The Role of Matrix Metalloproteinases in Endometriosis: A Potential Target

Junya Ke, Jiangfeng Ye, Mingqing Li, Zhiling Zhu, Junya Ke, Jiangfeng Ye, Mingqing Li, Zhiling Zhu

Abstract

Endometriosis is a condition that is influenced by hormones and involves stroma and glands being found outside the uterus; there are increases in proliferation, invasion, internal bleeding, and fibrosis. Matrix metalloproteinases (MMPs) have been suggested to be crucial in the progression of invasion. The MMP family includes calcium-dependent zinc-containing endopeptidases, some of which not only affect the process of cell invasion but also participate in other physiological and pathological processes, such as angiogenesis and fibrosis. MMPs act as downstream-targeted molecules and their expression can be regulated by numerous factors such as estrogen, oxidative stress, cytokines, and environmental contaminants. Given their unique roles in endometriosis, MMPs may become effective biomarkers of endometriosis in the future. In the present review, we summarize the current literature on MMPs regarding their classification, function, and potential value for endometriosis, which may contribute to our knowledge of MMPs and MMP-targeted interventions.

Keywords: endometriosis; function; matrix metalloproteinases; potential value.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Multiple factors regulate MMP activities. After exposure to certain environmental contaminants (e.g., PCB104 and HCB), the expression of MMPs (MMP3, 10, 2, and 9) is markedly enhanced. IL-37 upregulates the expression of MMPs via multiple signaling pathways. IL-2 and IL-27 were found to maintain the balance of IL-10 and IFN-γ, promoting MMP2 and MMP9 expression and then inducing cell invasion and proliferation. IL-34 binds to CSF1R, which activated the JAK/STAT6 pathway in an autocrine manner. Estrogen induces MMP9 expression via the OPN. CIC3 and STIR1 improve the activity of MMP9, while miR-33b inhibits it. AQP1 promotes the expression of MMP2 and 9 via the Wnt signaling pathway. The COX2/PGE2/pAKT axis, as well as the leptin/JAK2/STAT3 axis, serves as a significant regulator in increasing MMP2 expression. Additionally, MMP2 is a target of FGA and LXA4. MMP7 is a downstream component in the EGFR-mediated signaling pathway. Iron markedly increases EMT and MMP2/9 activities in endometriosis.
Figure 2
Figure 2
The role of MMPs in the pathophysiology of endometriosis.

References

    1. Samimi M., Pourhanifeh M.H., Mehdizadehkashi A., Eftekhar T., Asemi Z. The role of inflammation, oxidative stress, angiogenesis, and apoptosis in the pathophysiology of endometriosis: Basic science and new insights based on gene expression. J. Cell. Physiol. 2019;234:19384–19392. doi: 10.1002/jcp.28666.
    1. Farland L.V., Prescott J., Sasamoto N., Tobias D.K., Gaskins A.J., Stuart J.J., Carusi D.A., Chavarro J.E., Horne A.W., Rich-Edwards J.W., et al. Endometriosis and Risk of Adverse Pregnancy Outcomes. Obstet. Gynecol. 2019;134:527–536. doi: 10.1097/AOG.0000000000003410.
    1. Zondervan K.T., Becker C.M., Koga K., Missmer S.A., Taylor R.N., Vigano P. Endometriosis. Nat. Rev. Dis. Primers. 2018;4:9. doi: 10.1038/s41572-018-0008-5.
    1. Tsang K.Y., Cheung M.C., Chan D., Cheah K.S. The developmental roles of the extracellular matrix: Beyond structure to regulation. Cell Tissue Res. 2010;339:93–110. doi: 10.1007/s00441-009-0893-8.
    1. Gross J., Lapiere C.M. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. USA. 1962;48:1014–1022. doi: 10.1073/pnas.48.6.1014.
    1. Pitsos M., Kanakas N. The role of matrix metalloproteinases in the pathogenesis of endometriosis. Reprod. Sci. 2009;16:717–726. doi: 10.1177/1933719109333661.
    1. Kapoor C., Vaidya S., Wadhwan V., Kaur G., Pathak A. Seesaw of matrix metalloproteinases (MMPs) J. Cancer Res. Ther. 2016;12:28–35. doi: 10.4103/0973-1482.157337.
    1. Quintero-Fabian S., Arreola R., Becerril-Villanueva E., Torres-Romero J.C., Arana-Argaez V., Lara-Riegos J., Ramirez-Camacho M.A., Alvarez-Sanchez M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019;9:1370. doi: 10.3389/fonc.2019.01370.
    1. Balkowiec M., Maksym R.B., Wlodarski P.K. The bimodal role of matrix metalloproteinases and their inhibitors in etiology and pathogenesis of endometriosis (Review) Mol. Med. Rep. 2018;18:3123–3136. doi: 10.3892/mmr.2018.9303.
    1. Garcia-Fernandez N., Jacobs-Cacha C., Mora-Gutierrez J.M., Vergara A., Orbe J., Soler M.J. Matrix Metalloproteinases in Diabetic Kidney Disease. J. Clin. Med. 2020;9:472. doi: 10.3390/jcm9020472.
    1. Stawowczyk M., Wellenstein M.D., Lee S.B., Yomtoubian S., Durrans A., Choi H., Narula N., Altorki N.K., Gao D., Mittal V. Matrix Metalloproteinase 14 promotes lung cancer by cleavage of Heparin-Binding EGF-like Growth Factor. Neoplasia. 2017;19:55–64. doi: 10.1016/j.neo.2016.11.005.
    1. Wang X., Khalil R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv. Pharmacol. 2018;81:241–330. doi: 10.1016/bs.apha.2017.08.002.
    1. Fischer T., Riedl R. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Molecules. 2019;24:2265. doi: 10.3390/molecules24122265.
    1. Agren M.S., Mirastschijski U., Karlsmark T., Saarialho-Kere U.K. Topical synthetic inhibitor of matrix metalloproteinases delays epidermal regeneration of human wounds. Exp. Dermatol. 2001;10:337–348. doi: 10.1034/j.1600-0625.2001.100506.x.
    1. Hao J.L., Nagano T., Nakamura M., Kumagai N., Mishima H., Nishida T. Effect of galardin on collagen degradation by Pseudomonas aeruginosa. Exp. Eye Res. 1999;69:595–601. doi: 10.1006/exer.1999.0755.
    1. Gatto C., Rieppi M., Borsotti P., Innocenti S., Ceruti R., Drudis T., Scanziani E., Casazza A.M., Taraboletti G., Giavazzi R. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1999;5:3603–3607.
    1. Lockhart A.C., Braun R.D., Yu D., Ross J.R., Dewhirst M.W., Humphrey J.S., Thompson S., Williams K.M., Klitzman B., Yuan F., et al. Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003;9:586–593.
    1. Egeblad M., Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002;2:161–174. doi: 10.1038/nrc745.
    1. Zakiyanov O., Kalousova M., Zima T., Tesar V. Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal. Kidney Blood Press. Res. 2019;44:298–330. doi: 10.1159/000499876.
    1. Rai G.P., Baird S.K. Tissue inhibitor of matrix metalloproteinase-3 has both anti-metastatic and anti-tumourigenic properties. Clin. Exp. Metastasis. 2020;37:69–76. doi: 10.1007/s10585-019-10017-y.
    1. Fujii T., Duarte S., Lee E., Ke B., Busuttil R.W., Coito A.J. Tissue Inhibitor of Metalloproteinase 3 Deficiency Disrupts the Hepatocyte E-Cadherin/beta-Catenin Complex and Induces Cell Death in Liver Ischemia/Reperfusion Injury. Liver Transplant. 2020;26:113–126. doi: 10.1002/lt.25667.
    1. Opdenakker G., Abu El-Asrar A. Metalloproteinases mediate diabetes-induced retinal neuropathy and vasculopathy. Cell. Mol. Life Sci. 2019;76:3157–3166. doi: 10.1007/s00018-019-03177-3.
    1. Rodgers W.H., Osteen K.G., Matrisian L.M., Navre M., Giudice L.C., Gorstein F. Expression and localization of matrilysin, a matrix metalloproteinase, in human endometrium during the reproductive cycle. Am. J. Obstet. Gynecol. 1993;168:253–260. doi: 10.1016/S0002-9378(12)90922-9.
    1. Sui X., Li Y., Sun Y., Li C., Li X., Zhang G. Expression and significance of autophagy genes LC3, Beclin1 and MMP-2 in endometriosis. Exp. Ther. Med. 2018;16:1958–1962. doi: 10.3892/etm.2018.6362.
    1. Szymanowski K., Mikolajczyk M., Wirstlein P., Dera-Szymanowska A. Matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of matrix metalloproteinases (TIMP-1) and transforming growth factor-beta2 (TGF-beta2) expression in eutopic endometrium of women with peritoneal endometriosis. Ann. Agric. Environ. Med. 2016;23:649–653. doi: 10.5604/12321966.1226861.
    1. Kodarahmian M., Amidi F., Moini A., Kashani L., Shabani Nashtaei M., Pazhohan A., Bahramrezai M., Berenjian S., Sobhani A. The modulating effects of Resveratrol on the expression of MMP-2 and MMP-9 in endometriosis women: A randomized exploratory trial. Off. J. Int. Soc. Gynecol. Endocrinol. 2019;35:719–726. doi: 10.1080/09513590.2019.1576612.
    1. Borghese B., Mondon F., Noël J.C., Fayt I., Mignot T.M., Vaiman D., Chapron C. Gene expression profile for ectopic versus eutopic endometrium provides new insights into endometriosis oncogenic potential. Mol. Endocrinol. 2008;22:2557–2562. doi: 10.1210/me.2008-0322.
    1. Pino M., Galleguillos C., Torres M., Sovino H., Fuentes A., Boric M.A., Johnson M.C. Association between MMP1 and MMP9 activities and ICAM1 cleavage induced by tumor necrosis factor in stromal cell cultures from eutopic endometria of women with endometriosis. Reproduction. 2009;138:837–847. doi: 10.1530/REP-09-0196.
    1. Shan K., Ying W., Jian-Hui Z., Wei G., Na W., Yan L. The function of the SNP in the MMP1 and MMP3 promoter in susceptibility to endometriosis in China. Mol. Hum. Reprod. 2005;11:423–427. doi: 10.1093/molehr/gah177.
    1. Borghese B., Chiche J.D., Vernerey D., Chenot C., Mir O., Bijaoui G., Bonaiti-Pellie C., Chapron C. Genetic polymorphisms of matrix metalloproteinase 12 and 13 genes are implicated in endometriosis progression. Hum. Reprod. 2008;23:1207–1213. doi: 10.1093/humrep/den007.
    1. Laudanski P., Szamatowicz J., Ramel P. Matrix metalloproteinase-13 and membrane type-1 matrix metalloproteinase in peritoneal fluid of women with endometriosis. Gynecol. Endocrinol. 2005;21:106–110. doi: 10.1080/09513590500154043.
    1. Weigel M.T., Kramer J., Schem C., Wenners A., Alkatout I., Jonat W., Maass N., Mundhenke C. Differential expression of MMP-2, MMP-9 and PCNA in endometriosis and endometrial carcinoma. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012;160:74–78. doi: 10.1016/j.ejogrb.2011.09.040.
    1. Ueda M., Yamashita Y., Takehara M., Terai Y., Kumagai K., Ueki K., Kanda K., Hung Y.C., Ueki M. Gene expression of adhesion molecules and matrix metalloproteinases in endometriosis. Off. J. Int. Soc. Gynecol. Endocrinol. 2002;16:391–402. doi: 10.1080/gye.16.5.391.402.
    1. Uzan C., Cortez A., Dufournet C., Fauvet R., Siffroi J.P., Daraï E. Eutopic endometrium and peritoneal, ovarian and bowel endometriotic tissues express a different profile of matrix metalloproteinases-2, -3 and -11, and of tissue inhibitor metalloproteinases-1 and -2. Virchows Arch. 2004;445:603–609. doi: 10.1007/s00428-004-1117-y.
    1. Luddi A., Marrocco C., Governini L., Semplici B., Pavone V., Luisi S., Petraglia F., Piomboni P. Expression of Matrix Metalloproteinases and Their Inhibitors in Endometrium: High Levels in Endometriotic Lesions. Int. J. Mol. Sci. 2020;21:2840. doi: 10.3390/ijms21082840.
    1. Chung H.W., Lee J.Y., Moon H.S., Hur S.E., Park M.H., Wen Y., Polan M.L. Matrix metalloproteinase-2, membranous type 1 matrix metalloproteinase, and tissue inhibitor of metalloproteinase-2 expression in ectopic and eutopic endometrium. Fertil. Steril. 2002;78:787–795. doi: 10.1016/S0015-0282(02)03322-8.
    1. Jana S., Chatterjee K., Ray A.K., DasMahapatra P., Swarnakar S. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis. PLoS ONE. 2016;11:e0163540. doi: 10.1371/journal.pone.0163540.
    1. Huang H.F., Hong L.H., Tan Y., Sheng J.Z. Matrix metalloproteinase 2 is associated with changes in steroid hormones in the sera and peritoneal fluid of patients with endometriosis. Fertil. Steril. 2004;81:1235–1239. doi: 10.1016/j.fertnstert.2003.10.027.
    1. Paul S., Sharma A.V., Mahapatra P.D., Bhattacharya P., Reiter R.J., Swarnakar S. Role of melatonin in regulating matrix metalloproteinase-9 via tissue inhibitors of metalloproteinase-1 during protection against endometriosis. J. Pineal Res. 2008;44:439–449. doi: 10.1111/j.1600-079X.2007.00547.x.
    1. Bostanci Durmus A., Dincer Cengiz S., Yilmaz H., Candar T., Gursoy A.Y., Sinem Caglar G. The levels of matrix metalloproteinase-9 and neutrophil gelatinase-associated lipocalin in different stages of endometriosis. J. Inst. Obstet. Gynaecol. 2019;39:991–995. doi: 10.1080/01443615.2019.1584889.
    1. Jana S., Paul S., Swarnakar S. Curcumin as anti-endometriotic agent: Implication of MMP-3 and intrinsic apoptotic pathway. Biochem. Pharmacol. 2012;83:797–804. doi: 10.1016/j.bcp.2011.12.030.
    1. Lv X., Chen P., Liu W. Down regulation of MiR-93 contributes to endometriosis through targeting MMP3 and VEGFA. Am. J. Cancer Res. 2015;5:1706–1717.
    1. Vallvé-Juanico J., López-Gil C., Ponomarenko J., Melnychuk T., Castellví J., Ballesteros A., Colás E., Gil-Moreno A., Santamaria Costa X. External validation of putative biomarkers in eutopic endometrium of women with endometriosis using NanoString technology. J. Assist. Reprod. Genet. 2020;37:2981–2987. doi: 10.1007/s10815-020-01965-6.
    1. Feng X., Qi L., Xu X., Feng Y., Gong X., Aili A., Chen Y., Xue Z., Xue J., Tong X. Analysis of differences in the transcriptomic profiles of eutopic and ectopic endometriums in women with ovarian endometriosis. PeerJ. 2021;9:e11045. doi: 10.7717/peerj.11045.
    1. Chatterjee K., Jana S., DasMahapatra P., Swarnakar S. EGFR-mediated matrix metalloproteinase-7 up-regulation promotes epithelial-mesenchymal transition via ERK1-AP1 axis during ovarian endometriosis progression. FASEB J. 2018;32:4560–4572. doi: 10.1096/fj.201701382RR.
    1. Itoh H., Mogami H., Bou Nemer L., Word L., Rogers D., Miller R., Word R.A. Endometrial stromal cell attachment and matrix homeostasis in abdominal wall endometriomas. Hum. Reprod. 2018;33:280–291. doi: 10.1093/humrep/dex371.
    1. Gaetje R., Holtrich U., Engels K., Kourtis K., Cikrit E., Kissler S., Rody A., Karn T., Kaufmann M. Expression of membrane-type 5 matrix metalloproteinase in human endometrium and endometriosis. Gynecol. Endocrinol. 2007;23:567–573. doi: 10.1080/09513590701556921.
    1. Guan Y.T., Huang Y.Q., Wu J.B., Deng Z.Q., Wang Y., Lai Z.Y., Wang H.B., Sun X.X., Zhu Y.L., Du M.M., et al. Overexpression of chloride channel-3 is associated with the increased migration and invasion ability of ectopic endometrial cells from patients with endometriosis. Hum. Reprod. 2016;31:986–998. doi: 10.1093/humrep/dew034.
    1. Wang H.S., Tsai C.L., Chang P.Y., Chao A., Wu R.C., Chen S.H., Wang C.J., Yen C.F., Lee Y.S., Wang T.H. Positive associations between upregulated levels of stress-induced phosphoprotein 1 and matrix metalloproteinase-9 in endometriosis/adenomyosis. PLoS ONE. 2018;13:e0190573. doi: 10.1371/journal.pone.0190573.
    1. Yang W.W., Hong L., Xu X.X., Wang Q., Huang J.L., Jiang L. Regulation of miR-33b on endometriosis and expression of related factors. Eur. Rev. Med. Pharmacol. Sci. 2017;21:2027–2033.
    1. Chen Y., Li H., Cheng H.Y., Rui-Qiong M., Ye X., Cui H., Hong-Lan Z., Chang X.H. Fibrinogen alpha chain is up-regulated and affects the pathogenesis of endometriosis. Reprod. Biomed. Online. 2019;39:893–904. doi: 10.1016/j.rbmo.2019.07.002.
    1. Ahn J.H., Choi Y.S., Choi J.H. Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway. Mol. Hum. Reprod. 2015;21:792–802. doi: 10.1093/molehr/gav039.
    1. Shu C., Shu Y., Gao Y., Chi H., Han J. Inhibitory effect of AQP1 silencing on adhesion and angiogenesis in ectopic endometrial cells of mice with endometriosis through activating the Wnt signaling pathway. Cell Cycle. 2019;18:2026–2039. doi: 10.1080/15384101.2019.1637202.
    1. Chen S., Wu R.F., Su L., Zhou W.D., Zhu M.B., Chen Q.H. Lipoxin A4 regulates expression of the estrogen receptor and inhibits 17beta-estradiol induced p38 mitogen-activated protein kinase phosphorylation in human endometriotic stromal cells. Fertil. Steril. 2014;102:264–271. doi: 10.1016/j.fertnstert.2014.03.029.
    1. Wu R., Zhou W., Chen S., Shi Y., Su L., Zhu M., Chen Q., Chen Q. Lipoxin A4 suppresses the development of endometriosis in an ALX receptor-dependent manner via the p38 MAPK pathway. Br. J. Pharmacol. 2014;171:4927–4940. doi: 10.1111/bph.12816.
    1. Wu R.F., Huang Z.X., Ran J., Dai S.J., Lin D.C., Ng T.W., Chen Q.X., Chen Q.H. Lipoxin A4 Suppresses Estrogen-Induced Epithelial-Mesenchymal Transition via ALXR-Dependent Manner in Endometriosis. Reprod. Sci. 2018;25:566–578. doi: 10.1177/1933719117718271.
    1. Qiu X.M., Lai Z.Z., Ha S.Y., Yang H.L., Liu L.B., Wang Y., Shi J.W., Ruan L.Y., Ye J.F., Wu J.N., et al. IL-2 and IL-27 synergistically promote growth and invasion of endometriotic stromal cells by maintaining the balance of IFN-γ and IL-10 in endometriosis. Reproduction. 2020;159:251–260. doi: 10.1530/REP-19-0411.
    1. Lin K., Ma J., Peng Y., Sun M., Xu K., Wu R., Lin J. Autocrine Production of Interleukin-34 Promotes the Development of Endometriosis through CSF1R/JAK3/STAT6 signaling. Sci. Rep. 2019;9:16781. doi: 10.1038/s41598-019-52741-1.
    1. Jiang J., Yu K., Jiang Z., Xue M. IL-37 affects the occurrence and development of endometriosis by regulating the biological behavior of endometrial stromal cells through multiple signaling pathways. Biol. Chem. 2018;399:1325–1337. doi: 10.1515/hsz-2018-0254.
    1. Yang M., Jiang C., Chen H., Nian Y., Bai Z., Ha C. The involvement of osteopontin and matrix metalloproteinase- 9 in the migration of endometrial epithelial cells in patients with endometriosis. Reprod. Biol. Endocrinol. 2015;13:95. doi: 10.1186/s12958-015-0090-4.
    1. Woo J.H., Choi Y.S., Choi J.H. Iron-Storage Protein Ferritin Is Upregulated in Endometriosis and Iron Overload Contributes to a Migratory Phenotype. Biomedicines. 2020;8:454. doi: 10.3390/biomedicines8110454.
    1. Chiappini F., Sanchez M., Miret N., Cocca C., Zotta E., Ceballos L., Pontillo C., Bilotas M., Randi A. Exposure to environmental concentrations of hexachlorobenzene induces alterations associated with endometriosis progression in a rat model. Food Chem. Toxicol. 2019;123:151–161. doi: 10.1016/j.fct.2018.10.056.
    1. Hu T., Yao M., Fu X., Chen C., Wu R. Polychlorinated biphenyl 104 promotes migration of endometrial stromal cells in endometriosis. Toxicol. Lett. 2018;290:19–28. doi: 10.1016/j.toxlet.2018.03.009.
    1. Stejskalová A., Fincke V., Nowak M., Schmidt Y., Borrmann K., von Wahlde M.K., Schäfer S.D., Kiesel L., Greve B., Götte M. Collagen I triggers directional migration, invasion and matrix remodeling of stroma cells in a 3D spheroid model of endometriosis. Sci. Rep. 2021;11:4115. doi: 10.1038/s41598-021-83645-8.
    1. Rydlova M., Holubec L., Jr., Ludvikova M., Jr., Kalfert D., Franekova J., Povysil C., Ludvikova M. Biological activity and clinical implications of the matrix metalloproteinases. Anticancer Res. 2008;28:1389–1397.
    1. Thakur V., Bedogni B. The membrane tethered matrix metalloproteinase MT1-MMP at the forefront of melanoma cell invasion and metastasis. Pharmacol. Res. 2016;111:17–22. doi: 10.1016/j.phrs.2016.05.019.
    1. Wen X., Xiong Y., Jin L., Zhang M., Huang L., Mao Y., Zhou C., Qiao Y., Zhang Y. Bisphenol A Exposure Enhances Endometrial Stromal Cell Invasion and Has a Positive Association with Peritoneal Endometriosis. Reprod. Sci. 2020;27:704–712. doi: 10.1007/s43032-019-00076-7.
    1. Chiappini F., Bastón J.I., Vaccarezza A., Singla J.J., Pontillo C., Miret N., Farina M., Meresman G., Randi A. Enhanced cyclooxygenase-2 expression levels and metalloproteinase 2 and 9 activation by Hexachlorobenzene in human endometrial stromal cells. Biochem. Pharmacol. 2016;109:91–104. doi: 10.1016/j.bcp.2016.03.024.
    1. Yu J., Wang Y., Zhou W.H., Wang L., He Y.Y., Li D.J. Combination of estrogen and dioxin is involved in the pathogenesis of endometriosis by promoting chemokine secretion and invasion of endometrial stromal cells. Hum. Reprod. 2008;23:1614–1626. doi: 10.1093/humrep/den125.
    1. Pan H., Zhang P., Li J.R., Wang H., Jin M.F., Feng C., Huang H.F. c-Fos-Regulated Matrix Metalloproteinase-9 Expression is Involved in 17β-Estradiol-Promoted Invasion of Human Endometrial Stromal Cell. Curr. Mol. Med. 2016;16:266–275. doi: 10.2174/1566524016666160225153454.
    1. Zhang L., Xiong W., Li N., Liu H., He H., Du Y., Zhang Z., Liu Y. Estrogen stabilizes hypoxia-inducible factor 1α through G protein-coupled estrogen receptor 1 in eutopic endometrium of endometriosis. Fertil. Steril. 2017;107:439–447. doi: 10.1016/j.fertnstert.2016.11.008.
    1. Xiong W., Zhang L., Xiong Y., Liu H., Liu Y. Hypoxia Promotes Invasion of Endometrial Stromal Cells via Hypoxia-Inducible Factor 1α Upregulation-Mediated β-Catenin Activation in Endometriosis. Reprod. Sci. 2016;23:531–541. doi: 10.1177/1933719115607999.
    1. Liu H., Zhang Z., Xiong W., Zhang L., Xiong Y., Li N., He H., Du Y., Liu Y. Hypoxia-inducible factor-1α promotes endometrial stromal cells migration and invasion by upregulating autophagy in endometriosis. Reproduction. 2017;153:809–820. doi: 10.1530/REP-16-0643.
    1. Liu H., Zhang Z., Xiong W., Zhang L., Du Y., Liu Y., Xiong X. Long non-coding RNA MALAT1 mediates hypoxia-induced pro-survival autophagy of endometrial stromal cells in endometriosis. J. Cell Mol. Med. 2019;23:439–452. doi: 10.1111/jcmm.13947.
    1. Li W., Li S., Deng L., Yang S., Li M., Long S., Chen S., Lin F., Xiao L. Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT. Tumour Biol. 2015;36:6883–6889. doi: 10.1007/s13277-015-3381-7.
    1. Ding C., Luo J., Li L., Li S., Yang L., Pan H., Liu Q., Qin H., Chen C., Feng J. Gab2 facilitates epithelial-to-mesenchymal transition via the MEK/ERK/MMP signaling in colorectal cancer. J. Exp. Clin. Cancer Res. 2016;35:5. doi: 10.1186/s13046-015-0280-0.
    1. Vos M.C., Hollemans E., Ezendam N., Feijen H., Boll D., Pijlman B., van der Putten H., Klinkhamer P., van Kuppevelt T.H., van der Wurff A.A., et al. MMP-14 and CD44 in Epithelial-to-Mesenchymal Transition (EMT) in ovarian cancer. J. Ovarian Res. 2016;9:53. doi: 10.1186/s13048-016-0262-7.
    1. Chen C.M., Lin C.L., Chiou H.L., Hsieh S.C., Lin C.L., Cheng C.W., Hung C.H., Tsai J.P., Hsieh Y.H. Loss of endothelial cell-specific molecule 1 promotes the tumorigenicity and metastasis of prostate cancer cells through regulation of the TIMP-1/MMP-9 expression. Oncotarget. 2017;8:13886–13897. doi: 10.18632/oncotarget.14684.
    1. Kalluri R., Neilson E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Investig. 2003;112:1776–1784. doi: 10.1172/JCI200320530.
    1. Thiery J.P., Acloque H., Huang R.Y., Nieto M.A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–890. doi: 10.1016/j.cell.2009.11.007.
    1. Thiery J.P., Sleeman J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006;7:131–142. doi: 10.1038/nrm1835.
    1. Wang X., Nie J., Zhou Q., Liu W., Zhu F., Chen W., Mao H., Luo N., Dong X., Yu X. Downregulation of Par-3 expression and disruption of Par complex integrity by TGF-beta during the process of epithelial to mesenchymal transition in rat proximal epithelial cells. Biochim. Biophys. Acta. 2008;1782:51–59. doi: 10.1016/j.bbadis.2007.11.002.
    1. Karamanou K., Franchi M., Vynios D., Brézillon S. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin. Cancer Biol. 2020;62:125–133. doi: 10.1016/j.semcancer.2019.08.003.
    1. D’Amico G., Munoz-Felix J.M., Pedrosa A.R., Hodivala-Dilke K.M. “Splitting the matrix”: Intussusceptive angiogenesis meets MT1-MMP. EMBO Mol. Med. 2020;12:e11663. doi: 10.15252/emmm.201911663.
    1. Mazor R., Alsaigh T., Shaked H., Altshuler A.E., Pocock E.S., Kistler E.B., Karin M., Schmid-Schonbein G.W. Matrix metalloproteinase-1-mediated up-regulation of vascular endothelial growth factor-2 in endothelial cells. J. Biol. Chem. 2013;288:598–607. doi: 10.1074/jbc.M112.417451.
    1. Ito T.K., Ishii G., Saito S., Yano K., Hoshino A., Suzuki T., Ochiai A. Degradation of soluble VEGF receptor-1 by MMP-7 allows VEGF access to endothelial cells. Blood. 2009;113:2363–2369. doi: 10.1182/blood-2008-08-172742.
    1. Sang Q.X. Complex role of matrix metalloproteinases in angiogenesis. Cell Res. 1998;8:171–177. doi: 10.1038/cr.1998.17.
    1. Sood D., Cairns D.M., Dabbi J.M., Ramakrishnan C., Deisseroth K., Black L.D., 3rd, Santaniello S., Kaplan D.L. Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Sci. Rep. 2019;9:17874. doi: 10.1038/s41598-019-54248-1.
    1. Noriega-Guerra H., Freitas V.M. Extracellular Matrix Influencing HGF/c-MET Signaling Pathway: Impact on Cancer Progression. Int. J. Mol. Sci. 2018;19:3300. doi: 10.3390/ijms19113300.
    1. Vigano P., Candiani M., Monno A., Giacomini E., Vercellini P., Somigliana E. Time to redefine endometriosis including its pro-fibrotic nature. Hum. Reprod. 2018;33:347–352. doi: 10.1093/humrep/dex354.
    1. Kendziorski J.A., Belcher S.M. Strain-specific induction of endometrial periglandular fibrosis in mice exposed during adulthood to the endocrine disrupting chemical bisphenol A. Reprod. Toxicol. 2015;58:119–130. doi: 10.1016/j.reprotox.2015.08.001.
    1. Holmbeck K., Bianco P., Caterina J., Yamada S., Kromer M., Kuznetsov S.A., Mankani M., Robey P.G., Poole A.R., Pidoux I., et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999;99:81–92. doi: 10.1016/S0092-8674(00)80064-1.
    1. Matsuzaki S., Canis M., Pouly J.L., Darcha C. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro. Hum. Reprod. 2016;31:541–553. doi: 10.1093/humrep/dev333.
    1. Vallve-Juanico J., Houshdaran S., Giudice L.C. The endometrial immune environment of women with endometriosis. Hum. Reprod. Update. 2019;25:564–591. doi: 10.1093/humupd/dmz018.
    1. Sciezynska A., Komorowski M., Soszynska M., Malejczyk J. NK Cells as Potential Targets for Immunotherapy in Endometriosis. J. Clin. Med. 2019;8:1468. doi: 10.3390/jcm8091468.
    1. Zhou W.J., Yang H.L., Shao J., Mei J., Chang K.K., Zhu R., Li M.Q. Anti-inflammatory cytokines in endometriosis. Cell. Mol. Life Sci. 2019;76:2111–2132. doi: 10.1007/s00018-019-03056-x.
    1. Oosterlynck D.J., Meuleman C., Waer M., Vandeputte M., Koninckx P.R. The natural killer activity of peritoneal fluid lymphocytes is decreased in women with endometriosis. Fertil. Steril. 1992;58:290–295. doi: 10.1016/S0015-0282(16)55224-8.
    1. Rossi G.R., Trindade E.S., Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front. Immunol. 2020;11:73. doi: 10.3389/fimmu.2020.00073.
    1. Shiraishi K., Mimura K., Kua L.F., Koh V., Siang L.K., Nakajima S., Fujii H., Shabbir A., Yong W.P., So J., et al. Inhibition of MMP activity can restore NKG2D ligand expression in gastric cancer, leading to improved NK cell susceptibility. J. Gastroenterol. 2016;51:1101–1111. doi: 10.1007/s00535-016-1197-x.
    1. Barber D.F., Faure M., Long E.O. LFA-1 contributes an early signal for NK cell cytotoxicity. J. Immunol. 2004;173:3653–3659. doi: 10.4049/jimmunol.173.6.3653.
    1. Garcia-Gomez E., Vazquez-Martinez E.R., Reyes-Mayoral C., Cruz-Orozco O.P., Camacho-Arroyo I., Cerbon M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front. Endocrinol. 2019;10:935. doi: 10.3389/fendo.2019.00935.
    1. Wu M.H., Shoji Y., Wu M.C., Chuang P.C., Lin C.C., Huang M.F., Tsai S.J. Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. Am. J. Pathol. 2005;167:1061–1069. doi: 10.1016/S0002-9440(10)61195-9.
    1. Zhu M., Yang M., Yang Q., Liu W., Geng H., Pan L., Wang L., Ge R., Ji L., Cui S., et al. Chronic Hypoxia-Induced Microvessel Proliferation and Basal Membrane Degradation in the Bone Marrow of Rats Regulated through the IL-6/JAK2/STAT3/MMP-9 Pathway. BioMed Res. Int. 2020;2020:9204708. doi: 10.1155/2020/9204708.
    1. Wang X., Fan J., Ding X., Sun Y., Cui Z., Liu W. Tanshinone I Inhibits IL-1beta-Induced Apoptosis, Inflammation And Extracellular Matrix Degradation In Chondrocytes CHON-001 Cells And Attenuates Murine Osteoarthritis. Drug Des. Dev. Ther. 2019;13:3559–3568. doi: 10.2147/DDDT.S216596.
    1. Meola J., Rosa e Silva J.C., Dentillo D.B., da Silva W.A., Jr., Veiga-Castelli L.C., Bernardes L.A., Ferriani R.A., de Paz C.C., Giuliatti S., Martelli L. Differentially expressed genes in eutopic and ectopic endometrium of women with endometriosis. Fertil. Steril. 2010;93:1750–1773. doi: 10.1016/j.fertnstert.2008.12.058.
    1. Malvezzi H., Aguiar V.G., Paz C.C., Tanus-Santos J.E., Penna I.A., Navarro P.A. Increased circulating MMP-2 levels in infertile patients with moderate and severe pelvic endometriosis. Reprod. Sci. 2013;20:557–562. doi: 10.1177/1933719112459234.
    1. Cho Y.J., Kim N.H., Jeong K.A., Lee J.Y., Moon H.S., Kim H.L., Chung H.W. Association between MMP-2 and TIMP-2 gene polymorphisms and advanced-stage endometriosis in Korean women. Am. J. Reprod. Immunol. 2013;69:73–84. doi: 10.1111/aji.12020.
    1. Wu T., Zhang R., Jiang Q., Li Z., Wu R. Expression of cellular adherent and invasive molecules in recurrent ovarian endometriosis. J. Int. Med. Res. 2020;48:300060520971993. doi: 10.1177/0300060520971993.
    1. Gambadauro P., Carli V., Hadlaczky G. Depressive symptoms among women with endometriosis: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019;220:230–241. doi: 10.1016/j.ajog.2018.11.123.
    1. Bedaiwy M.A., Alfaraj S., Yong P., Casper R. New developments in the medical treatment of endometriosis. Fertil. Steril. 2017;107:555–565. doi: 10.1016/j.fertnstert.2016.12.025.
    1. Arkadash V., Yosef G., Shirian J., Cohen I., Horev Y., Grossman M., Sagi I., Radisky E.S., Shifman J.M., Papo N. Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution. J. Biol. Chem. 2017;292:3481–3495. doi: 10.1074/jbc.M116.756718.
    1. Ager E.I., Kozin S.V., Kirkpatrick N.D., Seano G., Kodack D.P., Askoxylakis V., Huang Y., Goel S., Snuderl M., Muzikansky A., et al. Blockade of MMP14 activity in murine breast carcinomas: Implications for macrophages, vessels, and radiotherapy. J. Natl. Cancer Inst. 2015;107:djv017. doi: 10.1093/jnci/djv017.
    1. Goffin L., Fagagnini S., Vicari A., Mamie C., Melhem H., Weder B., Lutz C., Lang S., Scharl M., Rogler G., et al. Anti-MMP-9 Antibody: A Promising Therapeutic Strategy for Treatment of Inflammatory Bowel Disease Complications with Fibrosis. Inflamm. Bowel Dis. 2016;22:2041–2057. doi: 10.1097/MIB.0000000000000863.
    1. Shah M.A., Starodub A., Sharma S., Berlin J., Patel M., Wainberg Z.A., Chaves J., Gordon M., Windsor K., Brachmann C.B., et al. Andecaliximab/GS-5745 Alone and Combined with mFOLFOX6 in Advanced Gastric and Gastroesophageal Junction Adenocarcinoma: Results from a Phase I Study. Clin. Cancer Res. 2018;24:3829–3837. doi: 10.1158/1078-0432.CCR-17-2469.
    1. Vandenbroucke R.E., Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 2014;13:904–927. doi: 10.1038/nrd4390.
    1. Falardeau P., Champagne P., Poyet P., Hariton C., Dupont E. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin. Oncol. 2001;28:620–625. doi: 10.1016/S0093-7754(01)90035-1.
    1. Latreille J., Batist G., Laberge F., Champagne P., Croteau D., Falardeau P., Levinton C., Hariton C., Evans W.K., Dupont E. Phase I/II trial of the safety and efficacy of AE-941 (Neovastat) in the treatment of non-small-cell lung cancer. Clin. Lung Cancer. 2003;4:231–236. doi: 10.3816/CLC.2003.n.003.
    1. Sharpe-Timms K.L., Zimmer R.L., Jolliff W.J., Wright J.A., Nothnick W.B., Curry T.E. Gonadotropin-releasing hormone agonist (GnRH-a) therapy alters activity of plasminogen activators, matrix metalloproteinases, and their inhibitors in rat models for adhesion formation and endometriosis: Potential GnRH-a-regulated mechanisms reducing adhesion formation. Fertil. Steril. 1998;69:916–923. doi: 10.1016/s0015-0282(98)00032-6.
    1. Woo J.H., Ahn J.H., Jang D.S., Choi J.H. Effect of Dehydrocostus Lactone Isolated from the Roots of Aucklandia lappa on the Apoptosis of Endometriotic Cells and the Alternative Activation of Endometriosis-Associated Macrophages. Am. J. Chin. Med. 2019;47:1289–1305. doi: 10.1142/S0192415X19500666.
    1. Li Z., Liu H., He Z., Zhang G., Lang J. Effects of cisplatin and letrozole on surgically induced endometriosis and comparison of the two medications in a rat model. Eur. J. Pharm. Sci. 2016;93:132–140. doi: 10.1016/j.ejps.2016.07.018.
    1. Hu F., Hu Y., Peng F. Synergistic and protective effect of atorvastatin and amygdalin against histopathological and biochemical alterations in Sprague-Dawley rats with experimental endometriosis. AMB Express. 2019;9:37. doi: 10.1186/s13568-019-0760-2.
    1. Chen Y., Wei J., Zhang Y., Sun W., Li Z., Wang Q., Xu X., Li C., Li P. Anti-endometriosis Mechanism of Jiawei Foshou San Based on Network Pharmacology. Front. Pharmacol. 2018;9:811. doi: 10.3389/fphar.2018.00811.
    1. Kapoor R., Sirohi V.K., Gupta K., Dwivedi A. Naringenin ameliorates progression of endometriosis by modulating Nrf2/Keap1/HO1 axis and inducing apoptosis in rats. J. Nutr. Biochem. 2019;70:215–226. doi: 10.1016/j.jnutbio.2019.05.003.
    1. Wei X., Shao X. Nobiletin alleviates endometriosis via down-regulating NF-kappaB activity in endometriosis mouse model. Biosci. Rep. 2018;38:BSR20180470. doi: 10.1042/BSR20180470.
    1. Machado D.E., Rodrigues-Baptista K.C., Alessandra-Perini J., Soares de Moura R., Santos T.A., Pereira K.G., Marinho da Silva Y., Souza P.J., Nasciutti L.E., Perini J.A. Euterpe oleracea Extract (Acai) Is a Promising Novel Pharmacological Therapeutic Treatment for Experimental Endometriosis. PLoS ONE. 2016;11:e0166059. doi: 10.1371/journal.pone.0166059.
    1. Samartzis E.P., Fink D., Stucki M., Imesch P. Doxycycline reduces MMP-2 activity and inhibits invasion of 12Z epithelial endometriotic cells as well as MMP-2 and -9 activity in primary endometriotic stromal cells in vitro. Reprod. Biol. Endocrinol. 2019;17:38. doi: 10.1186/s12958-019-0481-z.
    1. Kim J.H., Woo J.H., Kim H.M., Oh M.S., Jang D.S., Choi J.H. Anti-Endometriotic Effects of Pueraria Flower Extract in Human Endometriotic Cells and Mice. Nutrients. 2017;9:212. doi: 10.3390/nu9030212.
    1. Kim J.H., Yang Y.I., Ahn J.H., Lee J.G., Lee K.T., Choi J.H. Deer (Cervus elaphus) antler extract suppresses adhesion and migration of endometriotic cells and regulates MMP-2 and MMP-9 expression. J. Ethnopharmacol. 2012;140:391–397. doi: 10.1016/j.jep.2012.01.032.
    1. Kiykac Altinbas S., Tapisiz O.L., Cavkaytar S., Simsek G., Oguztuzun S., Goktolga U. Is montelukast effective in regression of endometrial implants in an experimentally induced endometriosis model in rats? Eur. J. Obstet. Gynecol. Reprod. Biol. 2015;184:7–12. doi: 10.1016/j.ejogrb.2014.10.026.
    1. Jana S., Rudra D.S., Paul S., Snehasikta S. Curcumin delays endometriosis development by inhibiting MMP-2 activity. Indian J. Biochem. Biophys. 2012;49:342–348.
    1. Miyashita M., Koga K., Izumi G., Sue F., Makabe T., Taguchi A., Nagai M., Urata Y., Takamura M., Harada M., et al. Effects of 1,25-Dihydroxy Vitamin D3 on Endometriosis. J. Clin. Endocrinol. Metab. 2016;101:2371–2379. doi: 10.1210/jc.2016-1515.

Source: PubMed

3
Abonner