Infections and Autoimmunity-The Immune System and Vitamin D: A Systematic Review

Sunil J Wimalawansa, Sunil J Wimalawansa

Abstract

Both 25-autoimmunity and(25(OH)D: calcifediol) and its active form, 1,25-dihydroxyvitamin D (1,25(OH)2D: calcitriol), play critical roles in protecting humans from invasive pathogens, reducing risks of autoimmunity, and maintaining health. Conversely, low 25(OH)D status increases susceptibility to infections and developing autoimmunity. This systematic review examines vitamin D's mechanisms and effects on enhancing innate and acquired immunity against microbes and preventing autoimmunity. The study evaluated the quality of evidence regarding biology, physiology, and aspects of human health on vitamin D related to infections and autoimmunity in peer-reviewed journal articles published in English. The search and analyses followed PRISMA guidelines. Data strongly suggested that maintaining serum 25(OH)D concentrations of more than 50 ng/mL is associated with significant risk reduction from viral and bacterial infections, sepsis, and autoimmunity. Most adequately powered, well-designed, randomized controlled trials with sufficient duration supported substantial benefits of vitamin D. Virtually all studies that failed to conclude benefits or were ambiguous had major study design errors. Treatment of vitamin D deficiency costs less than 0.01% of the cost of investigation of worsening comorbidities associated with hypovitaminosis D. Despite cost-benefits, the prevalence of vitamin D deficiency remains high worldwide. This was clear among those who died from COVID-19 in 2020/21-most had severe vitamin D deficiency. Yet, the lack of direction from health agencies and insurance companies on using vitamin D as an adjunct therapy is astonishing. Data confirmed that keeping an individual's serum 25(OH)D concentrations above 50 ng/mL (125 nmol/L) (and above 40 ng/mL in the population) reduces risks from community outbreaks, sepsis, and autoimmune disorders. Maintaining such concentrations in 97.5% of people is achievable through daily safe sun exposure (except in countries far from the equator during winter) or taking between 5000 and 8000 IU vitamin D supplements daily (average dose, for non-obese adults, ~70 to 90 IU/kg body weight). Those with gastrointestinal malabsorption, obesity, or on medications that increase the catabolism of vitamin D and a few other specific disorders require much higher intake. This systematic review evaluates non-classical actions of vitamin D, with particular emphasis on infection and autoimmunity related to the immune system.

Keywords: 25(OH)D; epidemiology; morbidity; mortality; prevention; public health; treatment.

Conflict of interest statement

The author declares no conflict of interest. He received no funding for this work or assistance in professional writing for this review.

Figures

Figure 1
Figure 1
PRISMA flow chart. Selection path of reference to advances in knowledge of vitamin D with particular emphasis on infections, autoimmunity, and the immune system.
Figure 2
Figure 2
Relationships between vitamin D and a spectrum of non-skeletal diseases and disorders associated with vitamin D deficiency. The complicated relationships between beneficial 25(OH)D concentrations (sufficiency) and various organ systems in the body and diseases are depicted. Top panel (light green background)—vitamin D sufficiency: White ovals—mode of vitamin D generation/entry to the body. Yellow ovals—system dysfunction. Green ovals—endocrine functions of vitamin D (circulating 1,25(OH)2D: calcitriol) on calcium metabolism. Bottom panela (light yellow background)— vitamin D deficiency: Dark blue ovals—functional and pathophysiological relationships with tissues and organ systems. Light blue ovals—metabolic dysfunctions associated with hypovitaminosis D. Abbreviations: Ca++, calcium; FGF23, fibroblast growth factor-23; IR, insulin resistance; Mg++, magnesium; UV, ultraviolet rays. Arrows indicate increased (improved) or decreased incidence or severity (modified from Wimalawansa 2012 and 2016 [30,31]).
Figure 3
Figure 3
Major negative consequences are categorized into groups of chronic vitamin D deficiency.
Figure 4
Figure 4
Different diseases (and tissues) require different steady-state serum 25(OH)D concentrations to achieve improvement: the need for varied serum 25(OH)D concentrations to subdue various disease statuses is illustrated (modified from Wimalawansa, S.J. Steroid Biochemistry [31].
Figure 5
Figure 5
Illustration of the dose/25(OH)D concentrations achieved in the circulation vs. responses (clinical health benefits and potential risks). It also provides the basic pharmacodynamics of a typical nutrient, taking vitamin D as an example. When tissue sufficiency occurred, generally, there would not be additional benefits by raising the circulatory concentration by increasing the intake. However, there are exceptions in a small percentage; pharmacological doses are needed under medical guidance in less than 0.01% of the population to overcome resistance to achieve the desired clinical goals (indicated in the dashed blue line) [115].

References

    1. Wacker M., Holick M.F. Sunlight and Vitamin D: A global perspective for health. Dermato-Endocrinol. 2013;5:51–108. doi: 10.4161/derm.24494.
    1. Wimalawansa S.J. Commonsense Approaches to Minimizing Risks from COVID-19. Open J. Pulmonol. Respir. Med. 2020;2:28–37. doi: 10.36811/ojprm.2020.110010.
    1. Wimalawansa S.J. Reducing Risks from COVID-19: Cost-Effective Ways of Strengthening Individual’s and the Population Immunity with Vitamin D. J. Endocrinol. Sci. 2020;2:5–13. doi: 10.29245/2767-5157/2020/2.1112.
    1. Mithal A., Wahl D.A., Bonjour J.P., Burckhardt P., Dawson-Hughes B., Eisman J.A., El-Hajj Fuleihan G., Josse R.G., Lips P., Morales-Torres J. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int. 2009;20:1807–1820. doi: 10.1007/s00198-009-0954-6.
    1. Wimalawansa S.J. Vitamin D in the New Millennium. Curr. Osteoporos. Rep. 2012;10:4–15. doi: 10.1007/s11914-011-0094-8.
    1. Grant W.B., Wimalawansa S.J., Holick M.F. Vitamin D supplements and reasonable solar UVB should be recommended to prevent escalating incidence of chronic diseases. BMJ. 2015;350:h321. doi: 10.1136/bmj.h321.
    1. Holick M.F. High Prevalence of Vitamin D Inadequacy and Implications for Health. Mayo Clin. Proc. 2006;81:353–373. doi: 10.4065/81.3.353.
    1. Haq A., Wimalawansa S.J., Carlberg C. Highlights from the 5th International Conference on Vitamin D Deficiency, Nutrition and Human Health, Abu Dhabi, United Arab Emirates, March 24–25, 2016. J. Steroid Biochem. Mol. Biol. 2018;175:1–3. doi: 10.1016/j.jsbmb.2017.04.008.
    1. Pludowski P., Holick M.F., Grant W.B., Konstantynowicz J., Mascarenhas M.R., Haq A., Povoroznyuk V., Balatska N., Barbosa A.P., Karonova T., et al. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2017;175:125–135. doi: 10.1016/j.jsbmb.2017.01.021.
    1. Ganmaa D., Enkhmaa D., Nasantogtokh E., Sukhbaatar S., Tumur-Ochir K., Manson J. Vitamin D, respiratory infections, and chronic disease: Review of meta-analyses and randomized clinical trials. J. Intern. Med. 2021;291:141–164. doi: 10.1111/joim.13399.
    1. Vintilescu B., E Niculescu C., Stepan M.D., Ioniță E. Involvement of Vitamin D in Chronic Infections of the Waldeyer`s Ring in the School Aged Child. Curr. Health Sci. J. 2019;45:291–295. doi: 10.12865/chsj.45.03.07.
    1. Juszczak A.B., Kupczak M., Konecki T. Does Vitamin Supplementation Play a Role in Chronic Kidney Disease? Nutrients. 2023;15:2847. doi: 10.3390/nu15132847.
    1. Özdemir B., Köksal B.T., Karakaş N.M., Tekindal M.A., Özbek Y. Serum Vitamin D Levels in Children with Recurrent Respiratory Infections and Chronic Cough. Indian. J. Pediatr. 2016;83:777–782. doi: 10.1007/s12098-015-2010-1.
    1. Pérez-López F.R. Vitamin D: The secosteroid hormone and human reproduction. Gynecol. Endocrinol. 2007;23:13–24. doi: 10.1080/09513590601045629.
    1. Wimalawansa S.J. Vitamin D and cardiovascular diseases: Causality. J. Steroid Biochem. Mol. Biol. 2018;175:29–43. doi: 10.1016/j.jsbmb.2016.12.016.
    1. Wimalawansa S.J., Razzaque M.S., Al-Daghri N.M. Calcium and vitamin D in human health: Hype or real? J. Steroid Biochem. Mol. Biol. 2018;180:4–14. doi: 10.1016/j.jsbmb.2017.12.009.
    1. Boland R., de Boland A.R., Marinissen M.J., Santillan G., Vazquez G., Zanello S. Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol. Cell. Endocrinol. 1995;114:1–8. doi: 10.1016/0303-7207(95)03650-V.
    1. Shamseer L., Moher D., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A., PRISMA-P Group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ. 2015;350:g7647. doi: 10.1136/bmj.g7647.
    1. Welch V., Petticrew M., Tugwell P., Moher D., O’Neill J., Waters E., White H. The PRISMA-Equity Bellagio group PRISMA-Equity 2012 Extension: Reporting Guidelines for Systematic Reviews with a Focus on Health Equity. PLOS Med. 2012;9:e1001333. doi: 10.1371/journal.pmed.1001333.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:71. doi: 10.1136/bmj.n71.
    1. PRISMA-P Group. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Syst. Rev. 2015;4:1. doi: 10.1186/2046-4053-4-1.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010;8:336–341. doi: 10.1016/j.ijsu.2010.02.007.
    1. Grant W.B. The Institute of Medicine did not find the vitamin D–cancer link because it ignored UV-B dose studies. Public. Health Nutr. 2011;14:745–746. doi: 10.1017/S1368980011000267.
    1. Wimalawansa S.J. Rapidly Increasing Serum 25(OH)D Boosts the Immune System, against Infections—Sepsis and COVID-19. Nutrients. 2022;14:2997. doi: 10.3390/nu14142997.
    1. Grant W.B., Boucher B.J., Bhattoa H.P., Lahore H. Why vitamin D clinical trials should be based on 25-hydroxyvitamin D concentrations. J. Steroid Biochem. Mol. Biol. 2018;177:266–269. doi: 10.1016/j.jsbmb.2017.08.009.
    1. Wimalawansa S. Overcoming Infections Including COVID-19, by Maintaining Circulating 25(OH)D Concentrations Above 50 ng/mL. Pathol. Lab. Med. Int. 2022;ume 14:37–60. doi: 10.2147/PLMI.S373617.
    1. Grant W.B. Vitamin D Acceptance Delayed by Big Pharma Following the Disinformation Playbook. [(accessed on 22 March 2022)]. Available online: .
    1. Verstuyf A., Carmeliet G., Bouillon R., Mathieu C. Vitamin D: A pleiotropic hormone. Kidney Int. 2010;78:140–145. doi: 10.1038/ki.2010.17.
    1. Cancela L., Nemere I., Norman A.W. 1α,25 (OH)2 vitamin D3: A steroid hormone capable of producing pleiotropic receptor-mediated biological responses by both genomic and nongenomic mechanisms. J. Steroid Biochem. 1988;30:33–39. doi: 10.1016/0022-4731(88)90073-8.
    1. Wimalawansa S.J. Vitamin D: Everything You Need to Know. Volume 1.0. Karunaratne & Sons; Homagama, Sri Lanka: 2012.
    1. Wimalawansa S.J. Non-musculoskeletal benefits of vitamin D. J. Steroid Biochem. Mol. Biol. 2018;175:60–81. doi: 10.1016/j.jsbmb.2016.09.016.
    1. Zdrenghea M.T., Makrinioti H., Bagacean C., Bush A., Johnston S.L., Stanciu L.A. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev. Med. Virol. 2017;27:e1909. doi: 10.1002/rmv.1909.
    1. Gotelli E., Soldano S., Hysa E., Paolino S., Campitiello R., Pizzorni C., Sulli A., Smith V., Cutolo M. Vitamin D and COVID-19: Narrative Review after 3 Years of Pandemic. Nutrients. 2022;14:4907. doi: 10.3390/nu14224907.
    1. Hanel A., Bendik I., Carlberg C. Transcriptome-Wide Profile of 25-Hydroxyvitamin D3 in Primary Immune Cells from Human Peripheral Blood. Nutrients. 2021;13:4100. doi: 10.3390/nu13114100.
    1. Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn-Schmiedeberg's Arch. Pharmacol. 2020;393:1157–1160. doi: 10.1007/s00210-020-01911-4.
    1. Chauss D., Freiwald T., McGregor R., Yan B., Wang L., Nova-Lamperti E., Kumar D., Zhang Z., Teague H., West E.E., et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nat. Immunol. 2022;23:62–74. doi: 10.1038/s41590-021-01080-3.
    1. McGregor E., Kazemian M., Afzali B., Freiwald T., Yan B., Wang L., Nova-Lamperti E., Zhang Z., Teague H., West E.E., et al. An autocrine Vitamin D-driven Th1 shutdown program can be exploited for COVID-19. bioRxiv. 2020 doi: 10.1101/2020.07.18.210161.
    1. Wimalawansa S.J. Biology of vitamin D. J. Steroids Horm. Sci. 2019;10:198.
    1. Grant W.B. Variations in Vitamin D Production Could Possibly Explain the Seasonality of Childhood Respiratory Infections in Hawaii. Pediatr. Infect. Dis. J. 2008;27:853. doi: 10.1097/INF.0b013e3181817bc1.
    1. Martineau A.R., Jolliffe D.A., Hooper R.L., Greenberg L., Aloia J.F., Bergman P., Dubnov-Raz G., Esposito S., Ganmaa D., Ginde A.A., et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi: 10.1136/bmj.i6583.
    1. Wimalawansa S.J. Fighting against COVID-19: Boosting the immunity with micronutrients, stress reduction, physical activity, and vitamin D. Nutr. Food Sci. J. 2020;3:126.
    1. Chetty V.V., Chetty M. Potential benefit of vitamin D supplementation in people with respiratory illnesses, during the COVID-19 pandemic. Clin. Transl. Sci. 2021;14:2111–2116. doi: 10.1111/cts.13044.
    1. Wimalawansa S.J., Polonowita A. Boosting immunity with vitamin D for preventing complications and deaths from COVID-19; Proceedings of the COVID 19: Impact, Mitigation, Opportunities and Building Resilience “From Adversity to Serendipity,” Perspectives of Global Relevance Based on Research, Experience and Successes in Combating COVID-19 in Sri Lanka; Colombo, Sri Lanka. 27 January 2021; pp. 171–198.
    1. D’avolio A., Avataneo V., Manca A., Cusato J., De Nicolò A., Lucchini R., Keller F., Cantù M. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12:1359. doi: 10.3390/nu12051359.
    1. DiNicolantonio J.J., O’keefe J.H. Magnesium and Vitamin D Deficiency as a Potential Cause of Immune Dysfunction, Cytokine Storm and Disseminated Intravascular Coagulation in COVID-19 patients. Mo. Med. 2021;118:68–73.
    1. Cicero A.F.G., Fogacci F., Borghi C. Vitamin D Supplementation and COVID-19 Outcomes: Mounting Evidence and Fewer Doubts. Nutrients. 2022;14:3584. doi: 10.3390/nu14173584.
    1. Xu Y., Baylink D.J., Chen C.-S., Reeves M.E., Xiao J., Lacy C., Lau E., Cao H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med. 2020;18:322. doi: 10.1186/s12967-020-02488-5.
    1. Argano C., Bocchio R.M., Natoli G., Scibetta S., Monaco M.L., Corrao S. Protective Effect of Vitamin D Supplementation on COVID-19-Related Intensive Care Hospitalization and Mortality: Definitive Evidence from Meta-Analysis and Trial Sequential Analysis. Pharmaceuticals. 2023;16:130. doi: 10.3390/ph16010130.
    1. Davies G., Mazess R.B., Benskin L.L. Letter to the editor in response to the article: “Vitamin D concentrations and COVID-19 infection in UK biobank” (Hastie et al.) Diabetes Metab. Syndr. Clin. Res. Rev. 2021;15:643–644. doi: 10.1016/j.dsx.2021.02.016.
    1. Hastie C.E., Pell J.P., Sattar N. Vitamin D and COVID-19 infection and mortality in UK Biobank. Eur. J. Nutr. 2020;60:545–548. doi: 10.1007/s00394-020-02372-4.
    1. Raisi-Estabragh Z., McCracken C., Bethell M.S., Cooper J., Cooper C., Caulfield M.J., Munroe P.B., Harvey N.C., E Petersen S. Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: Study of 1326 cases from the UK Biobank. J. Public Health. 2020;42:451–460. doi: 10.1093/pubmed/fdaa095.
    1. Annweiler C., Hanotte B., de L’eprevier C.G., Sabatier J.-M., Lafaie L., Célarier T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J. Steroid Biochem. Mol. Biol. 2020;204:105771. doi: 10.1016/j.jsbmb.2020.105771.
    1. Annweiler G., Corvaisier M., Gautier J., Dubée V., Legrand E., Sacco G., Annweiler C. Vitamin D Supplementation Associated to Better Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Quasi-Experimental Study. Nutrients. 2020;12:3377. doi: 10.3390/nu12113377.
    1. Meltzer D.O., Best T.J., Zhang H., Vokes T., Arora V., Solway J. Association of Vitamin D Deficiency and Treatment with COVID-19 Incidence. medRxiv. 2020 doi: 10.1101/2020.05.08.20095893.
    1. Meltzer D.O., Best T.J., Zhang H., Vokes T., Arora V., Solway J. Association of Vitamin D Status and Other Clinical Characteristics with COVID-19 Test Results. JAMA Netw. Open. 2020;3:e2019722. doi: 10.1001/jamanetworkopen.2020.19722.
    1. Radujkovic A., Hippchen T., Tiwari-Heckler S., Dreher S., Boxberger M., Merle U. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12:2757. doi: 10.3390/nu12092757.
    1. Baktash V., Hosack T., Patel N., Shah S., Kandiah P., Abbeele K.V.D., Mandal A.K.J., Missouris C.G. Vitamin D status and outcomes for hospitalised older patients with COVID-19. Postgrad. Med. J. 2020;97:442–447. doi: 10.1136/postgradmedj-2020-138712.
    1. Greiller C.L., Martineau A.R. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. Nutrients. 2015;7:4240–4270. doi: 10.3390/nu7064240.
    1. Gönen M.S., Alaylıoğlu M., Durcan E., Özdemir Y., Şahin S., Konukoğlu D., Nohut O.K., Ürkmez S., Küçükece B., Balkan I.I., et al. Rapid and Effective Vitamin D Supplementation May Present Better Clinical Outcomes in COVID-19 (SARS-CoV-2) Patients by Altering Serum INOS1, IL1B, IFNg, Cathelicidin-LL37, and ICAM1. Nutrients. 2021;13:4047. doi: 10.3390/nu13114047.
    1. Hill A.B. The Environment and Disease: Association or Causation? Proc. R. Soc. Med. 1965;58:295–300. doi: 10.1177/003591576505800503.
    1. Cutolo M., Pizzorni C., Sulli A. Vitamin D endocrine system involvement in autoimmune rheumatic diseases. Autoimmun. Rev. 2011;11:84–87. doi: 10.1016/j.autrev.2011.08.003.
    1. Caccamo D., Ricca S., Currò M., Ientile R. Health Risks of Hypovitaminosis D: A Review of New Molecular Insights. Int. J. Mol. Sci. 2018;19:892. doi: 10.3390/ijms19030892.
    1. Delvin E., Souberbielle J.-C., Viard J.-P., Salle B. Role of vitamin D in acquired immune and autoimmune diseases. Crit. Rev. Clin. Lab. Sci. 2014;51:232–247. doi: 10.3109/10408363.2014.901291.
    1. Sîrbe C., Rednic S., Grama A., Pop T.L. An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int. J. Mol. Sci. 2022;17:9784. doi: 10.3390/ijms23179784.
    1. Gallo D., Baci D., Kustrimovic N., Lanzo N., Patera B., Tanda M.L., Piantanida E., Mortara L. How Does Vitamin D Affect Immune Cells Crosstalk in Autoimmune Diseases? Int. J. Mol. Sci. 2023;24:4689. doi: 10.3390/ijms24054689.
    1. Székely J.I., Pataki Á. Effects of vitamin D on immune disorders with special regard to asthma, COPD and autoimmune diseases: A short review. Expert Rev. Respir. Med. 2012;6:683–704. doi: 10.1586/ers.12.57.
    1. Hassan V., Hassan S., Seyed-Javad P., Ahmad K., Asieh H., Maryam S., Farid F., Siavash A. Association between Serum 25 (OH) Vitamin D Concentrations and Inflammatory Bowel Diseases (IBDs) Activity. Med. J. Malays. 2013;68:34–38.
    1. Sainaghi P.P., Bellan M., Nerviani A., Sola D., Molinari R., Cerutti C., Pirisi M. Superiority of a High Loading Dose of Cholecalciferol to Correct Hypovitaminosis D in Patients with Inflammatory/Autoimmune Rheumatic Diseases. J. Rheumatol. 2013;40:166–172. doi: 10.3899/jrheum.120536.
    1. Tuohimaa P., Keisala T., Minasyan A., Cachat J., Kalueff A. Vitamin D, nervous system and aging. Psychoneuroendocrinology. 2009;34:S278–S286. doi: 10.1016/j.psyneuen.2009.07.003.
    1. Pani M., Regulla K., Segni M., Krause M., Hofmann S., Hufner M., Herwig J., Pasquino A., Usadel K., Badenhoop K. Vitamin D 1alpha-hydroxylase (CYP1alpha) polymorphism in Graves' disease, Hashimoto's thyroiditis and type 1 diabetes mellitus. Eur. J. Endocrinol. 2002;146:777–781. doi: 10.1530/eje.0.1460777.
    1. Song L., Papaioannou G., Zhao H., Luderer H.F., Miller C., Dall’osso C., Nazarian R.M., Wagers A.J., Demay M.B. The Vitamin D Receptor Regulates Tissue Resident Macrophage Response to Injury. Endocrinology. 2016;157:4066–4075. doi: 10.1210/en.2016-1474.
    1. Ao T., Kikuta J., Ishii M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules. 2021;11:1624. doi: 10.3390/biom11111624.
    1. Bikle D.D. Vitamin D and the immune system: Role in protection against bacterial infection. Curr. Opin. Nephrol. Hypertens. 2008;17:348–352. doi: 10.1097/MNH.0b013e3282ff64a3.
    1. Lin R., White J.H. The pleiotropic actions of vitamin D. BioEssays. 2004;26:21–28. doi: 10.1002/bies.10368.
    1. Zhou Q., Qin S., Zhang J., Zhon L., Pen Z., Xing T. 1,25(OH) 2 D 3 induces regulatory T cell differentiation by influencing the VDR/PLC-γ1/TGF-β1/pathway. Mol. Immunol. 2017;91:156–164. doi: 10.1016/j.molimm.2017.09.006.
    1. Baeke F., Takiishi T., Korf H., Gysemans C., Mathieu C. Vitamin D: Modulator of the immune system. Curr. Opin. Pharmacol. 2010;10:482–496. doi: 10.1016/j.coph.2010.04.001.
    1. Shirvani S.S., Nouri M., Sakhinia E., Babaloo Z., Mohammadzaeh A., Alipour S., Jadideslam G., Khabbazi A. The molecular and clinical evidence of vitamin D signaling as a modulator of the immune system: Role in Behçet’s disease. Immunol. Lett. 2019;210:10–19. doi: 10.1016/j.imlet.2019.03.017.
    1. Du Y., Tong Y., Quan Y., Wang G., Cheng H., Gu S., Jiang J.X. Protein kinase A activation alleviates cataract formation via increased gap junction intercellular communication. iScience. 2023;26:106114. doi: 10.1016/j.isci.2023.106114.
    1. Miller S.C., De Saint-Georges L., Bowman B.M., Jee W.S. Bone lining cells: Structure and Function. [(accessed on 16 January 2021)];Scanning Microsc. 1989 3:953–960. Available online: .
    1. Valiunas V. Biophysical Properties of Connexin-45 Gap Junction Hemichannels Studied in Vertebrate Cells. J. Gen. Physiol. 2002;119:147–164. doi: 10.1085/jgp.119.2.147.
    1. Tikellis C., Thomas M.C. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. Int. J. Pept. 2012;2012:256294. doi: 10.1155/2012/256294.
    1. Wimalawansa S.J. ACE inhibitors and angiotensin receptor blockers reduce the complications associated with COVID-19 infection. World J. Pharma Res. 2021;10:2579–2600. doi: 10.17605/.
    1. Yalcin H.C., Sukumaran V., Al-Ruweidi M.K.A.A., Shurbaji S. Do Changes in ACE-2 Expression Affect SARS-CoV-2 Virulence and Related Complications: A Closer Look into Membrane-Bound and Soluble Forms. Int. J. Mol. Sci. 2021;22:6703. doi: 10.3390/ijms22136703.
    1. Bradding P., Richardson M., Hinks T.S., Howarth P.H., Choy D.F., Arron J.R., Wenzel S.E., Siddiqui S. ACE2, TMPRSS2, and furin gene expression in the airways of people with asthma—Implications for COVID-19. J. Allergy Clin. Immunol. 2020;146:208–211. doi: 10.1016/j.jaci.2020.05.013.
    1. Colotta F., Jansson B., Bonelli F. Modulation of inflammatory and immune responses by vitamin D. J. Autoimmun. 2017;85:78–97. doi: 10.1016/j.jaut.2017.07.007.
    1. Liu P.T., Stenger S., Li H., Wenzel L., Tan B.H., Krutzik S.R., Ochoa M.T., Schauber J., Wu K., Meinken C., et al. Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science. 2006;311:1770–1773. doi: 10.1126/science.1123933.
    1. Khan H., Kunutsor S., Franco O.H., Chowdhury R. Vitamin D, type 2 diabetes and other metabolic outcomes: A systematic review and meta-analysis of prospective studies. Proc. Nutr. Soc. 2013;72:89–97. doi: 10.1017/S0029665112002765.
    1. Takiishi T., Gysemans C., Bouillon R., Mathieu C. Vitamin D and Diabetes. Rheum. Dis. Clin. N. Am. 2012;38:179–206. doi: 10.1016/j.rdc.2012.03.015.
    1. Garg M., Rosella O., Rosella G., Wu Y., Lubel J.S., Gibson P.R. Evaluation of a 12-week targeted vitamin D supplementation regimen in patients with active inflammatory bowel disease. Clin. Nutr. 2017;37:1375–1382. doi: 10.1016/j.clnu.2017.06.011.
    1. Wasse H., Cardarelli F., De Staercke C., Hooper C., Veledar E., Guessous I. 25-hydroxyvitamin D concentration is inversely associated with serum MMP-9 in a cross-sectional study of African American ESRD patients. BMC Nephrol. 2011;12:24. doi: 10.1186/1471-2369-12-24.
    1. WöBke T.K., Sorg B.L., Steinhilber D. Vitamin D in inflammatory diseases. Front. Physiol. 2014;5:244. doi: 10.3389/fphys.2014.00244.
    1. Mascitelli L., Pezzetta F., Goldstein M.R. Inflammatory bowel disease and the vitamin D endocrine system. Intern. Med. J. 2011;41:369–370. doi: 10.1111/j.1445-5994.2010.02291.x.
    1. Raman M., Milestone A.N., Walters J.R., Hart A.L., Ghosh S. Vitamin D and gastrointestinal diseases: Inflammatory bowel disease and colorectal cancer. Ther. Adv. Gastroenterol. 2011;4:49–62. doi: 10.1177/1756283X10377820.
    1. Ardizzone S., Cassinotti A., Bevilacqua M., Clerici M., Porro G.B. Vitamin D and Inflammatory Bowel Disease. Vitam. Horm. 2011;86:367–377. doi: 10.1016/b978-0-12-386960-9.00016-2.
    1. Attar S.M. Vitamin D deficiency in rheumatoid arthritis. Prevalence and association with disease activity in Western Saudi Arabia. Saudi Med. J. 2012;33:520–525.
    1. Furuya T., Hosoi T., Tanaka E., Nakajima A., Taniguchi A., Momohara S., Yamanaka H. Prevalence of and factors associated with vitamin D deficiency in 4,793 Japanese patients with rheumatoid arthritis. Clin. Rheumatol. 2013;32:1081–1087. doi: 10.1007/s10067-013-2216-4.
    1. Rossini M., Bongi S.M., La Montagna G., Minisola G., Malavolta N., Bernini L., Cacace E., Sinigaglia L., Di Munno O., Adami S. Vitamin D deficiency in rheumatoid arthritis: Prevalence, determinants and associations with disease activity and disability. Arthritis Res. Ther. 2010;12:R216. doi: 10.1186/ar3195.
    1. Ishikawa L.L.W., Colavite P.M., Fraga-Silva T.F.d.C., Mimura L.A.N., França T.G.D., Zorzella-Pezavento S.F.G., Chiuso-Minicucci F., Marcolino L.D., Penitenti M., Ikoma M.R.V., et al. Vitamin D Deficiency and Rheumatoid Arthritis. Clin. Rev. Allergy Immunol. 2017;52:373–388. doi: 10.1007/s12016-016-8577-0.
    1. Lin Z., Li W. The Roles of Vitamin D and Its Analogs in Inflammatory Diseases. Curr. Top. Med. Chem. 2016;16:1242–1261. doi: 10.2174/1568026615666150915111557.
    1. Wang T., Wu M.-B., Zhang R.-H., Chen Z.-J., Hua C., Lin J.-P., Yang L.-R. Advances in Computational Structure-Based Drug Design and Application in Drug Discovery. Curr. Top. Med. Chem. 2016;16:901–916. doi: 10.2174/1568026615666150825142002.
    1. Heine G., Niesner U., Chang H.-D., Steinmeyer A., Zügel U., Zuberbier T., Radbruch A., Worm M. 1,25-dihydroxyvitamin D3promotes IL-10 production in human B cells. Eur. J. Immunol. 2008;38:2210–2218. doi: 10.1002/eji.200838216.
    1. Bikle D.D. Vitamin D regulation of immune function during covid-19. Rev. Endocr. Metab. Disord. 2022;23:279–285. doi: 10.1007/s11154-021-09707-4.
    1. Vanherwegen A.-S., Gysemans C., Mathieu C. Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity. Endocrinol. Metab. Clin. N. Am. 2017;46:1061–1094. doi: 10.1016/j.ecl.2017.07.010.
    1. E Nnoaham K., Clarke A. Low serum vitamin D levels and tuberculosis: A systematic review and meta-analysis. Leuk. Res. 2008;37:113–119. doi: 10.1093/ije/dym247.
    1. Grant W.B., Goldstein M., Mascitelli L. Ample evidence exists from human studies that vitamin D reduces the risk of selected bacterial and viral infections. Exp. Biol. Med. 2010;235:1395–1396. doi: 10.1258/ebm.2010.010c01.
    1. Liu N., Kaplan A., Low J., Nguyen L., Liu G., Equils O., Hewison M. Vitamin D Induces Innate Antibacterial Responses in Human Trophoblasts via an Intracrine Pathway1. Biol. Reprod. 2009;80:398–406. doi: 10.1095/biolreprod.108.073577.
    1. Vasilyevna Belyaeva I., Pavlovitch Churilov L., Robertovnsmalla C.M.L., Vladimirovitch Nikolaev A., Andreevna Starshinova A., Kazimirovitch Yablonsky P. Vitamin D, Cathelicidin, Prolactin, Autoantibodies, and Cytokines in Different Forms of Pulmonary Tuberculosis versus Sarcoidosis. Isr. Med. Assoc. J. 2017;19:499–505.
    1. Ginde A.A., Mansbach J.M., Camargo C.A., Jr. Association Between Serum 25-Hydroxyvitamin D Level and Upper Respiratory Tract Infection in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2009;169:384–390. doi: 10.1001/archinternmed.2008.560.
    1. Berry D.J., Hesketh K., Power C., Hyppönen E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br. J. Nutr. 2011;106:1433–1440. doi: 10.1017/s0007114511001991.
    1. Anty R., Anstee Q.M., Gual P., Tran A. Prophylaxis of bacterial infections in cirrhosis: Is an optimal 25-OH vitamin D level required? J. Hepatol. 2014;61:965–966. doi: 10.1016/j.jhep.2014.06.039.
    1. Grant W.B., Boucher B.J., Pludowski P., Wimalawansa S.J. The emerging evidence for non-skeletal health benefits of vitamin D supplementation in adults. Nat. Rev. Endocrinol. 2022;18:323. doi: 10.1038/s41574-022-00646-x.
    1. Armas L.A.G., Hollis B.W., Heaney R.P. Vitamin D2 Is Much Less Effective than Vitamin D3 in Humans. J. Clin. Endocrinol. Metab. 2004;89:5387–5391. doi: 10.1210/jc.2004-0360.
    1. Urashima M., Mezawa H., Noya M., Camargo C.A., Jr. Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: A randomized controlled trial. Food Funct. 2014;5:2365–2370. doi: 10.1039/c4fo00371c.
    1. Adams J.S., Chen H., Chun R., Ren S., Wu S., Gacad M., Nguyen L., Ride J., Liu P., Modlin R., et al. Substrate and Enzyme Trafficking as a Means of Regulating 1,25-Dihydroxyvitamin D Synthesis and Action: The Human Innate Immune Response. J. Bone Miner. Res. 2007;22:V20–V24. doi: 10.1359/jbmr.07s214.
    1. Wimalawansa S.J. Physiological Basis for Using Vitamin D to Improve Health. Biomedicines. 2023;11:1542. doi: 10.3390/biomedicines11061542.
    1. Carlberg C. Genomic signaling of vitamin D. Steroids. 2023;198:109271. doi: 10.1016/j.steroids.2023.109271.
    1. Zehnder D., Bland R., Williams M.C., McNinch R.W., Howie A.J., Stewart P.M., Hewison M. Extrarenal Expression of 25-Hydroxyvitamin D3-1α-Hydroxylase1. J. Clin. Endocrinol. Metab. 2001;86:888–894. doi: 10.1210/jcem.86.2.7220.
    1. White J.H. Regulation of intracrine production of 1,25-dihydroxyvitamin D and its role in innate immune defense against infection. Arch. Biochem. Biophys. 2012;523:58–63. doi: 10.1016/j.abb.2011.11.006.
    1. Tang W.-J., Wang L.-F., Xu X.-Y., Zhou Y., Jin W.-F., Wang H.-F., Gao J. Autocrine/Paracrine Action of Vitamin D on FGF23 Expression in Cultured Rat Osteoblasts. Calcif. Tissue Int. 2010;86:404–410. doi: 10.1007/s00223-010-9355-2.
    1. Wimalawansa S.J., Whittle R. Vitamin D: A single initial dose is not bogus if followed by an appropriate maintenance intake. JBMR Plus. 2022;6:e10606. doi: 10.1002/jbm4.10606.
    1. Trochoutsou A.I., Kloukina V., Samitas K., Xanthou G. Vitamin-D in the Immune System: Genomic and Non-Genomic Actions. Mini-Rev. Med. Chem. 2015;15:953–963. doi: 10.2174/1389557515666150519110830.
    1. Bravo S., Paredes R., Izaurieta P., Lian J.B., Stein J.L., Stein G.S., Hinrichs M.V., Olate J., Aguayo L.G., Montecino M. The classic receptor for 1α,25-dihydroxy vitamin D3 is required for non-genomic actions of 1α,25-dihydroxy vitamin D3 in osteosarcoma cells. J. Cell. Biochem. 2006;99:995–1000. doi: 10.1002/jcb.21031.
    1. Hii C.S., Ferrante A. The Non-Genomic Actions of Vitamin D. Nutrients. 2016;8:135. doi: 10.3390/nu8030135.
    1. Stio M., Retico L., Annese V., Bonanomi A.G. Vitamin D regulates the tight-junction protein expression in active ulcerative colitis. Scand. J. Gastroenterol. 2016;51:1193–1199. doi: 10.1080/00365521.2016.1185463.
    1. Valdés-López J.F., Velilla P., Urcuqui-Inchima S. Vitamin D modulates the expression of Toll-like receptors and pro-inflammatory cytokines without affecting Chikungunya virus replication, in monocytes and macrophages. Acta Trop. 2022;232:106497. doi: 10.1016/j.actatropica.2022.106497.
    1. Ellfolk M., Norlin M., Wikvall K. Isolation and properties of the CYP2D25 promoter: Transcriptional regulation by vitamin D3 metabolites. Biochem. Biophys. Res. Commun. 2006;345:568–572. doi: 10.1016/j.bbrc.2006.04.116.
    1. Hewison M., Burke F., Evans K.N., Lammas D.A., Sansom D.M., Liu P., Modlin R.L., Adams J.S. Extra-renal 25-hydroxyvitamin D3-1α-hydroxylase in human health and disease. J. Steroid Biochem. Mol. Biol. 2007;103:316–321. doi: 10.1016/j.jsbmb.2006.12.078.
    1. Gui B., Chen Q., Hu C., Zhu C., He G. Effects of calcitriol (1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice. Virol. J. 2017;14:10. doi: 10.1186/s12985-017-0683-y.
    1. Elamir Y.M., Amir H., Lim S., Rana Y.P., Lopez C.G., Feliciano N.V., Omar A., Grist W.P., Via M.A. A randomized pilot study using calcitriol in hospitalized COVID-19 patients. Bone. 2022;154:116175. doi: 10.1016/j.bone.2021.116175.
    1. Oristrell J., Oliva J.C., Subirana I., Casado E., Domínguez D., Toloba A., Aguilera P., Esplugues J., Fafián P., Grau M. Association of Calcitriol Supplementation with Reduced COVID-19 Mortality in Patients with Chronic Kidney Disease: A Population-Based Study. Biomedicines. 2021;9:509. doi: 10.3390/biomedicines9050509.
    1. Arababadi M.K., Nosratabadi R., Asadikaram G. Vitamin D and toll like receptors. Life Sci. 2018;203:105–111. doi: 10.1016/j.lfs.2018.03.040.
    1. Hewison M. Vitamin D and immune function: Autocrine, paracrine or endocrine? Scand. J. Clin. Lab. Investig. Suppl. 2012;243:92–102.
    1. Hewison M., Freeman L., Hughes S.V., Evans K.N., Bland R., Eliopoulos A.G., Kilby M.D., Moss P.A.H., Chakraverty R. Differential Regulation of Vitamin D Receptor and Its Ligand in Human Monocyte-Derived Dendritic Cells. J. Immunol. 2003;170:5382–5390. doi: 10.4049/jimmunol.170.11.5382.
    1. Fernandez G.J., Ramírez-Mejía J.M., Castillo J.A., Urcuqui-Inchima S. Vitamin D modulates expression of antimicrobial peptides and proinflammatory cytokines to restrict Zika virus infection in macrophages. Int. Immunopharmacol. 2023;119:110232. doi: 10.1016/j.intimp.2023.110232.
    1. Amado C.A., García-Unzueta M.T., Fariñas M.C., Santos F., Ortiz M., Muñoz-Cacho P., Amado J.A. Vitamin D nutritional status and vitamin D regulated antimicrobial peptides in serum and pleural fluid of patients with infectious and noninfectious pleural effusions. BMC Pulm. Med. 2016;16:99. doi: 10.1186/s12890-016-0259-4.
    1. Zierold C., Nehring J.A., Deluca H.F. Nuclear receptor 4A2 and C/EBPβ regulate the parathyroid hormone-mediated transcriptional regulation of the 25-hydroxyvitamin D3-1α-hydroxylase. Arch. Biochem. Biophys. 2007;460:233–239. doi: 10.1016/j.abb.2006.11.028.
    1. Bai X., Dinghong Q., Miao D., Goltzman D., Karaplis A.C. Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a Klotho-deficient phenotype. Am. J. Physiol. Endocrinol. Metab. 2009;296:E79–E88. doi: 10.1152/ajpendo.90539.2008.
    1. Zheng J., Miao J., Guo R., Guo J., Fan Z., Kong X., Gao R., Yang L. Mechanism of COVID-19 Causing ARDS: Exploring the Possibility of Preventing and Treating SARS-CoV-2. Front. Cell. Infect. Microbiol. 2022;12:931061. doi: 10.3389/fcimb.2022.931061.
    1. Bui L., Zhu Z., Hawkins S., Cortez-Resendiz A., Bellon A. Vitamin D regulation of the immune system and its implications for COVID-19: A mini review. SAGE Open Med. 2021;9:20503121211014073. doi: 10.1177/20503121211014073.
    1. Amer M., Qayyum R. Relation Between Serum 25-Hydroxyvitamin D and C-Reactive Protein in Asymptomatic Adults (From the Continuous National Health and Nutrition Examination Survey 2001 to 2006) Am. J. Cardiol. 2012;109:226–230. doi: 10.1016/j.amjcard.2011.08.032.
    1. Chen Y., Kong J., Sun T., Li G., Szeto F.L., Liu W., Deb D.K., Wang Y., Zhao Q., Thadhani R., et al. 1,25-Dihydroxyvitamin D3 suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-κB activation. Arch. Biochem. Biophys. 2011;507:241–247. doi: 10.1016/j.abb.2010.12.020.
    1. Venkatesh B., Nair P. Hypovitaminosis D and morbidity in critical illness: Is there proof beyond reasonable doubt? Crit. Care. 2014;18:138. doi: 10.1186/cc13863.
    1. Chiellini G., DeLuca H.F. The importance of stereochemistry on the actions of vitamin D. Curr. Top. Med. Chem. 2011;11:840–859. doi: 10.2174/156802611795165016.
    1. Afarideh M., Ghanbari P., Noshad S., Ghajar A., Nakhjavani M., Esteghamati A. Raised serum 25-hydroxyvitamin D levels in patients with active diabetic foot ulcers. Br. J. Nutr. 2016;115:1938–1946. doi: 10.1017/S0007114516001094.
    1. Willershausen B., Ross A., Försch M., Willershausen I., Mohaupt P., Callaway A. The influence of micronutrients on oral and general health. Eur. J. Med. Res. 2011;16:514–518. doi: 10.1186/2047-783X-16-11-514.
    1. Cannell J.J., Vieth R., Umhau J.C., Holick M.F., Grant W.B., Madronich S., Garland C.F., Giovannucci E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006;134:1129–1140. doi: 10.1017/S0950268806007175.
    1. Aloia J.F., Li-Ng M. Re: Epidemic influenza and vitamin D. Epidemiol. Infect. 2007;135:1095–1096; author reply 1097–1098. doi: 10.1017/S0950268807008308.
    1. Urashima M., Segawa T., Okazaki M., Kurihara M., Wada Y., Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 2010;91:1255–1260. doi: 10.3945/ajcn.2009.29094.
    1. Bergman P., Lindh A.U., Björkhem-Bergman L., Lindh J.D. Vitamin D and Respiratory Tract Infections: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS ONE. 2013;8:e65835. doi: 10.1371/journal.pone.0065835.
    1. Banajeh S.M. Nutritional rickets and vitamin D deficiency-association with the outcomes of childhood very severe pneumonia: A prospective cohort study. Pediatr. Pulmonol. 2009;44:1207–1215. doi: 10.1002/ppul.21121.
    1. Lin L., Yao J., Chen G., Lin C. A severe H7N9 pneumonia with syndrome of inappropriate antidiuresis and vitamin D deficiency. Respir. Med. Case Rep. 2014;12:37–38. doi: 10.1016/j.rmcr.2014.03.001.
    1. Pletz M.W., For the CAPNETZ-Study Group. Terkamp C., Schumacher U., Rohde G., Schütte H., Welte T., Bals R. Vitamin D deficiency in community-acquired pneumonia: Low levels of 1,25(OH)2 D are associated with disease severity. Respir. Res. 2014;15:53. doi: 10.1186/1465-9921-15-53.
    1. Niederstrasser J., Herr C., Wolf L., Lehr C.M., Beisswenger C., Bals R. Vitamin D Deficiency Does Not Result in a Breach of Host Defense in Murine Models of Pneumonia. Infect. Immun. 2016;84:3097–3104. doi: 10.1128/IAI.00282-16.
    1. Deluca H.F., Cantorna M.T. Vitamin D: Its role and uses in immunology1. FASEB J. 2001;15:2579–2585. doi: 10.1096/fj.01-0433rev.
    1. Gombart A.F. The vitamin D–antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009;4:1151–1165. doi: 10.2217/fmb.09.87.
    1. Höck A.D. Review: Vitamin D3 deficiency results in dysfunctions of immunity with severe fatigue and depression in a variety of diseases. In Vivo. 2014;28:133–145.
    1. Jeffery L.E., Wood A.M., Qureshi O.S., Hou T.Z., Gardner D., Briggs Z., Kaur S., Raza K., Sansom D.M. Availability of 25-Hydroxyvitamin D3 to APCs Controls the Balance between Regulatory and Inflammatory T Cell Responses. J. Immunol. 2012;189:5155–5164. doi: 10.4049/jimmunol.1200786.
    1. Vuichard Gysin D., Dao D., Gysin C.M., Lytvyn L., Loeb M. Effect of Vitamin D3 Supplementation on Respiratory Tract Infections in Healthy Individuals: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS ONE. 2016;11:e0162996. doi: 10.1371/journal.pone.0162996.
    1. Lucas R.M., Ponsonby A.L., Dear K., Valery P.C., Pender M.P., Taylor B.V., Kilpatrick T.J., Dwyer T., Coulthard A., Chapman C., et al. Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology. 2011;76:540–548. doi: 10.1212/WNL.0b013e31820af93d.
    1. Lucas R.M., Byrne S.N., Correale J., Ilschner S., Hart P.H. Ultraviolet radiation, vitamin D and multiple sclerosis. Neurodegener. Dis. Manag. 2015;5:413–424. doi: 10.2217/nmt.15.33.
    1. Orton S.M., Wald L., Confavreux C., Vukusic S., Krohn J.P., Ramagopalan S.V., Herrera B.M., Sadovnick A.D., Ebers G.C. Association of UV radiation with multiple sclerosis prevalence and sex ratio in France. Neurology. 2011;76:425–431. doi: 10.1212/WNL.0b013e31820a0a9f.
    1. Sintzel M.B., Rametta M., Reder A.T. Vitamin D and Multiple Sclerosis: A Comprehensive Review. Neurol. Ther. 2017;7:59–85. doi: 10.1007/s40120-017-0086-4.
    1. Wang Y., Marling S.J., Martino V.M., Prahl J.M., Deluca H.F. The absence of 25-hydroxyvitamin D 3 -1α-hydroxylase potentiates the suppression of EAE in mice by ultraviolet light. J. Steroid Biochem. Mol. Biol. 2016;163:98–102. doi: 10.1016/j.jsbmb.2016.04.010.
    1. Wang Y., Marling S.J., McKnight S.M., Danielson A.L., Severson K.S., Deluca H.F. Suppression of experimental autoimmune encephalomyelitis by 300–315 nm ultraviolet light. Arch. Biochem. Biophys. 2013;536:81–86. doi: 10.1016/j.abb.2013.05.010.
    1. Ascherio A., Munger K.L., White R., Köchert K., Simon K.C., Polman C.H., Freedman M.S., Hartung H.-P., Miller D.H., Montalbán X., et al. Vitamin D as an Early Predictor of Multiple Sclerosis Activity and Progression. JAMA Neurol. 2014;71:306–314. doi: 10.1001/jamaneurol.2013.5993.
    1. Stewart N., Simpson S., van der Mei I., Ponsonby A.-L., Blizzard L., Dwyer T., Pittas F., Eyles D., Ko P., Taylor B.V. Interferon- and serum 25-hydroxyvitamin D interact to modulate relapse risk in MS. Neurology. 2012;79:254–260. doi: 10.1212/WNL.0b013e31825fded9.
    1. Fitzgerald K.C., Munger K.L., Köchert K., Arnason B.G.W., Comi G., Cook S., Goodin D.S., Filippi M., Hartung H.-P., Jeffery D.R., et al. Association of Vitamin D Levels With Multiple Sclerosis Activity and Progression in Patients Receiving Interferon Beta-1b. JAMA Neurol. 2015;72:1458–1465. doi: 10.1001/jamaneurol.2015.2742.
    1. Emamgholipour S., Eshaghi S.M., Hossein-Nezhad A., Mirzaei K., Maghbooli Z., Sahraian M.A. Adipocytokine Profile, Cytokine Levels and Foxp3 Expression in Multiple Sclerosis: A Possible Link to Susceptibility and Clinical Course of Disease. PLoS ONE. 2013;8:e76555. doi: 10.1371/annotation/6de84c11-73f5-4ee4-aec7-ca83072401a4.
    1. Bock G., Prietl B., Mader J.K., Höller E., Wolf M., Pilz S., Graninger W.B., Obermayer-Pietsch B.M., Pieber T.R. The effect of vitamin D supplementation on peripheral regulatory T cells and β cell function in healthy humans: A randomized controlled trial. Diabetes/Metab. Res. Rev. 2011;27:942–945. doi: 10.1002/dmrr.1276.
    1. Konijeti G.G., Arora P., Boylan M.R., Song Y., Huang S., Harrell F., Newton-Cheh C., O’Neill D., Korzenik J., Wang T.J., et al. Vitamin D Supplementation Modulates T Cell–Mediated Immunity in Humans: Results from a Randomized Control Trial. J. Clin. Endocrinol. Metab. 2016;101:533–538. doi: 10.1210/jc.2015-3599.
    1. Sotirchos E.S., Bhargava P., Eckstein C., Van Haren K., Baynes M., Ntranos A., Gocke A., Steinman L., Mowry E.M., Calabresi P.A. Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology. 2016;86:382–390. doi: 10.1212/WNL.0000000000002316.
    1. Ashtari F., Toghianifar N., Zarkesh-Esfahani S.H., Mansourian M. High dose Vitamin D intake and quality of life in relapsing-remitting multiple sclerosis: A randomized, double-blind, placebo-controlled clinical trial. Neurol. Res. 2016;38:888–892. doi: 10.1080/01616412.2016.1227913.
    1. Patel S., Farragher T., Berry J., Bunn D., Silman A., Symmons D. Association between serum vitamin D metabolite levels and disease activity in patients with early inflammatory polyarthritis. Arthritis Rheum. 2007;56:2143–2149. doi: 10.1002/art.22722.
    1. Jeffery L.E., Raza K., Hewison M. Vitamin D in rheumatoid arthritis—Towards clinical application. Nat. Rev. Rheumatol. 2016;12:201–210. doi: 10.1038/nrrheum.2015.140.
    1. Reynolds J.A., Bruce I.N. Vitamin D treatment for connective tissue diseases: Hope beyond the hype? Rheumatology. 2017;56:178–186. doi: 10.1093/rheumatology/kew212.
    1. Tamblyn J.A., Hewison M., Wagner C.L., Bulmer J.N., Kilby M.D. Immunological role of vitamin D at the maternal–Fetal interface. J. Endocrinol. 2015;224:R107–R121. doi: 10.1530/JOE-14-0642.
    1. Birmingham D., Hebert L., Song H., Noonan W., Rovin B., Nagaraja H., Yu C. Evidence that abnormally large seasonal declines in vitamin D status may trigger SLE flare in non-African Americans. Lupus. 2012;21:855–864. doi: 10.1177/0961203312439640.
    1. Cutolo M., Otsa K., Laas K., Yprus M., Lehtme R., E Secchi M., Sulli A., Paolino S., Seriolo B. Circannual vitamin d serum levels and disease activity in rheumatoid arthritis: Northern versus Southern Europe. Clin. Exp. Rheumatol. 2006;24:702–704.
    1. Racovan M., Walitt B., Collins C.E., Pettinger M., Parks C.G., Shikany J.M., Wactawski-Wende J., Manson J.E., Moreland L., Wright N., et al. Calcium and vitamin D supplementation and incident rheumatoid arthritis: The Women’s Health Initiative Calcium plus Vitamin D trial. Rheumatol. Int. 2012;32:3823–3830. doi: 10.1007/s00296-011-2268-1.
    1. Xu J., Sriramula S., Xia H., Moreno-Walton L., Culicchia F., Domenig O., Poglitsch M., Lazartigues E. Clinical Relevance and Role of Neuronal AT 1 Receptors in ADAM17-Mediated ACE2 Shedding in Neurogenic Hypertension. Circ. Res. 2017;121:43–55. doi: 10.1161/CIRCRESAHA.116.310509.
    1. Xu J., Yang J., Chen J., Luo Q., Zhang Q., Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol. Med. Rep. 2017;16:7432–7438. doi: 10.3892/mmr.2017.7546.
    1. Tsoukalas D., Sarandi E. Micronutrient deficiencies in patients with COVID-19: How metabolomics can contribute to their prevention and replenishment. BMJ Nutr. Prev. Health. 2020;3:419–420. doi: 10.1136/bmjnph-2020-000169.
    1. Dai Q., Zhu X., Manson J.E., Song Y., Li X., Franke A.A., Costello R.B., Rosanoff A., Nian H., Fan L., et al. Magnesium status and supplementation influence vitamin D status and metabolism: Results from a randomized trial. Am. J. Clin. Nutr. 2018;108:1249–1258. doi: 10.1093/ajcn/nqy274.
    1. van Ballegooijen A.J., Pilz S., Tomaschitz A., Grubler M.R., Verheyen N. The synergistic interplay between vitamins D and K for bone and cardiovascular Health: A narrative review. Int. J. Endocrinol. 2017;2017:7454376. doi: 10.1155/2017/7454376.
    1. Wimalawansa S.J. Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging. Biology. 2019;8:30. doi: 10.3390/biology8020030.
    1. Jamilian M., Amirani E., Asemi Z. The effects of vitamin D and probiotic co-supplementation on glucose homeostasis, inflammation, oxidative stress and pregnancy outcomes in gestational diabetes: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2018;38:2098–2105. doi: 10.1016/j.clnu.2018.10.028.
    1. Sims J.T., Krishnan V., Chang C.-Y., Engle S.M., Casalini G., Rodgers G.H., Bivi N., Nickoloff B.J., Konrad R.J., de Bono S., et al. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J. Allergy Clin. Immunol. 2020;147:107–111. doi: 10.1016/j.jaci.2020.08.031.
    1. Hojyo S., Uchida M., Tanaka K., Hasebe R., Tanaka Y., Murakami M., Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm. Regen. 2020;40:37. doi: 10.1186/s41232-020-00146-3.
    1. Iannaccone G., Scacciavillani R., Del Buono M.G., Camilli M., Ronco C., Lavie C.J., Abbate A., Crea F., Massetti M., Aspromonte N. Weathering the Cytokine Storm in COVID-19: Therapeutic Implications. Cardiorenal Med. 2020;10:277–287. doi: 10.1159/000509483.
    1. McGregor T.B., Sener A., Yetzer K., Gillrie C., Paraskevas S. The impact of COVID-19 on the Canadian Kidney Paired Donation program: An opportunity for universal implementation of kidney shipping. Can. J. Surg. 2020;63:E451–E453. doi: 10.1503/cjs.012620.
    1. Wallis G., Siracusa F., Blank M., Painter H., Sanchez J., Salinas K., Mamuyac C., Marudamuthu C., Wrigley F., Corrah T., et al. Experience of a novel community testing programme for COVID-19 in London: Lessons learnt. Clin. Med. 2020;20:e165–e169. doi: 10.7861/clinmed.2020-0436.
    1. Walter L.A., McGregor A.J. Sex- and Gender-specific Observations and Implications for COVID-19. West J. Emerg. Med. 2020;21:507–509. doi: 10.5811/westjem.2020.4.47536.
    1. Stagi S., Rigante D., Lepri G., Cerinic M.M., Falcini F. Severe vitamin D deficiency in patients with Kawasaki disease: A potential role in the risk to develop heart vascular abnormalities? Clin. Rheumatol. 2016;35:1865–1872. doi: 10.1007/s10067-015-2970-6.
    1. Baggs J., Gee J., Lewis E., Fowler G., Benson P., Lieu T., Naleway A., Klein N.P., Baxter R., Belongia E., et al. The Vaccine Safety Datalink: A Model for Monitoring Immunization Safety. Pediatrics. 2011;127:S45–S53. doi: 10.1542/peds.2010-1722H.
    1. Kadkhoda K. Post-adenoviral-based COVID-19 vaccines thrombosis: A proposed mechanism. J. Thromb. Haemost. 2021;19:1831–1832. doi: 10.1111/jth.15348.
    1. Long B., Bridwell R., Gottlieb M. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines. Am. J. Emerg. Med. 2021;49:58–61. doi: 10.1016/j.ajem.2021.05.054.
    1. Swan D.A., Bracis C., Janes H., Moore M., Matrajt L., Reeves D.B., Burns E., Donnell D., Cohen M.S., Schiffer J.T., et al. COVID-19 vaccines that reduce symptoms but do not block infection need higher coverage and faster rollout to achieve population impact. Sci. Rep. 2021;11:1553. doi: 10.1038/s41598-021-94719-y.
    1. Wyon M.A., Koutedakis Y., Wolman R., Nevill A.M., Allen N. The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: A controlled study. J. Sci. Med. Sport. 2014;17:8–12. doi: 10.1016/j.jsams.2013.03.007.
    1. Khan S.R., Whiteman D.C., Kimlin M.G., Janda M., Clarke M.W., Lucas R.M., Neale R.E. Effect of solar ultraviolet radiation exposure on serum 25(OH)D concentration: A pilot randomised controlled trial. Photochem. Photobiol. Sci. 2018;17:570–577. doi: 10.1039/c7pp00378a.
    1. Pérez-López F.R. Vitamin D and its implications for musculoskeletal health in women: An update. Maturitas. 2007;58:117–137. doi: 10.1016/j.maturitas.2007.05.002.
    1. Nasri H., Behradmanesh S., Ahmadi A., Rafieian-Kopaei M. Impact of oral vitamin D (cholecalciferol) replacement therapy on blood pressure in type 2 diabetes patients; a randomized, double-blind, placebo controlled clinical trial. J. Nephropathol. 2014;3:29–33. doi: 10.12860/JNP.2014.07.
    1. Lappe J., Watson P., Travers-Gustafson D., Recker R., Garland C., Gorham E., Baggerly K., McDonnell S.L. Effect of Vitamin D and Calcium Supplementation on Cancer Incidence in Older Women: A Randomized Clinical Trial. JAMA. 2017;317:1234–1243. doi: 10.1001/jama.2017.2115.
    1. Cauley J.A., LaCroix A.Z., Wu L., Horwitz M., Danielson M.E., Bauer D.C., Lee J.S., Jackson R.D., Robbins J.A., Wu C., et al. Serum 25 HydroxyVitamin D Concentrations and the Risk of Hip Fractures: The Women's Health Initiative. Ann. Intern. Med. 2008;149:242–250. doi: 10.7326/0003-4819-149-4-200808190-00005.
    1. Luxwolda M.F., Kuipers R.S., Kema I.P., Dijck-Brouwer D.J., Muskiet F.A. Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br. J. Nutr. 2012;108:1557–1561. doi: 10.1017/S0007114511007161.
    1. Luxwolda M.F., Kuipers R.S., Kema I.P., van der Veer E., Dijck-Brouwer D.A.J., Muskiet F.A.J. Vitamin D status indicators in indigenous populations in East Africa. Eur. J. Nutr. 2013;52:1115–1125. doi: 10.1007/s00394-012-0421-6.
    1. Ekwaru J.P., Zwicker J.D., Holick M.F., Giovannucci E., Veugelers P.J. The Importance of Body Weight for the Dose Response Relationship of Oral Vitamin D Supplementation and Serum 25-Hydroxyvitamin D in Healthy Volunteers. PLoS ONE. 2014;9:e111265. doi: 10.1371/journal.pone.0111265.
    1. Adler N.E., Boyce T., Chesney M.A., Cohen S., Folkman S., Kahn R.L., Syme S.L. Socioeconomic status and health: The challenge of the gradient. Am. Psychol. 1994;49:15–24. doi: 10.1037/0003-066X.49.1.15.
    1. Shen Y.M. Role of nutritional vitamin D in chronic kidney disease-mineral and bone disorder: A narrative review. Medicine. 2023;102:e33477. doi: 10.1097/MD.0000000000033477.
    1. Grant W.B. An estimate of the global reduction in mortality rates through doubling vitamin D levels. Eur. J. Clin. Nutr. 2011;65:1016–1026. doi: 10.1038/ejcn.2011.68.
    1. Dudenkov D.V., Mara K.C., Petterson T.M., Maxson J.A., Thacher T.D. Serum 25-Hydroxyvitamin D Values and Risk of All-Cause and Cause-Specific Mortality: A Population-Based Cohort Study. Mayo Clin. Proc. 2018;93:721–730. doi: 10.1016/j.mayocp.2018.03.006.
    1. Rowling M.J., Kemmis C.M., A Taffany D., Welsh J. Megalin-Mediated Endocytosis of Vitamin D Binding Protein Correlates with 25-Hydroxycholecalciferol Actions in Human Mammary Cells. J. Nutr. 2006;136:2754–2759. doi: 10.1093/jn/136.11.2754.
    1. Christensen E.I., Birn H. Megalin and cubilin: Multifunctional endocytic receptors. Nat. Rev. Mol. Cell Biol. 2002;3:258–267. doi: 10.1038/nrm778.
    1. Sofianopoulou E., Kaptoge S.K., Afzal S., Jiang T., Gill D., E Gundersen T., Bolton T.R., Allara E., Arnold M.G., Mason A.M., et al. Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: Observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2021;9:837–846. doi: 10.1016/S2213-8587(21)00263-1.
    1. Baggerly C.A., Cuomo R.E., French C.B., Garland C.F., Gorham E.D., Grant W.B., Heaney R.P., Holick M.F., Hollis B.W., McDonnell S.L., et al. Sunlight and Vitamin D: Necessary for Public Health. J. Am. Coll. Nutr. 2015;34:359–365. doi: 10.1080/07315724.2015.1039866.
    1. Heaney R.P. Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr. Rev. 2014;72:48–54. doi: 10.1111/nure.12090.
    1. Heaney R.P., Vieth R., Hollis B.W. Vitamin D Efficacy and Safety. Arch. Intern. Med. 2011;171:266. doi: 10.1001/archinternmed.2010.528.
    1. Grant W.B., Whiting S.J., Schwalfenberg G.K., Genuis S.J., Kimball S.M. Estimated economic benefit of increasing 25-hydroxyvitamin D concentrations of Canadians to or above 100 nmol/L. Derm. Endocrinol. 2016;8:e1248324. doi: 10.1080/19381980.2016.1248324.
    1. Cangoz S., Chang Y.-Y., Chempakaseril S.J., Guduru R.C., Huynh L.M., John J.S., John S.T., Joseph M.E., Judge R., Kimmey R., et al. Vitamin D and type 2 diabetes mellitus. J. Clin. Pharm. Ther. 2013;38:81–84. doi: 10.1111/jcpt.12026.
    1. Pilz S., Gaksch M., Hartaigh B., Tomaschitz A., März W. Vitamin D in preventive medicine. Anticancer Res. 2015;35:1161–1170.
    1. Weinert L.S., Silveiro S.P. Maternal–Fetal Impact of Vitamin D Deficiency: A Critical Review. Matern. Child Health J. 2015;19:94–101. doi: 10.1007/s10995-014-1499-7.
    1. Mazahery H., Von Hurst P.R. Factors Affecting 25-Hydroxyvitamin D Concentration in Response to Vitamin D Supplementation. Nutrients. 2015;7:5111–5142. doi: 10.3390/nu7075111.
    1. Jones G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008;88:582S–586S. doi: 10.1093/ajcn/88.2.582S.
    1. Sath S., Government Medical College. Shah S.R., Rafiq S.N., Jeelani I. Hypervitaminosis D in Kashmiri Population: A Case Series of 11 Patients. Int. J. Med. Sci. 2016;3:1–6. doi: 10.14445/23939117/IJMS-V3I2P101.
    1. Haq A., Wimalawansa S.J., Pludowski P., Al Anouti F. Clinical practice guidelines for vitamin D in the United Arab Emirates. J. Steroid Biochem. Mol. Biol. 2018;175:4–11. doi: 10.1016/j.jsbmb.2016.09.021.
    1. Fuss M., Pepersack T., Gillet C., Karmali R., Corvilain J. Calcium and vitamin D metabolism in granulomatous diseases. Clin. Rheumatol. 1992;11:28–36. doi: 10.1007/BF02207080.
    1. Playford E., Bansal A., Looke D., Whitby M., Hogan P. Hypercalcaemia and Elevated 1,25(OH)2D3Levels Associated with Disseminated Mycobacterium avium Infection in AIDS. J. Infect. 2001;42:157–158. doi: 10.1053/jinf.2000.0767.
    1. Thomas T., Roux C. All the articles derived from the panel discussions incorporate the most recent data in the field, in particular those documenting the importance of the vitamin D storage form. Jt. Bone Spine. 2012;79:S85. doi: 10.1016/S1297-319X(12)70012-X.
    1. Carlberg C., Haq A. The concept of the personal vitamin D response index. J. Steroid Biochem. Mol. Biol. 2018;175:12–17. doi: 10.1016/j.jsbmb.2016.12.011.
    1. Dziedzic E.A., Gąsior J.S., Tuzimek A., Dąbrowski M., Jankowski P. The Association between Serum Vitamin D Concentration and New Inflammatory Biomarkers—Systemic Inflammatory Index (SII) and Systemic Inflammatory Response (SIRI)—In Patients with Ischemic Heart Disease. Nutrients. 2022;14:4212. doi: 10.3390/nu14194212.
    1. Carlberg C. Molecular Approaches for Optimizing Vitamin D Supplementation. Vitam. Horm. 2016;100:255–271. doi: 10.1016/bs.vh.2015.10.001.
    1. Quesada-Gomez J.M., Lopez-Miranda J., Entrenas-Castillo M., Casado-Díaz A., Solans X.N.Y., Mansur J.L., Bouillon R. Vitamin D Endocrine System and COVID-19: Treatment with Calcifediol. Nutrients. 2022;14:2716. doi: 10.3390/nu14132716.
    1. Pérez-Castrillón J.L., Dueñas-Laita A., Brandi M.L., Jódar E., del Pino-Montes J., Quesada-Gómez J.M., Castro F.C., Gómez-Alonso C., López L.G., Martínez J.M.O., et al. Calcifediol is superior to cholecalciferol in improving vitamin D status in postmenopausal women: A randomized trial. J. Bone Miner. Res. 2021;36:1967–1978. doi: 10.1002/jbmr.4387.
    1. Maghbooli Z., Sahraian M.A., Jamalimoghadamsiahkali S., Asadi A., Zarei A., Zendehdel A., Varzandi T., Mohammadnabi S., Alijani N., Karimi M., et al. Treatment with 25-Hydroxyvitamin D3 (Calcifediol) Is Associated with a Reduction in the Blood Neutrophil-to-Lymphocyte Ratio Marker of Disease Severity in Hospitalized Patients with COVID-19: A Pilot Multicenter, Randomized, Placebo-Controlled, Double-Blinded Clinical Trial. Endocr. Pr. 2021;27:1242–1251. doi: 10.1016/j.eprac.2021.09.016.
    1. Entrenas Castillo M.E., Entrenas Costa L.M.E., Vaquero Barrios J.M.V., Alcalá Díaz J.F.A., López Miranda J.L., Bouillon R., Quesada Gomez J.M.Q. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020;203:105751. doi: 10.1016/j.jsbmb.2020.105751.
    1. Maghbooli Z., Sahraian M.A., Ebrahimi M., Pazoki M., Kafan S., Tabriz H.M., Hadadi A., Montazeri M., Nasiri M., Shirvani A., et al. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PLoS ONE. 2020;15:e0239799. doi: 10.1371/journal.pone.0239799.
    1. Grant W.B., Al Anouti F., Boucher B.J., Dursun E., Gezen-Ak D., Jude E.B., Karonova T., Pludowski P. A Narrative Review of the Evidence for Variations in Serum 25-Hydroxyvitamin D Concentration Thresholds for Optimal Health. Nutrients. 2022;14:639. doi: 10.3390/nu14030639.
    1. Lopez-Caleya J.F., Ortega-Valín L., Fernández-Villa T., Delgado-Rodríguez M., Martín-Sánchez V., Molina A.J. The role of calcium and vitamin D dietary intake on risk of colorectal cancer: Systematic review and meta-analysis of case–control studies. Cancer Causes Control. 2022;33:167–182. doi: 10.1007/s10552-021-01512-3.
    1. Shah K., Varna V.P., Sharma U., Mavalankar D. Does vitamin D supplementation reduce COVID-19 severity?: A systematic review. QJM. 2022;115:665–672. doi: 10.1093/qjmed/hcac040.
    1. Kaufman H.W., Niles J.K., Kroll M.H., Bi C., Holick M.F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE. 2020;15:e0239252. doi: 10.1371/journal.pone.0239252.
    1. Hastie C.E., Mackay D.F., Ho F., Celis-Morales C.A., Katikireddi S.V., Niedzwiedz C.L., Jani B.D., Welsh P., Mair F.S., Gray S.R., et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab. Syndr. Clin. Res. Rev. 2020;14:561–565. doi: 10.1016/j.dsx.2020.04.050.
    1. Dror A.A., Morozov N., Daoud A., Namir Y., Yakir O., Shachar Y., Lifshitz M., Segal E., Fisher L., Mizrachi M., et al. Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PLoS ONE. 2022;17:e0263069. doi: 10.1371/journal.pone.0263069.
    1. Hong M., Xiong T., Huang J., Wu Y., Lin L., Zhang Z., Huang L., Gao D., Wang H., Kang C., et al. Association of vitamin D supplementation with respiratory tract infection in infants. Matern. Child. Nutr. 2020;16:e12987. doi: 10.1111/mcn.12987.
    1. Jolliffe D.A., Camargo C.A., Jr., Sluyter J.D., Aglipay M., Aloia J.F., Ganmaa D., Bergman P., Bischoff-Ferrari H.A., Borzutzky A., Damsgaard C.T., et al. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9:276–292. doi: 10.1016/S2213-8587(21)00051-6.
    1. Kazemi A., Mohammadi V., Aghababaee S.K., Golzarand M., Clark C.C.T., Babajafari S. Association of Vitamin D Status with SARS-CoV-2 Infection or COVID-19 Severity: A Systematic Review and Meta-analysis. Adv. Nutr. Int. Rev. J. 2021;12:1636–1658. doi: 10.1093/advances/nmab012.
    1. AlSafar H., Grant W.B., Hijazi R., Uddin M., Alkaabi N., Tay G., Mahboub B., Al Anouti F. COVID-19 Disease Severity and Death in Relation to Vitamin D Status among SARS-CoV-2-Positive UAE Residents. Nutrients. 2021;13:1714. doi: 10.3390/nu13051714.
    1. Bianconi V., Mannarino M.R., Figorilli F., Cosentini E., Batori G., Marini E., Lombardini R., Gargaro M., Fallarino F., Scarponi A.M., et al. Prevalence of vitamin D deficiency and its prognostic impact on patients hospitalized with COVID-19. Nutrition. 2021;91–92:111408. doi: 10.1016/j.nut.2021.111408.
    1. Ebrahimzadeh A., Mohseni S., Narimani B., Ebrahimzadeh A., Kazemi S., Keshavarz F., Yaghoubi M.J., Milajerdi A. Association between vitamin D status and risk of covid-19 in-hospital mortality: A systematic review and meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2023;63:5033–5043. doi: 10.1080/10408398.2021.2012419.
    1. Brown R., Sakar A. Vitamin D Deficiency: A Factor in COVID-19, Progression, Severity and Mortality?- An Urgent Call for Research. [(accessed on 5 March 2023)];Mitofit Arch. 2020 Available online: .
    1. Zhang R., Zhang Y., Liu Z., Pei Y., Xu P., Chong W., Hai Y., He L., He Y., Yu J., et al. Association between Vitamin D Supplementation and Cancer Mortality: A Systematic Review and Meta-Analysis. Cancers. 2022;14:3717. doi: 10.3390/cancers14153717.
    1. Guo Z., Huang M., Fan D., Hong Y., Zhao M., Ding R., Cheng Y., Duan S. Association between vitamin D supplementation and cancer incidence and mortality: A trial sequential meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022:1–15. doi: 10.1080/10408398.2022.2056574.
    1. Grant W.B., Boucher B.J. Randomized controlled trials of vitamin D and cancer incidence: A modeling study. PLoS ONE. 2017;12:e0176448. doi: 10.1371/journal.pone.0176448.
    1. de Souza W.D.F., da Fonseca D.M., Sartori A. COVID-19 and Multiple Sclerosis: A Complex Relationship Possibly Aggravated by Low Vitamin D Levels. Cells. 2023;12:684. doi: 10.3390/cells12050684.
    1. Akhtar A., Neupane R., Singh A., Khan M. Radiological Association Between Multiple Sclerosis Lesions and Serum Vitamin D Levels. Cureus. 2022;14:e31824. doi: 10.7759/cureus.31824.
    1. Merzon E., Tworowski D., Gorohovski A., Vinker S., Cohen A.G., Green I., Frenkel-Morgenstern M. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 2020;287:3693–3702. doi: 10.1111/febs.15495.
    1. Jain A., Chaurasia R., Sengar N.S., Singh M., Mahor S., Narain S. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci. Rep. 2020;10:20191. doi: 10.1038/s41598-020-77093-z.
    1. Quraishi S.A., Bittner E.A., Blum L., Hutter M.M., Camargo C.A., Jr. Association Between Preoperative 25-Hydroxyvitamin D Level and Hospital-Acquired Infections Following Roux-en-Y Gastric Bypass Surgery. JAMA Surg. 2014;149:112–118. doi: 10.1001/jamasurg.2013.3176.
    1. Dancer R.C.A., Parekh D., Lax S., D’Souza V., Zheng S., Bassford C.R., Park D., Bartis D.G., Mahida R., Turner A.M., et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS) Thorax. 2015;70:617–624. doi: 10.1136/thoraxjnl-2014-206680.
    1. Pilz S., Trummer C., Theiler-Schwetz V., Grübler M.R., Verheyen N.D., Odler B., Karras S.N., Zittermann A., März W. Critical Appraisal of Large Vitamin D Randomized Controlled Trials. Nutrients. 2022;14:303. doi: 10.3390/nu14020303.
    1. Garland C.F., Kim J.J., Mohr S.B., Gorham E.D., Grant W.B., Giovannucci E.L., Baggerly L., Hofflich H., Ramsdell J.W., Zeng K., et al. Meta-analysis of All-Cause Mortality According to Serum 25-Hydroxyvitamin D. Am. J. Public Health. 2014;104:e43–e50. doi: 10.2105/AJPH.2014.302034.
    1. Manson J.E., Cook N.R., Lee I.M., Christen W., Bassuk S.S., Mora S., Gibson H., Gordon D., Copeland T., D'Agostino D., et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2018;380:33–44. doi: 10.1056/NEJMoa1809944.
    1. Infante M., Ricordi C., Baidal D.A., Alejandro R., Lanzoni G., Sears B., Caprio M., Fabbri A. VITAL study: An incomplete picture? Eur. Rev. Med. Pharmacol. Sci. 2019;23:3142–3147. doi: 10.26355/eurrev_201904_17599.
    1. Wimalawansa S.J. IOM recommendations vs. vitamin D guidelines applicable to the rest of the world; Proceedings of the 5th International Conference on Vitamin D; Abu Dhabi, United Arab Emirates. 14 March 2017; p. 9.
    1. Grant W.B., Cross H.S., Garland C.F., Gorham E.D., Moan J., Peterlik M., Porojnicu A.C., Reichrath J., Zittermann A. Estimated benefit of increased vitamin D status in reducing the economic burden of disease in western Europe. Prog. Biophys. Mol. Biol. 2009;99:104–113. doi: 10.1016/j.pbiomolbio.2009.02.003.
    1. Al Nozha O.M. Vitamin D and Extra-Skeletal Health: Causality or Consequence. Int. J. Health Sci. 2016;10:443–452. doi: 10.12816/0048739.
    1. Body J.-J., Bergmann P., Boonen S., Devogelaer J.-P., Gielen E., Goemaere S., Kaufman J.-M., Rozenberg S., Reginster J.-Y. Extraskeletal benefits and risks of calcium, vitamin D and anti-osteoporosis medications. Osteoporos. Int. 2012;23((Suppl. S1)):S1–S23. doi: 10.1007/s00198-011-1891-8.
    1. Cianferotti L., Bertoldo F., Bischoff-Ferrari H.A., Bruyere O., Cooper C., Cutolo M., Kanis J.A., Kaufman J.-M., Reginster J.-Y., Rizzoli R., et al. Vitamin D supplementation in the prevention and management of major chronic diseases not related to mineral homeostasis in adults: Research for evidence and a scientific statement from the European society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO) Endocrine. 2017;56:245–261. doi: 10.1007/s12020-017-1290-9.
    1. Chiu K.C., Chu A., Go V.L.W., Saad M.F. Hypovitaminosis D is associated with insulin resistance and β cell dysfunction. Am. J. Clin. Nutr. 2004;79:820–825. doi: 10.1093/ajcn/79.5.820.
    1. Gupta A.K., Brashear M.M., Johnson W.D. Prediabetes and Prehypertension in Healthy Adults Are Associated With Low Vitamin D Levels. Diabetes Care. 2011;34:658–660. doi: 10.2337/dc10-1829.
    1. A Hamed E., Abu Faddan N.H., Elhafeez H.A.A., Sayed D. Parathormone-25(OH)-vitamin D axis and bone status in children and adolescents with type 1 diabetes mellitus. Pediatr. Diabetes. 2011;12:536–546. doi: 10.1111/j.1399-5448.2010.00739.x.
    1. Munger K.L., Zhang S.M., O’Reilly E., Hernán M.A., Olek M.J., Willett W.C., Ascherio A. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62:60–65. doi: 10.1212/01.WNL.0000101723.79681.38.
    1. Merlino L.A., Curtis J., Mikuls T.R., Cerhan J.R., Criswell L.A., Saag K.G. Vitamin D intake is inversely associated with rheumatoid arthritis: Results from the Iowa Women's Health Study. Arthritis Rheum. 2004;50:72–77. doi: 10.1002/art.11434.
    1. Feskanich D., Willett W.C., A Colditz G. Calcium, vitamin D, milk consumption, and hip fractures: A prospective study among postmenopausal women. Am. J. Clin. Nutr. 2003;77:504–511. doi: 10.1093/ajcn/77.2.504.
    1. Meier C., Woitge H.W., Witte K., Lemmer B., Seibel M.J. Supplementation With Oral Vitamin D3and Calcium During Winter Prevents Seasonal Bone Loss: A Randomized Controlled Open-Label Prospective Trial. J. Bone Miner. Res. 2004;19:1221–1230. doi: 10.1359/JBMR.040511.
    1. Akdere G., Efe B., Sisman P., Yorulmaz G. The relationship between vitamin D level and organ-specific autoimmune disorders in newly diagnosed type I diabetes mellitus. Bratisl. Med. J. 2018;119:544–549. doi: 10.4149/BLL_2018_098.
    1. Lieberman D.A., Prindiville S., Weiss D.G., Willett W. Risk factors for advanced colonic neoplasia and hyperplastic polyps in asymptomatic individuals. JAMA. 2003;290:2959–2967. doi: 10.1001/jama.290.22.2959.
    1. McCullough M.L., Robertson A.S., Rodriguez C., Jacobs E.J., Chao A., Jonas C., Calle E.E., Willett W.C., Thun M.J. Calcium, vitamin D, dairy products, and risk of colorectal cancer in the Cancer Prevention Study II Nutrition Cohort (United States) Cancer Causes Control. 2003;14:1–12. doi: 10.1023/A:1022591007673.
    1. Tretli S., Schwartz G.G., Torjesen P.A., Robsahm T.E. Serum levels of 25-hydroxyvitamin D and survival in Norwegian patients with cancer of breast, colon, lung, and lymphoma: A population-based study. Cancer Causes Control. 2012;23:363–370. doi: 10.1007/s10552-011-9885-6.
    1. Consiglio M., Destefanis M., Morena D., Foglizzo V., Forneris M., Pescarmona G., Silvagno F. The Vitamin D Receptor Inhibits the Respiratory Chain, Contributing to the Metabolic Switch that Is Essential for Cancer Cell Proliferation. PLoS ONE. 2014;9:e115816. doi: 10.1371/journal.pone.0115816.
    1. Rothen J.-P., Rutishauser J., Walter P.N., Hersberger K.E., Arnet I. Vitamin D oral intermittent treatment (DO IT) study, a randomized clinical trial with individual loading regimen. Sci. Rep. 2021;11:18746. doi: 10.1038/s41598-021-97417-x.
    1. Zheng Y.T., Cui Q.Q., Hong Y.M., Yao W.G. A Meta-Analysis of High Dose, Intermittent Vitamin D Supplementation among Older Adults. PLoS ONE. 2015;10:e0115850. doi: 10.1371/journal.pone.0115850.
    1. Solís F., Salas A.A., Bartolomé M.J.L., Ballestín S.S. The Effects of Vitamin D Supplementation in COVID-19 Patients: A Systematic Review. Int. J. Mol. Sci. 2022;23:12424. doi: 10.3390/ijms232012424.
    1. Greer F.R. 25-Hydroxyvitamin D: Functional outcomes in infants and young children. Am. J. Clin. Nutr. 2008;88:529S–533S. doi: 10.1093/ajcn/88.2.529S.
    1. Murai I.H., Fernandes A.L., Sales L.P., Pinto A.J., Goessler K.F., Duran C.S.C., Silva C.B.R., Franco A.S., Macedo M.B., Dalmolin H.H.H., et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients with Moderate to Severe COVID-19: A randomized clinical trial. JAMA. 2021;325:1053–1060. doi: 10.1001/jama.2020.26848.
    1. van Helmond N., Brobyn T.L., LaRiccia P.J., Cafaro T., Hunter K., Roy S., Bandomer B., Ng K.Q., Goldstein H., Mitrev L.V., et al. Vitamin D3 Supplementation at 5000 IU Daily for the Prevention of Influenza-like Illness in Healthcare Workers: A Pragmatic Randomized Clinical Trial. Nutrients. 2022;15:180. doi: 10.3390/nu15010180.
    1. Nguyen H.S., Van Tran K., Chen S.-Y., Tam K.-W. A Systematic Review and Meta-Analysis of Randomized Controlled Trials of the Effects of Vitamin D Supplementation on Children and Young Adults with HIV Infection. J. Nutr. 2023;153:138–147. doi: 10.1016/j.tjnut.2022.10.008.
    1. Binkley N., Ramamurthy R., Krueger D. Low Vitamin D Status: Definition, Prevalence, Consequences, and Correction. Rheum. Dis. Clin. N. Am. 2012;38:45–59. doi: 10.1016/j.rdc.2012.03.006.
    1. Hollis B.W., Wagner C.L. Clinical review: The Role of the Parent Compound Vitamin D with Respect to Metabolism and Function: Why Clinical Dose Intervals Can Affect Clinical Outcomes. J. Clin. Endocrinol. Metab. 2013;98:4619–4628. doi: 10.1210/jc.2013-2653.
    1. Kato S., Nishimura K.-I., Mori J.-I. Update on recent progress in vitamin D research. Molecular basis of epigenetic regulation by vitamin D via its nuclear receptor. Clin. Calcium. 2017;27:1543–1550.
    1. Hossein-Nezhad A., Holick M.F. Vitamin D for Health: A Global Perspective. Mayo Clin. Proc. 2013;88:720–755. doi: 10.1016/j.mayocp.2013.05.011.

Source: PubMed

3
Abonner