010. Metabolic Changes in Rat Brain Following Intracerebroventricular Injections of Streptozotocin: A Model of Sporadic Alzheimer’s Disease, in: Acta Neurochirurgica. Supplement pp. 177–181. doi:
    1. Lin MT, Beal MF, 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795. doi:
    1. Mandal PK, Saharan S, Tripathi M, Murari G, 2015. Brain Glutathione Levels – A Novel Biomarker for Mild Cognitive Impairment and Alzheimer’s Disease. Biol. Psychiatry 78, 702–710. doi:
    1. Mecocci P, 2004. Oxidative stress in mild cognitive impairment and Alzheimer disease: A continuum. J. Alzheimer’s Dis 6, 159–163. doi:
    1. Mekle R, Mlynárik V, Gambarota G, Hergt M, Krueger G, Gruetter R, 2009. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn. Reson. Med 61, 1279–1285. doi:
    1. Morris J, 1993. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology
    1. Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla A, Zhang B, Gunter JL, Parisi JE, Boeve BF, Knopman DS, Petersen RC, Jack CR, Dickson DW, Kantarci K, 2014. Early Alzheimer’s Disease Neuropathology Detected by Proton MR Spectroscopy. J. Neurosci 34, 16247–16255. doi:
    1. Neale JH, 2011. N-acetylaspartylglutamate is an agonist at mGluR₃ in vivo and in vitro. J. Neurochem 119, 891–5. doi:
    1. Nedelska Z, Przybelski SA, Lesnick TG, Schwarz CG, Lowe VJ, Machulda MM, Kremers WK, Mielke MM, Roberts RO, Boeve BF, Knopman DS, Petersen RC, Jack CR, Kantarci K, 2017. 1 H-MRS metabolites and rate of β-amyloid accumulation on serial PET in clinically normal adults. Neurology
    1. Olson BLB, Holshouser BA, Britt W, Mueller C, Baqai W, Patra S, Petersen F, Kirsch WM, 2008. Longitudinal metabolic and cognitive changes in mild cognitive impairment patients. Alzheimer Dis. Assoc. Disord 22, 269–77. doi:
    1. Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, Mathis CA, Klunk WE, Masters CL, Rowe CC, 2007. -amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130, 2837–2844. doi:
    1. Pradhan S, Bonekamp S, Gillen JS, Rowland LM, Wijtenburg SA, Edden RAE, Barker PB, 2015. Comparison of single voxel brain MRS AT 3T and 7T using 32-channel head coils. Magn. Reson. Imaging 33, 1013–1018. doi:
    1. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA, 2005. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J. Cereb. Blood Flow Metab 25, 1528–1547. doi:
    1. Provencher SW, 2001. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14, 260–4.
    1. Provencher SW, 1993. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med 30, 672–9.
    1. R core team, 2017. R: A language and environment for statistical computing R Found. Stat. Comput Vienna, Austria: R Foundation for Statistical Computing. doi:
    1. Rae CD, 2014. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem. Res 39, 1–36. doi:
    1. Reddy PH, Beal MF, 2008. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med 14, 45–53. doi:
    1. Reitz C, Brayne C, Mayeux R, 2011. Epidemiology of Alzheimer disease. Nat. Rev. Neurol 7, 137–52. doi:
    1. Resnick SM, Sojkova J, Zhou Y, An Y, Ye W, Holt DP, Dannals RF, Mathis CA, Klunk WE, Ferrucci L, Kraut MA, Wong DF, 2010. Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 74, 807–815. doi:
    1. Riese F, Gietl A, Zölch N, Henning A, O’Gorman R, Kälin AM, Leh SE, Buck A, Warnock G, Edden RAE, Luechinger R, Hock C, Kollias S, Michels L, 2015. Posterior cingulate γ-aminobutyric acid and glutamate/glutamine are reduced in amnestic mild cognitive impairment and are unrelated to amyloid deposition and apolipoprotein E genotype. Neurobiol. Aging 36, 53–59. doi:
    1. Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R, 2011. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol. Aging 32, 802–810. doi:
    1. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, Lavretsky H, Burggren AC, Cole GM, Vinters HV, Thompson PM, Huang S-C, Satyamurthy N, Phelps ME, Barrio JR, 2006. PET of Brain Amyloid and Tau in Mild Cognitive Impairment. N. Engl. J. Med 355, 2652–2663. doi:
    1. Sossi V, De Jong HWAM, Barker WC, Bloomfield P, Burbar Z, Camborde ML, Comtat C, Eriksson LA, Houle S, Keator D, Knöß C, Krais R, Lammertsma AA, Rahmim A, Sibomana M, Teräs M, Thompson CJ, Trébossen R, Votaw J, Walker M, Wienhard K, Wong DF, 2005. The second generation HRRT - A multi-centre scanner performance investigation, in: IEEE Nuclear Science Symposium Conference Record pp. 2195–2199. doi:
    1. Stevens JP, 1984. Outliers and influential data points in regression analysis. Psychol. Bull 95, 334–344. doi:
    1. Tkac I, Starcuk Z, Choi IY, Gruetter R, 1999. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41, 649–656. doi: [pii]
    1. Wang X, Wang W, Li L, Perry G, Lee H, Zhu X, 2014. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta - Mol. Basis Dis 1842, 1240–1247. doi:
    1. Waragai M, Moriya M, Nojo T, 2017. Decreased N-Acetyl Aspartate/Myo-Inositol Ratio in the Posterior Cingulate Cortex Shown by Magnetic Resonance Spectroscopy May Be One of the Risk Markers of Preclinical Alzheimer’s Disease: A 7-Year Follow-Up Study. J. Alzheimers. Dis 60, 1411–1427. doi:
    1. Zeydan B, Deelchand DK, Tosakulwong N, Lesnick TG, Kantarci OH, Machulda MM, Knopman DS, Lowe VJ, Jack CR, Petersen RC, Öz G, Kantarci K, 2017. Decreased Glutamate Levels in Patients with Amnestic Mild Cognitive Impairment: An sLASER Proton MR Spectroscopy and PiB-PET Study. J. Neuroimaging doi:
    1. Zhou Y, Endres CJ, Brašić JR, Huang SC, Wong DF, 2003. Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. Neuroimage 18, 975–989. doi:

Source: PubMed

3
Abonner