Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

Rebecca S Schaefer, Rebecca S Schaefer

Abstract

Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy.

Keywords: auditory rhythm; cued movement; movement rehabilitation.

© 2014 The Author(s) Published by the Royal Society. All rights reserved.

References

    1. Schubotz RI, Friederici AD, Von Cramon DY. 2000. Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage 11, 1–12. (10.1006/nimg.1999.0514)
    1. Ivry RB. 1996. The representation of temporal information in perception and motor control. Curr. Opin. Neurobiol. 6, 851–857. (10.1016/S0959-4388(96)80037-7)
    1. Grahn JA, Brett M. 2007. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906. (10.1162/jocn.2007.19.5.893
    1. Chen JL, Penhune VB, Zatorre RJ. 2008. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854. (10.1093/cercor/bhn042
    1. Thaut MH. 2005. Rhythm, music and the brain. New York, NY: Taylor & Francis.
    1. Honing H. 2012. Without it no music: beat induction as a fundamental musical trait. Ann. NY Acad. Sci. 1252, 85–91. (10.1111/j.1749-6632.2011.06402.x)
    1. London J. 2004. Hearing in time: psychological aspects of musical meter. Oxford, UK: Oxford University Press.
    1. Fry DB. 1955. Duration and intensity as physical correlates of linguistic stress. J. Acoust. Soc. Am. 24, 765–768. (10.1121/1.1908022)
    1. Palmer C, Krumhansl CL. 1990. Mental representations for musical meter. J. Exp. Psychol. 16, 728–741. (10.1037/0096-1523.16.4.728)
    1. Longuet-Higgins HC, Lee CS. 1984. The rhythmic interpretation of monophonic music. Music Percept. 1, 424–441. (10.2307/40285271)
    1. Palmer C. 1997. Music performance. Annu. Rev. Psychol. 48, 115–138. (10.1146/annurev.psych.48.1.115)
    1. Meyer LB. 1956. Emotion and meaning in music. Chicago, IL: University of Chicago Press.
    1. Schaefer RS, Overy K, Nelson P. 2013. Affect and non-uniform characteristics of predictive processing in musical behaviour. Behav. Brain Sci. 36, 226–227. (10.1017/S0140525X12002373)
    1. Huron D. 2006. Sweet anticipation: music and the psychology of expectation. Cambridge, MA: MIT Press.
    1. Janata P, Tomic ST, Haberman JM. 2012. Sensorimotor coupling in music and the psychology of the groove. J. Exp. Psychol. Gen. 141, 54–75. (10.1037/a0024208)
    1. Grahn JA, Rowe JB. 2009. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci. 29, 7540–7548. (10.1523/JNEUROSCI.2018-08.2009)
    1. Snyder JS, Large EW. 2005. Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn. Brain Res. 24, 117–126. (10.1016/j.cogbrainres.2004.12.014)
    1. Brochard R, Abecasis D, Potter D, Ragot R, Drake C. 2003. The ‘ticktock’ of our internal clock: direct brain evidence of subjective accents in isochronous sequences. Psychol. Sci. 14, 362–366. (10.1111/1467-9280.24441)
    1. Fujioka T, Zendel BR, Ross B. 2010. Endogenous neuromagnetic activity for mental hierarchy of timing. J. Neurosci. 30, 3458–3466. (10.1523/JNEUROSCI.3086-09.2010)
    1. Schaefer RS, Vlek RJ, Desain P. 2011. Decomposing rhythm processing: electroencephalography of perceived and self-imposed rhythmic patterns. Psychol. Res. 75, 95–106. (10.1007/s00426-010-0293-4)
    1. Iversen JR, Repp BH, Patel AD. 2009. Top-down control of rhythm perception modulates early auditory responses. Ann. NY Acad. Sci. 1169, 58–73. (10.1111/j.1749-6632.2009.04579.x)
    1. Grahn JA. 2012. Neural mechanisms of rhythm perception: current findings and future perspectives. Top. Cogn. Sci. 4, 585–606. (10.1111/j.1756-8765.2012.01213.x)
    1. Karageorghis CI, Priest D. 2012. Music in the exercise domain: a review and synthesis (part I). Int. Rev. Sport Exerc. Psychol. 5, 44–66. (10.1080/1750984X.2011.631026)
    1. Hogan N, Sternad D. 2007. On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp. Brain Res. 181, 13–30. (10.1007/s00221-007-0899-y)
    1. Ivry RB, Richardson TC. 2002. Temporal control and coordination: the multiple timer model. Brain Cogn. 48, 117–132. (10.1006/brcg.2001.1308)
    1. Schaal S, Sternad D, Osu R, Kawato M. 2004. Rhythmic arm movement is not discrete. Nat. Neurosci. 7, 1137–1145. (10.1038/mm1322)
    1. Balasubramaniam R, Wing AM, Daffertshofer A. 2004. Keeping with the beat: movement trajectories contribute to movement timing. Exp. Brain Res. 159, 129–134. (10.1007/s00221-004-2066-z)
    1. Elliott MT, Welchman AE, Wing AM. 2009. Being discrete helps keep to the beat. Exp. Brain Res. 192, 731–737. (10.1007/s00221-008-1646-8)
    1. Pecenka N, Keller PE. 2011. The role of temporal prediction abilities in interpersonal sensorimotor synchronization. Exp. Brain Res. 211, 505–515. (10.1007/s00221-011-2616-0)
    1. Tierney A, Kraus N. 2013. The ability to move to a beat is linked to the consistency of neural responses to sound. J. Neurosci. 33, 14981–14988. (10.1523/JNEUROSCI.0612-13.2013)
    1. Brown S, Martinez MJ, Parsons LM. 2006. The neural basis of human dance. Cereb. Cortex 16, 1157–1167. (10.1093/cercor/bhj057)
    1. Toyomura A, Shibata M, Kuriki S. 2012. Self-paced and externally triggered rhythmical lower limb movements: a functional MRI study. Neurosci. Lett. 516, 39–44. (10.1016/j.neulet.2012.03.049)
    1. Schaefer RS, Morcom AM, Roberts N, Overy K. 2014. fMRI measures of cued movement. In. Proc. ICMPC-APSCOM 2014 Joint Conf., Seoul, South Korea (ed. MK Song), p. 176. Seoul, South Korea: College of Music, Yonsei University.
    1. Witt ST, Laird AR, Meyerand ME. 2008. Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42, 343–356. (10.1016/j.neuroimage.2008.04.025)
    1. Chen JL, Zatorre RJ, Penhune VB. 2006. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage 32, 1771–1781. (10.1016/j.neuroimage.2006.04.207)
    1. Kornysheva K, Schubotz RI. 2011. Impairment of auditory-motor timing and compensatory reorganization after ventral premotor cortex stimulation. PLoS ONE 6, e21421 (10.1371/journal.pone.0021421)
    1. Ridderikhoff A, Peper CLE, Beek PJ. 2008. Attentional loads associated with interlimb interactions underlying rhythmic bimanual coordination. Cognition 109, 372–388. (10.1016/j.cognition.2008.10.002)
    1. Ackerley SJ, Stinear CM, Byblow WD. 2011. Promoting use-dependent plasticity with externally-paced training. Clin. Neurophysiol. 122, 2462–2468. (10.1016/j.clinph.2011.05.011)
    1. Repp BH, Su Y-H. 2013. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon. Bull. Rev. 20, 403–452. (10.3758/s13423-012-0371-2)
    1. Repp BH. 2005. Sensorimotor synchronization: a review of the tapping literature. Psychon. Bull. Rev. 12, 969–992. (10.3758/BF03206433)
    1. Repp BH, Keller PE. 2004. Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Q. J. Exp. Psychol. A. 57, 499–521. (10.1080/02724980343000369)
    1. Houweling S, Daffertshofer A, Van Dijk BW, Beek PJ. 2008. Neural changes induced by learning a challenging perceptual-motor task. Neuroimage 41, 1395–1407. (10.1016/j.neuroimage.2008.03.023)
    1. Jäncke L, Loose R, Lutz K, Specht K, Shah NJ. 2000. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res. Cogn. Brain Res. 10, 51–66. (10.1016/S0926-6410(00)00022-7)
    1. Hove MJ, Fairhurst MT, Kotz SA, Keller PE. 2013. Synchronizing with auditory and visual rhythms: an fMRI assessment of modality differences and modality appropriateness. Neuroimage 67, 313–321. (10.1016/j.neuroimage.2012.11.032)
    1. Grahn JA, Rowe JB. 2013. Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb. Cortex 23, 913–921. (10.1093/cercor/bhs083)
    1. Stenneken P, Prinz W, Cole J, Paillard J, Aschersleben G. 2006. The effect of sensory feedback on the timing of movements: evidence from deafferented patients. Brain Res. 1084, 123–131. (10.1016/j.brainres.2006.02.057)
    1. Aschersleben G, Gehrke J, Prinz W. 2001. Tapping with peripheral nerve block. Exp. Brain Res. 136, 331–339. (10.1007/s002210000562)
    1. Pecenka N, Engel A, Keller PE. 2013. Neural correlates of auditory temporal predictions during sensorimotor synchronization. Front. Hum. Neurosci. 7, 380 (10.3389/fnhum.2013.00380)
    1. Leman M, Moelants D, Varewyck M, Styns F, van Noorden L, Martens J-P. 2013. Activating and relaxing music entrains the speed of beat synchronized walking. PLoS ONE 8, e67932 (10.1371/journal.pone.0067932)
    1. Wittwer JE, Webster KE, Hill K. 2013. Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait Posture 37, 219–222. (10.1016/j.gaitpost.2012.07.006)
    1. Whitall J, Waller SM, Silver KHC, Macko RF. 2000. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 31, 2390–2395. (10.1161/01.STR.31.10.2390)
    1. Johannsen L, et al. 2010. Seated bilateral leg exercise effects on hemiparetic lower extremity function in chronic stroke. Neurorehabil. Neural Repair 24, 243–253. (10.1177/1545968309347679)
    1. Dekkers OM, von Elm E, Algra A, Romijn JA, Vandenbroucke JP. 2010. How to assess the external validity of therapeutic trials: a conceptual approach. Int. J. Epidemiol. 39, 89–94. (10.1093/ije/dyp174)
    1. Dimyan MA, Cohen LG. 2011. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7, 76–85. (10.1038/nrneurol.2010.200)
    1. Roerdink M, Lamoth CJC, van Kordelaar J, Elich P, Konijnenbelt M, Kwakkel G, Beek PJ. 2009. Rhythm perturbations in acoustically paced treadmill walking after stroke. Neurorehabil. Neural Repair 23, 668–678. (10.1177/1545968309332879)
    1. Schauer M, Mauritz K. 2003. Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement. Clin. Rehabil. 17, 713–722. (10.1191/0269215503cr668oa)
    1. Thaut MH, Kenyon GP, Hurt CP, McIntosh GC, Hoemberg V. 2002. Kinematic optimization of spatiotemporal patterns in paretic arm training with stroke patients. Neuropsychologia 40, 1073–1081. (10.1016/S0028-3932(01)00141-5)
    1. Bradt J, Magee W, Dileo C, Wheeler B, McGilloway E. 2010. Music therapy for acquired brain injury. Cochrane Database Syst. Rev. 7, CD006787 (10.1002/14651858.CD006787.pub2)
    1. Thaut MH, Leins AK, Rice RR, Argstatter H, Kenyon GP, McIntosh GC, Bolay HV, Fetter M. 2007. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial. Neurorehabil. Neural Repair 21, 455–459. (10.1177/1545968307300523)
    1. Wittwer JE, Webster KE, Hill K. 2013. Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson's disease—what is the evidence? Disabil. Rehabil. 35, 164–176. (10.3109/09638288.2012.690495)
    1. Van Delden AEQ, Peper CE, Beek PJ, Kwakkel G. 2012. Unilateral versus bilateral upper limb exercise therapy after stroke: a systematic review. J. Rehabil. Med. 44, 106–117. (10.2340/16501977-0928)
    1. Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. 2012. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin. Rehabil. 26, 291–313. (10.1177/0269215511420305)
    1. Van Wijck F, Knox D, Dodds C, Cassidy G, Alexander G, MacDonald R. 2012. Making music after stroke: using musical activities to enhance arm function. Ann. NY Acad. Sci. 1252, 305–311. (10.1111/j.1749-6632.2011.06403.x)
    1. Thaut MH, Abiru M. 2010. Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Percept. 27, 263–270. (10.1525/mp.2010.27.4.263)
    1. Nombela C, Hughes LE, Owen AM, Grahn JA. 2013. Into the groove: can rhythm influence Parkinson's disease? Neurosci. Biobehav. Rev. 1–7. (10.1016/j.neubiorev.2013.08.003)
    1. De Dreu MJ, van der Wilk ASD, Poppe E, Kwakkel G, van Wegen EEH. 2012. Rehabilitation, exercise therapy and music in patients with Parkinson's disease: a meta-analysis of the effects of music-based movement therapy on walking ability, balance and quality of life. Parkinsonism Relat. Disord. 18(Suppl. 1), S114–S119. (10.1016/S1353-8020(11)70036-0)
    1. Macht M, Kaussner Y, Möller JC, Stiasny-Kolster K, Eggert KM, Krüger H-P, Ellgring H. 2007. Predictors of freezing in Parkinson's disease: a survey of 6,620 patients. Mov. Disord. 22, 953–956. (10.1002/mds.21458)
    1. Chuma T, Faruque Reza M, Ikoma K, Mano Y. 2006. Motor learning of hands with auditory cue in patients with Parkinson's disease. J. Neural Transm. 113, 175–185. (10.1007/s00702-005-0314-4)
    1. Nombela C, Rae CL, Grahn JA, Barker RA, Owen AM, Rowe JB. 2013. How often does music and rhythm improve patients’ perception of motor symptoms in Parkinson's disease? J. Neurol. 260, 1404–1405. (10.1007/s00415-013-6860-z)
    1. Thaut MH, Miltner R, Lange HW, Hurt CP, Hoemberg V. 1999. Velocity modulation and rhythmic synchronization of gait in Huntington's disease. Mov. Disord. 14, 808–819. (10.1002/1531-8257(199909)14:5<808::AID-MDS1014>;2-J)
    1. Bilney B, Morris ME, Churchyard A, Chiu E, Georgiou-Karistianis N. 2005. Evidence for a disorder of locomotor timing in Huntington's disease. Mov. Disord. 20, 51–57. (10.1002/mds.20294)
    1. Delval A, Krystkowiak P, Delliaux M, Blatt J-L, Derambure P, Destée A, Defebvre L. 2008. Effect of external cueing on gait in Huntington's disease. Mov. Disord. 23, 1446–1452. (10.1002/mds.22125)
    1. Johnson KA, Bennett JE, Georgiou N, Bradshaw JL, Chiu E, Cunnington R, Iansek R. 2000. Bimanual co-ordination in Huntington's disease. Exp. Brain Res. 134, 483–489. (10.1007/s002210000485)
    1. Johnson KA, Cunnington R, Bradshaw JL, Phillips JG, Iansek R, Rogers MA. 1998. Bimanual co-ordination in Parkinson's disease. Brain 121, 743–753. (10.1093/brain/121.4.743)
    1. Walker FO. 2007. Huntington's disease. Semin. Neurol. 27, 143–150. (10.1055/s-2007-971176)
    1. Kleim JA, Jones TA. 2008. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51, S225–S239. (10.1044/1092-4388(2008/018))
    1. Moore E, Schaefer RS, Bastin ME, Roberts N, Overy K. 2014. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI. Brain Sci. 4, 405–427. (10.3390/brainsci4020405)
    1. Benoit C-E, Dalla Bella S, Farrugia N, Obrig H, Kotz SA. 2014. Non-gait related benefits of auditory cueing in Parkinson's disease. Procedia Soc. Behav. Sci. 126, 210–211. (10.1016/j.sbspro.2014.02.378)
    1. Clark A. 2013. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204. (10.1017/S0140525X12000477)
    1. Marchand WR, Lee JN, Suchy Y, Garn C, Chelune G, Johnson S, Wood N. 2013. Functional architecture of the cortico-basal ganglia circuitry during motor task execution: correlations of strength of functional connectivity with neuropsychological task performance among female subjects. Hum. Brain Mapp. 34, 1194–1207. (10.1002/hbm.21505)
    1. Den Ouden HEM, Daunizeau J, Roiser J, Friston KJ, Stephan KE. 2010. Striatal prediction error modulates cortical coupling. J. Neurosci. 30, 3210–3219. (10.1523/JNEUROSCI.4458-09.2010)
    1. Klein-Flügge MC, Hunt LT, Bach DR, Dolan RJ, Behrens TEJ. 2011. Dissociable reward and timing signals in human midbrain and ventral striatum. Neuron 72, 654–664. (10.1016/j.neuron.2011.08.024)
    1. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. 2008. Cerebellar neurocognition: insights into the bottom of the brain. Clin. Neurol. Neurosurg. 110, 763–773. (10.1016/j.clineuro.2008.05.013)
    1. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. 2011. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–262. (10.1038/nn.2726)
    1. Mitchell LA, MacDonald RAR. 2006. An experimental investigation of the effects of preferred and relaxing music listening on pain perception. J. Mus. Ther. 43, 295–316. (10.1093/jmt/43.4.295)
    1. Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. 2005. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res. Bull. 67, 448–458. (10.1016/j.brainresbull.2005.07.014)
    1. Wittwer JE, Webster KE, Hill K. 2013. Effect of rhythmic auditory cueing on gait in people with Alzheimer disease. Arch. Phys. Med. Rehabil. 94, 718–724. (10.1016/j.apmr.2012.11.009)
    1. Ijmker T, Lamoth CJC. 2012. Gait and cognition: the relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture 35, 126–130. (10.1016/j.gaitpost.2011.08.022)
    1. Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM. 1996. Rhythmic auditory stimulation in gait training for Parkinson's disease patients. Mov. Disord. 11, 193–200. (10.1002/mds.870110213)
    1. Dellifraine JL, Dansky KH. 2008. Home-based telehealth: a review and meta-analysis. J. Telemed. Telecare 14, 62–66. (10.1258/jtt.2007.070709)
    1. Schaefer RS, Desain P, Farquhar J. 2013. Shared processing of perception and imagery of music in decomposed EEG. Neuroimage 70, 317–326. (10.1016/j.neuroimage.2012.12.064)
    1. Schaefer RS, Desain P, Suppes P. 2009. Structural decomposition of EEG signatures of melodic processing. Biol. Psychol. 82, 253–259. (10.1016/j.biopsycho.2009.08.004)
    1. Overy K. 2012. Making music in a group: synchronization and shared experience. Ann. NY Acad. Sci. 1252, 65–68. (10.1111/j.1749-6632.2012.06530.x)

Source: PubMed

3
Abonner