Effect of nasal carriage of Bacillus species on COVID-19 severity: a cross-sectional study

Muinah A Fowora, Adenike Aiyedogbon, Ibilola Omolopo, Ahmed O Tajudeen, Abdul-Lateef Olanlege, Adefunke Abioye, Grace B Akintunde, Babatunde L Salako, Muinah A Fowora, Adenike Aiyedogbon, Ibilola Omolopo, Ahmed O Tajudeen, Abdul-Lateef Olanlege, Adefunke Abioye, Grace B Akintunde, Babatunde L Salako

Abstract

Intranasal sprays containing Bacillus species are being researched for treating viral respiratory tract infections. The aim of this study was to assess the relationship between the nasal carriage of Bacillus and COVID-19 severity. This was a cross-sectional study that collected nasopharyngeal samples from adults 18 years and above visiting two COVID-19 testing centers in Lagos, Nigeria, between September 2020 and September 2021. Bacillus species were cultured from the samples and confirmed using 16 s rRNA gene sequencing. The dependent variable was COVID-19 status classified as negative, asymptomatic, mild, or severe. The independent variable was the nasal carriage of Bacillus species. Multinomial regression analysis was done to determine the association between nasal carriage of Bacillus and COVID-19 severity after adjusting for age, sex, and co-morbidity status. A total of 388 participants were included in the study with mean (standard deviation) age of 40.05 (13.563) years. Sixty-one percent of the participants were male, 100 (25.8%) had severe COVID-19, 130 (33.5%) had pre-existing comorbidity, and 76 (19.6%) had Bacillus cultured from their nasopharyngeal specimen. Bacillus species presence was significantly associated with higher odds of severe COVID-19 compared to having a negative COVID-19 status (AOR = 3.347, 95% CI: 1.359, 8.243). However, the presence of Bacillus species was significantly associated with lower odds of severe COVID-19 compared to having a mild COVID-19 status. The study suggests that nasal carriage of Bacillus species is associated with the clinical course of COVID-19 and supports the exploration of Bacillus species in the management of viral respiratory tract infections.IMPORTANCEWith the introduction of intranasal spray containing Bacillus species for the treatment of viral respiratory tract infections, such as COVID-19 and respiratory syncytial virus, identifying the association between the nasal carriage of Bacillus species and COVID-19 susceptibility and severity will help further substantiate the investigation of these bacteria for COVID-19 prevention and treatment. This study evaluated the association between the carriage of Bacillus species in the nasopharyngeal tract and COVID-19 severity and found that the presence of Bacillus species in the nasopharynx may significantly impact the clinical course of COVID-19.

Keywords: Bacillus species; COVID-19; nasal spray; severity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig 1
Fig 1
Association of the measured variables with COVID-19 severity. (A) Age distribution of participants vs COVID-19 severity. (B) Participant’s sex vs COVID-19 severity. (C) Nasal carriage of Bacillus species vs COVID-19 severity.

References

    1. Coronavirus disease (COVID-19) pandemic. 2023. .
    1. Jochems SP, Ferreira DM, Smits HH. 2021. Microbiota and compartment matter in the COVID-19 response. Nat Immunol 22:1350–1352. doi:10.1038/s41590-021-01041-w
    1. Rueca M, Fontana A, Bartolini B, Piselli P, Mazzarelli A, Copetti M, Binda E, Perri F, Gruber CEM, Nicastri E, Marchioni L, Ippolito G, Capobianchi MR, Di Caro A, Pazienza V. 2021. Investigation of nasal/oropharyngeal microbial community of COVID-19 patients by 16S rDNA sequencing. Int J Environ Res Public Health 18:2174. doi:10.3390/ijerph18042174
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 395:1054–1062. doi:10.1016/S0140-6736(20)30566-3
    1. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, Fernández J, Prati D, Baselli G, Asselta R, et al. . 2020. Genomewide association study of severe COVID-19 with respiratory failure. N Engl J Med 383:1522–1534. doi:10.1056/NEJMoa2020283
    1. Göker H, Aladağ Karakulak E, Demiroğlu H, Ayaz Ceylan ÇM, Büyükaşik Y, Inkaya AÇ, Aksu S, Sayinalp N, Haznedaroğlu IC, Uzun Ö, Akova M, Özcebe OI, Ünal S. 2020. The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. Turk J Med Sci 50:679–683. doi:10.3906/sag-2005-395
    1. Smith N, Goncalves P, Charbit B, Grzelak L, Beretta M, Planchais C, Bruel T, Rouilly V, Bondet V, Hadjadj J, Yatim N, Pere H, Merkling SH, Ghozlane A, Kernéis S, Rieux-Laucat F, Terrier B, Schwartz O, Mouquet H, Duffy D, Di Santo JP. 2021. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat Immunol 22:1428–1439. doi:10.1038/s41590-021-01028-7
    1. Brugger SD, Bomar L, Lemon KP. 2016. Commensal-pathogen interactions along the human nasal passages. PLoS Pathog 12:e1005633. doi:10.1371/journal.ppat.1005633
    1. Bosch AATM, Piters WAA de S, van Houten MA, Chu MLJN, Biesbroek G, Kool J, Pernet P, de Groot P-KCM, Eijkemans MJC, Keijser BJF, Sanders EAM, Bogaert D. 2017. Maturation of the infant respiratory microbiota, environmental drivers, and health consequences. a prospective cohort study. Am J Respir Crit Care Med 196:1582–1590. doi:10.1164/rccm.201703-0554OC
    1. Liu J, Liu S, Zhang Z, Lee X, Wu W, Huang Z, Lei Z, Xu W, Chen D, Wu X, Guo Y, Peng L, Lin B, Chong Y, Mou X, Shi M, Lan P, Chen T, Zhao W, Gao Z. 2021. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth Syst Biotechnol 6:135–143. doi:10.1016/j.synbio.2021.06.002
    1. Sencio V, Machado MG, Trottein F. 2021. The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol 14:296–304. doi:10.1038/s41385-020-00361-8
    1. Dimitri-Pinheiro S, Soares R, Barata P. 2020. The microbiome of the nose-friend or foe? Allergy Rhinol (Providence) 11:2152656720911605. doi:10.1177/2152656720911605
    1. Kolhe R, Sahajpal NS, Vyavahare S, Dhanani AS, Adusumilli S, Ananth S, Mondal AK, Patterson GT, Kumar S, Rojiani AM, Isales CM, Fulzele S. 2021. Alteration in nasopharyngeal microbiota profile in aged patients with COVID-19. Diagnostics 11:1622. doi:10.3390/diagnostics11091622
    1. De Maio F, Posteraro B, Ponziani FR, Cattani P, Gasbarrini A, Sanguinetti M. 2020. Nasopharyngeal microbiota profiling of SARS-CoV-2 infected patients. Biol Proced Online 22:18. doi:10.1186/s12575-020-00131-7
    1. Li D, Wang X, Liao Y, Wang S, Shan J, Ji J. 2022. Insights gained into the treatment of COVID19 by pulmonary surfactant and its components. Front Immunol 13:842453. doi:10.3389/fimmu.2022.842453
    1. Tosta E. 2021. The seven constitutive respiratory defense barriers against SARS-CoV-2 infection. Rev Soc Bras Med Trop 54:e04612021. doi:10.1590/0037-8682-0461-2021
    1. Yang Y, Jing Y, Yang J, Yang Q. 2018. Effects of intranasal administration with Bacillus subtilis on immune cells in the nasal mucosa and tonsils of piglets. Exp Ther Med 15:5189–5198. doi:10.3892/etm.2018.6093
    1. Tran DM, Tran TT, Phung TTB, Bui HT, Nguyen PTT, Vu TT, Ngo NTP, Nguyen MT, Nguyen AH, Nguyen ATV. 2022. Nasal-spraying Bacillus spores as an effective symptomatic treatment for children with acute respiratory syncytial virus infection. Sci Rep 12:12402. doi:10.1038/s41598-022-16136-z
    1. De Boeck I, Cauwenberghs E, Spacova I, Gehrmann T, Eilers T, Delanghe L, Wittouck S, Bron PA, Henkens T, Gamgami I, Simons A, Claes I, Mariën J, Ariën KK, Bakokimi D, Loens K, Jacobs K, Ieven M, Bruijning-Verhagen P, Delputte P, Coenen S, Verhoeven V, Lebeer S. 2022. Randomized, double-blind, placebo-controlled trial of a throat spray with selected lactobacilli in COVID-19 outpatients. Microbiol Spectr 10:e0168222. doi:10.1128/spectrum.01682-22
    1. Arya R, Antonisamy B, Kumar S. 2012. Sample size estimation in prevalence studies. Indian J Pediatr 79:1482–1488. doi:10.1007/s12098-012-0763-3
    1. Erinoso OA, Wright KO, Anya S, Bowale A, Adejumo O, Adesola S, Osikomaiya B, Mutiu B, Saka B, Falana A, Ola-Ayinde D, Akase EI, Owuna H, Abdur-Razzaq H, Lajide D, Ezechi O, Ogboye O, Osibogun A, Abayomi A. 2020. Clinical characteristics, predictors of symptomatic coronavirus disease 2019 and duration of hospitalisation in a cohort of 632 patients in Lagos state. Niger Postgrad Med J 27:285. doi:10.4103/npmj.npmj_272_20
    1. Shoaib N, Noureen N, Munir R, Shah FA, Ishtiaq N, Jamil N, Batool R, Khalid M, Khan I, Iqbal N, Zaidi N. 2021. COVID-19 severity: studying the clinical and demographic risk factors for adverse outcomes. PLoS One 16:e0255999. doi:10.1371/journal.pone.0255999
    1. Federal Ministry of Health & Nigeria Centre for Disease Control . 2020. National interim guidelines for clinical management of COVID-19. .
    1. Clinical spectrum. 2023. In COVID-19 treatment guidelines [Internet]. .
    1. Freire-Paspuel B, Garcia-Bereguiain MA. 2021. Clinical performance and analytical sensitivity of three SARS-CoV-2 nucleic acid diagnostic tests. Am J Trop Med Hyg 104:1516–1518. doi:10.4269/ajtmh.20-1484
    1. Reva ON, Sorokulova IB, Smirnov VV. 2001. Simplified technique for identification of the aerobic spore-forming bacteria by phenotype. Int J Syst Evol Microbiol 51:1361–1371. doi:10.1099/00207713-51-4-1361
    1. Roberts MS, Nakamura LK, Cohan FM. 1994. Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44:256–264. doi:10.1099/00207713-44-2-256
    1. Goto K, Omura T, Hara Y, Sadaie Y. 2000. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 46:1–8. doi:10.2323/jgam.46.1
    1. Shoaib N, Noureen N, Munir R, Shah FA, Ishtiaq N, Jamil N, Batool R, Khalid M, Khan I, Iqbal N, Zaidi N. 2021. COVID-19 severity: studying the clinical and demographic risk factors for adverse outcomes. PLoS One 16:e0255999. doi:10.1371/journal.pone.0255999
    1. Osibogun A, Balogun M, Abayomi A, Idris J, Kuyinu Y, Odukoya O, Wright O, Adeseun R, Mutiu B, Saka B, Osa N, Lajide D, Abdus-Salam I, Osikomaiya B, Onasanya O, Adebayo B, Oshodi Y, Adesola S, Adejumo O, Erinoso O, Abdur-Razzaq H, Bowale A, Akinroye K. 2021. Outcomes of COVID-19 patients with comorbidities in Southwest Nigeria. PLoS One 16:e0248281. doi:10.1371/journal.pone.0248281
    1. Elimian KO, Ochu CL, Ebhodaghe B, Myles P, Crawford EE, Igumbor E, Ukponu W, Olayinka A, Aruna O, Dan-Nwafor C, et al. . 2020. Patient characteristics associated with COVID-19 positivity and fatality in Nigeria: retrospective cohort study. BMJ Open 10:e044079. doi:10.1136/bmjopen-2020-044079
    1. Onyegbutulem HC, Dogo D, Nnabuchi CV, Aghahowa ME, Alu FE, Afiomah EU, Atanda OD, Nwankwo CG, Ani-Osheku I, Olatise OO, Abolade BO, Akerele IO, Henry-Onyegbutulem PI. 2021. Epidemiologic characteristics, clinical features and outcomes of COVID 19: patients admitted at the Asokoro district hospital isolation and treatment center, Abuja, North central Nigeria. West Afr J Med 38:1120–1128.
    1. Otuonye NM, Olumade TJ, Ojetunde MM, Holdbrooke SA, Ayoola JB, Nyam IY, Iwalokun B, Onwuamah C, Uwandu M, Abayomi A, Osibogun A, Bowale A, Osikomaiya B, Thomas B, Mutiu B, Odunukwe NN. 2021. Clinical and demographic characteristics of COVID-19 patients in Lagos, Nigeria: a descriptive study. J Natl Med Assoc 113:301–306. doi:10.1016/j.jnma.2020.11.011
    1. Musuuza JS, Watson L, Parmasad V, Putman-Buehler N, Christensen L, Safdar N. 2021. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: a systematic review and meta-analysis. PLoS One 16:e0251170. doi:10.1371/journal.pone.0251170
    1. Bahceci I, Yildiz IE, Duran OF, Soztanaci US, Kirdi Harbawi Z, Senol FF, Demiral G. 2022. Secondary bacterial infection rates among patients with COVID-19. Cureus 14:e22363. doi:10.7759/cureus.22363
    1. Lansbury L, Lim B, Baskaran V, Lim WS. 2020. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect 81:266–275. doi:10.1016/j.jinf.2020.05.046
    1. Shafran N, Shafran I, Ben-Zvi H, Sofer S, Sheena L, Krause I, Shlomai A, Goldberg E, Sklan EH. 2021. Secondary bacterial infection in COVID-19 patients is a stronger predictor for death compared to influenza patients. Sci Rep 11:12703. doi:10.1038/s41598-021-92220-0
    1. Davies-Bolorunduro OF, Fowora MA, Amoo OS, Adeniji E, Osuolale KA, Oladele O, Onuigbo TI, Obi JC, Oraegbu J, Ogundepo O, Ahmed RA, Usman OA, Iyapo BG, Dada AA, Onyia N, Adegbola RA, Audu RA, Salako BL. 2022. Evaluation of respiratory tract bacterial co-infections in SARS-CoV-2 patients with mild or asymptomatic infection in Lagos, Nigeria. Bull Natl Res Cent 46:115. doi:10.1186/s42269-022-00811-2
    1. Turnbull PCB. 1996. Bacillus. In Baron S (ed), Medical microbiology, 4th edition. University of Texas Medical Branch at Galveston, Galveston (TX).
    1. La Jeon Y, Yang JJ, Kim MJ, Lim G, Cho SY, Park TS, Suh J-T, Park YH, Lee MS, Kim SC, Lee HJ. 2012. Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with oesophageal perforation. J Med Microbiol 61:1766–1769. doi:10.1099/jmm.0.042275-0
    1. Michelotti F, Bodansky HJ. 2015. Bacillus cereus causing widespread necrotising skin infection in a diabetic person. Practical Diabetes 32:169. doi:10.1002/pdi.1950
    1. Orrett FA. 2000. Fatal Bacillus cereus bacteremia in a patient with diabetes. J Natl Med Assoc 92:206–208.
    1. Sandrin C, Peypoux F, Michel G. 1990. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol Appl Biochem 12:370–375. doi:10.1111/j.1470-8744.1990.tb00109.x
    1. Liu J, Li W, Zhu X, Zhao H, Lu Y, Zhang C, Lu Z. 2019. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol 103:4565–4574. doi:10.1007/s00253-019-09808-w
    1. Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M. 2017. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960. doi:10.1007/s00253-017-8396-0
    1. Tao Y, Bie X, Lv F, Zhao H, Lu Z. 2011. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J Microbiol 49:146–150. doi:10.1007/s12275-011-0171-9
    1. Théatre A, Cano-Prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P. 2021. The surfactin-like lipopeptides from Bacillus spp.: natural biodiversity and synthetic biology for a broader application range. Front Bioeng Biotechnol 9:623701. doi:10.3389/fbioe.2021.623701
    1. Chroneos ZC, Sever-Chroneos Z, Shepherd VL. 2010. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 25:13–26. doi:10.1159/000272047
    1. National code of health research ethics. Federal Ministry of Health. .

Source: PubMed

3
Abonner