High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness

Yuri Feito, Katie M Heinrich, Scotty J Butcher, Walker S Carlos Poston, Yuri Feito, Katie M Heinrich, Scotty J Butcher, Walker S Carlos Poston

Abstract

High-intensity functional training (HIFT) is an exercise modality that emphasizes functional, multi-joint movements that can be modified to any fitness level and elicit greater muscle recruitment than more traditional exercise. As a relatively new training modality, HIFT is often compared to high-intensity interval training (HIIT), yet the two are distinct. HIIT exercise is characterized by relatively short bursts of repeated vigorous activity, interspersed by periods of rest or low-intensity exercise for recovery, while HIFT utilizes constantly varied functional exercises and various activity durations that may or may not incorporate rest. Over the last decade, studies evaluating the effectiveness of HIIT programs have documented improvements in metabolic and cardiorespiratory adaptations; however, less is known about the effects of HIFT. The purpose of this manuscript is to provide a working definition of HIFT and review the available literature regarding its use to improve metabolic and cardiorespiratory adaptations in strength and conditioning programs among various populations. Additionally, we aim to create a definition that is used in future publications to evaluate more effectively the future impact of this type of training on health and fitness outcomes.

Keywords: athletes; exercise; first responders; general physical preparedness; military.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

    1. Hannan A.L., Hing W., Simas V., Climstein M., Coombes J.S., Jayasinghe R., Byrnes J., Furness J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access J. Sports Med. 2018;9:1–17. doi: 10.2147/OAJSM.S150596.
    1. Salazar-Martínez E., Santalla A., Orellana J.N., Strobl J., Burtscher M., Menz V. Influence of high-intensity interval training on ventilatory efficiency in trained athletes. Respir. Physiol. Neurobiol. 2018;250:19–23. doi: 10.1016/j.resp.2018.01.016.
    1. Lesmes G.R., Fox E.L., Stevens C., Otto R. Metabolic responses of females to high intensity interval training of different frequencies. Med. Sci. Sports. 1978;10:229–232.
    1. Thompson W.R. Worldwide survey of fitness trends for 2018: The CREP edition. ACSM’S Health Fit. J. 2017;21:10–19. doi: 10.1249/FIT.0000000000000341.
    1. Bayati M., Farzad B., Gharakhanlou R., Agha-Alinejad H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble ‘all-out’ sprint interval training. J. Sports Sci. Med. 2011;10:571–576.
    1. Driller M.W., Fell J.W., Gregory J.R., Shing C.M., Williams A.D. The effects of high-intensity interval training in well-trained rowers. Int. J. Sports Physiol. Perform. 2009;4:110–121. doi: 10.1123/ijspp.4.1.110.
    1. Duffield R., Edge J., Bishop D. Effects of high-intensity interval training on the vo2 response during severe exercise. J. Sci. Med. Sport. 2006;9:249–255. doi: 10.1016/j.jsams.2006.03.014.
    1. Esfarjani F., Laursen P.B. Manipulating high-intensity interval training: Effects on vo2max, the lactate threshold and 3000 m running performance in moderately trained males. J. Sci. Med. Sport. 2007;10:27–35. doi: 10.1016/j.jsams.2006.05.014.
    1. Burgomaster K.A., Hughes S.C., Heigenhauser G.J., Bradwell S.N., Gibala M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005;98:1985–1990. doi: 10.1152/japplphysiol.01095.2004.
    1. Gibala M.J., Little J.P., Macdonald M.J., Hawley J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012;590:1077–1084. doi: 10.1113/jphysiol.2011.224725.
    1. Heinrich K.M., Becker C., Carlisle T., Gilmore K., Hauser J., Frye J., Harms C.A. High-intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. Eur. J. Cancer Care. 2015;24:812–817. doi: 10.1111/ecc.12338.
    1. Heinrich K.M., Spencer V., Fehl N., Poston W.S. Mission essential fitness: Comparison of functional circuit training to traditional army physical training for active duty military. Mil. Med. 2012;177:1125–1130. doi: 10.7205/MILMED-D-12-00143.
    1. Murawska-Cialowicz E., Wojna J., Zuwala-Jagiello J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015;66:811–821.
    1. Heinrich K.M., Patel P.M., O’Neal J.L., Heinrich B.S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. BMC Public Health. 2014;14:789–795. doi: 10.1186/1471-2458-14-789.
    1. Glassman G. Understanding CrossFit. CrossFit J. 2007;56:1–2.
    1. Feito Y., Hoffstetter W., Serafini P., Mangine G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of hift. PLoS ONE. 2018;13:e0198324. doi: 10.1371/journal.pone.0198324.
    1. Fisher J., Sales A., Carlson L., Steele J. A comparison of the motivational factors between CrossFit participants and other resistance exercise modalities: A pilot study. J. Sports Med. Phys. Fit. 2017:1227–1234. doi: 10.23736/S0022-4707.16.06434-3.
    1. Simpson D., Prewitt-White T.R., Feito Y., Giusti J., Shuda R. Challenge, commitment, community, and empowerment: Factors that promote the adoption of CrossFit as a training program. Sports J. 2017:1–7.
    1. Bycura D., Feito Y., Prather C.C. Motivational factors in CrossFit® training participation. Health Behav. Policy Rev. 2017;4:539–550. doi: 10.14485/HBPR.4.6.4.
    1. Heinrich K.M., Carlisle T., Kehler A., Cosgrove S.J. Mapping coaches’ views of participation in CrossFit to the integrated theory of health behavior change and sense of community. Fam. Community Health. 2017;40:24–27. doi: 10.1097/FCH.0000000000000133.
    1. Poston W.S., Haddock C.K., Heinrich K.M., Jahnke S.A., Jitnarin N., Batchelor D.B. Is high-intensity functional training (HIFT)/CrossFit safe for military fitness training? Mil. Med. 2016;181:627–637. doi: 10.7205/MILMED-D-15-00273.
    1. Alcaraz P.E., Sanchez-Lorente J., Blazevich A.J. Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. J. Strength Cond. Res. 2008;22:667–671. doi: 10.1519/JSC.0b013e31816a588f.
    1. Baștuğ G., Özcan R., Gültekin D., Günay Ö. The effects of cross-fit, pilates and zumba exercise on body composition and body image of women. Int. J. Sports Exerc. Train. Sci. 2016;2:22–29. doi: 10.18826/ijsets.25037.
    1. Barfield J., Channell B., Pugh C., Tuck M., Pendel D. Format of basic instruction program resistance training classes: Effect on fitness change in college students. Phys. Educ. 2012;69:325–341.
    1. De Sousa A.F., dos Santos G.B., dos Reis T., Valerino A.J., Del Rosso S., Boullosa D.A. Differences in physical fitness between recreational CrossFit® and resistance trained individuals. J. Exer. Physiol. Online. 2016;19:112–122.
    1. Paine J., Uptgraft J., Wylie R. Crossfit Study, May 2010. Command and General Staff College; Fort Leavenworth, KS, USA: 2010.
    1. Buckley S., Knapp K., Lackie A., Lewry C., Horvey K., Benko C., Trinh J., Butcher S. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl. Physiol. Nutr. Metab. 2015;40:1157–1162. doi: 10.1139/apnm-2015-0238.
    1. McRae G., Payne A., Zelt J.G., Scribbans T.D., Jung M.E., Little J.P., Gurd B.J. Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Appl. Physiol. Nutr. Metab. 2012;37:1124–1131. doi: 10.1139/h2012-093.
    1. Cochran A.J., Percival M.E., Tricarico S., Little J.P., Cermak N., Gillen J.B., Tarnopolsky M.A., Gibala M.J. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp. Physiol. 2014;99:782–791. doi: 10.1113/expphysiol.2013.077453.
    1. Burgomaster K.A., Howarth K.R., Phillips S.M., Rakobowchuk M., Macdonald M.J., McGee S.L., Gibala M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008;586:151–160. doi: 10.1113/jphysiol.2007.142109.
    1. Gibala M.J., Little J.P., van Essen M., Wilkin G.P., Burgomaster K.A., Safdar A., Raha S., Tarnopolsky M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006;575:901–911. doi: 10.1113/jphysiol.2006.112094.
    1. Butcher S.J., Neyedly T.J., Horvey K.J., Benko C.R. Do physiological measures predict selected CrossFit benchmark performance? Open Access J. Sports Med. 2015;6:241–247. doi: 10.2147/OAJSM.S88265.
    1. Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.M., Nieman D.C., Swain D.P., American College of Sports Medcine American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011;43:1334–1359.
    1. Sperlich B., Wallmann-Sperlich B., Zinner C., Von Stauffenberg V., Losert H., Holmberg H.C. Functional high-intensity circuit training improves body composition, peak oxygen uptake, strength, and alters certain dimensions of quality of life in overweight women. Front. Physiol. 2017;8:172–181. doi: 10.3389/fphys.2017.00172.
    1. Kliszczewicz B., John Q.C., Daniel B.L., Gretchen O.D., Michael E.R., Kyle T.J. Acute exercise and oxidative stress: Crossfit™ vs. Treadmill bout. J. Hum. Kinet. 2015;47:81–90. doi: 10.1515/hukin-2015-0064.
    1. Kliszczewicz B., Buresh R., Bechke E., Williamson C. Metabolic biomarkers following a short and long bout of high-intensity functional training in recreationally trained men. J. Hum. Sport Exerc. 2017;12:710–718. doi: 10.14198/jhse.2017.123.15.
    1. Haddock C.K., Poston W.S., Heinrich K.M., Jahnke S.A., Jitnarin N. The benefits of high-intensity functional training fitness programs for military personnel. Mil. Med. 2016;181:e1508–e1514. doi: 10.7205/MILMED-D-15-00503.
    1. American College of Sports Medicine . Acsm’s Guidelines for Exercise Testing and Prescription. 10th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2017.
    1. Department of War . FM 21–20, Physical Fitness. Government Printing Office; Washington, DC, USA: 1946.
    1. Batchelor J.E. The Applicability of the Army Physical Fitness Test in the Contemporary Operating Environment. U.S. Army Command and General Staff College; Fort Leavenworth, KS, USA: 2008.
    1. Lowman C.T. Does Current Army Physical Fitness Training Doctrine Adequately Prepare Soldiers for War? U.S. Army Command and General Staff College; Fort Leavenworth, KS, USA: 2010.
    1. Roy T.C., Springer B.A., McNulty V., Butler N.L. Physical fitness. Mil. Med. 2010;175:14–20. doi: 10.7205/MILMED-D-10-00058.
    1. Showman N., Henson P. Us army physical readiness training protocols. Mil. Rev. 2014;94:12.
    1. Withrow K. Army Physical (Un)fitness: A System that Promotes Injury and Poor Nutrition. [(accessed on 2 August 2017)];Army Times. Available online:
    1. Hodzovic E. High-Intensity Functional Training = Efficient Exercise. [(accessed on 19 July 2017)]; Available online:
    1. Centers for Disease Control Prevention Adult participation in aerobic and muscle-strengthening physical activities—United States, 2011. MMWR Morb. Mortal. Wkly. Rep. 2013;62:326–330.
    1. Marcus B.H., Williams D.M., Dubbert P.M., Sallis J.F., King A.C., Yancey A.K., Franklin B.A., Buchner D., Daniels S.R., Claytor R.P. Physical activity intervention studies: What we know and what we need to know: A scientific statement from the American heart association council on nutrition, physical activity, and metabolism (subcommittee on physical activity); council on cardiovascular disease in the young; and the interdisciplinary working group on quality of care and outcomes research. Circulation. 2006;114:2739–2752.
    1. Perri M.G., Anton S.D., Durning P.E., Ketterson T.U., Sydeman S.J., Berlant N.E., Kanasky W.F., Newton R.L., Limacher M.C., Martin A.D. Adherence to exercise prescriptions: Effects of prescribing moderate versus higher levels of intensity and frequency. Health Psychol. 2002;21:452. doi: 10.1037/0278-6133.21.5.452.
    1. Anton S.D., Perri M.G., Riley J., III, Kanasky W.F., Jr., Rodrigue J.R., Sears S.F., Martin A.D. Differential predictors of adherence in exercise programs with moderate versus higher levels of intensity and frequency. J. Sport Exerc. Psychol. 2005;27:171–187. doi: 10.1123/jsep.27.2.171.
    1. Sylvester B.D., Curran T., Standage M., Sabiston C.M., Beauchamp M.R. Predicting exercise motivation and exercise behavior: A moderated mediation model testing the interaction between perceived exercise variety and basic psychological needs satisfaction. Psychol. Sport Exerc. 2018;36:50–56. doi: 10.1016/j.psychsport.2018.01.004.
    1. Ryan R.M., Deci E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000;55:68. doi: 10.1037/0003-066X.55.1.68.
    1. Teixeira P.J., Carraca E.V., Markland D., Silva M.N., Ryan R.M. Exercise, physical activity, and self-determination theory: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2012;9:78. doi: 10.1186/1479-5868-9-78.
    1. Nielsen G., Wikman J.M., Jensen C.J., Schmidt J.F., Gliemann L., Andersen T.R. Health promotion: The impact of beliefs of health benefits, social relations and enjoyment on exercise continuation. Scand. J. Med. Sci. Sports. 2014;24(Suppl. 1):66–75. doi: 10.1111/sms.12275.
    1. Cadmus-Bertram L., Irwin M., Alfano C., Campbell K., Duggan C., Foster-Schubert K., Wang C.Y., McTiernan A. Predicting adherence of adults to a 12-month exercise intervention. J. Phys. Act. Health. 2014;11:1304–1312. doi: 10.1123/jpah.2012-0258.
    1. Köteles F., Kollsete M., Kollsete H. Psychological concomitants of CrossFit training: Does more exercise really make your everyday psychological functioning better? Kineziologija. 2016;48:39–48.
    1. Sibley B.A., Bergman S.M. What keeps athletes in the gym? Goals, psychological needs, and motivation of CrossFit™ participants. Int. J. Sport Exerc. Psychol. 2017:1–20. doi: 10.1080/1612197X.2017.1280835.
    1. Davies M.J., Coleman L., Stellino M.B. The relationship between basic psychological need satisfaction, behavioral regulation, and participation in CrossFit. J. Sport Behav. 2016;39:239.
    1. Partridge J.A., Knapp B.A., Massengale B.D. An investigation of motivational variables in CrossFit facilities. J. Strength Cond. Res. 2014;28:1714–1721. doi: 10.1519/JSC.0000000000000288.
    1. McKenzie S. Getting Physical: The Rise of Fitness Culture in America. University Press of Kansas Lawrence; Lawrence, KS, USA: 2013.
    1. Dawson M.C. CrossFit fitness cult or reinventive institution? Int. Rev. Sociol. Sport. 2015 doi: 10.1177/1012690215591793.
    1. Whiteman-Sandland J., Hawkins J., Clayton D. The role of social capital and community belongingness for exercise adherence: An exploratory study of the CrossFit gym model. J. Health Psychol. 2016 doi: 10.1177/1359105316664132.
    1. Markula-Denison P., Pringle R. Foucault, Sport and Exercise: Power, Knowledge and Transforming the Self. Routledge; New York, NY, USA: 2006.
    1. Schuller T., Baron S., Field J. Social capital: A review and critique. In: Baron S., Field J., Schuller T., editors. Social Capital: Critical Perspectives. Oxford University Press; New York, NY, USA: 2000. pp. 1–38.
    1. Sigelman C.K., Rider E.A. Life-Span Human Development. Cengage Learning; Boston, MA, USA: 2014.
    1. Heywood L. The CrossFit sensorium: Visuality, affect and immersive sport. Paragraph. 2015;38:20–36. doi: 10.3366/para.2015.0144.
    1. Lichtenstein M.B., Jensen T.T. Exercise addiction in CrossFit: Prevalence and psychometric properties of the exercise addiction inventory. Addict. Behav. Rep. 2016;3:33–37. doi: 10.1016/j.abrep.2016.02.002.
    1. Washington M.S., Economides M. Strong is the new sexy: Women, CrossFit, and the postfeminist ideal. J. Sport Soc. Issues. 2016;40:143–161. doi: 10.1177/0193723515615181.
    1. Kohrt W., Bloomfield S., Little K., Nelson M., Yingling V. Physical activity and bone health. Position stand of the american college of sports medicine. Med. Sci. Sports Exerc. 2004;36:1985–1996. doi: 10.1249/01.MSS.0000142662.21767.58.
    1. Nieuwoudt S., Fealy C.E., Foucher J.A., Scelsi A.R., Malin S.K., Pagadala M., Rocco M., Burguera B., Kirwan J.P. Functional high-intensity training improves pancreatic beta-cell function in adults with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2017;313:E314–E320. doi: 10.1152/ajpendo.00407.2016.
    1. Fealy C.E., Nieuwoudt S., Foucher J.A., Scelsi A.R., Malin S.K., Pagadala M., Cruz L.A., Li M., Rocco M., Burguera B., et al. Functional high intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Exp. Physiol. 2018 doi: 10.1113/EP086844.
    1. Grundy S.M., Cleeman J.I., Daniels S.R., Donato K.A., Eckel R.H., Franklin B.A., Gordon D.J., Krauss R.M., Savage P.J., Smith S.C., Jr., et al. Diagnosis and management of the metabolic syndrome: An american heart association/national heart, lung, and blood institute scientific statement. Circulation. 2005;112:2735–2752. doi: 10.1161/CIRCULATIONAHA.105.169404.
    1. Waryasz G.R., Suric V., Daniels A.H., Gil J.A., Eberson C.P. Crossfit® instructor demographics and practice trends. Orthop. Rev. 2016;8:6571. doi: 10.4081/or.2016.6571.
    1. Maxwell C., Ruth K., Friesen C. Sports nutrition knowledge, perceptions, resources, and advice given by certified CrossFit trainers. Sports. 2017;5:21. doi: 10.3390/sports5020021.
    1. Mullins N. CrossFit: Remember what you have learned; apply what you know. J. Exerc. Physiol. Online. 2015;18:32–44.
    1. Achauer H. Top Five Hydration Myths Busted. [(accessed on 3 January 2018)]; Available online: .
    1. Cecil A.M. Nutrition: Real Science Stands against Industry Myths. [(accessed on 3 January 2018)]; Available online: .
    1. Sibley B.A. Using sport education to implement a CrossFit unit. J. Phys. Educ. Recreat. Dance. 2012;83:42–48. doi: 10.1080/07303084.2012.10598829.
    1. Kraemer W.J., Vescovi J.D., Volek J.S., Nindl B.C., Newton R.U., Patton J.F., Dziados J.E., French D.N., Häkkinen K. Effects of concurrent resistance and aerobic training on load-bearing performance and the army physical fitness test. Mil. Med. 2004;169:994–999. doi: 10.7205/MILMED.169.12.994.
    1. Kraemer W.J., Vogel J.A., Patton J.F., Dziados J.E., Reynolds K.L. The Effects of Various Physical Training Programs on Short Duration, High Intensity Load Bearing Performance and the Army Physical Fitness Test (No. Usariem-30/87) ARMY Research Institute of Environmental Medicine; Natick, MA, USA: 1987.
    1. Jones B.H., Hauschild V.D. Physical training, fitness, and injuries: Lessons learned from military studies. J. Strength Cond. Res. 2015;29(Suppl. 11):S57–S64. doi: 10.1519/JSC.0000000000001115.
    1. O’Hara R.B., Serres J., Traver K.L., Wright B., Vojta C., Eveland E. The influence of nontraditional training modalities on physical performance: Review of the literature. Aviat. Space Environ.Med. 2012;83:985–990. doi: 10.3357/ASEM.3376.2012.
    1. Adams J., Schneider J., Hubbard M., McCullough-Shock T., Cheng D., Simms K., Hartman J., Hinton P., Strauss D. Baylor University Medical Center Proceedings. Taylor & Francis; Boca Raton, FL, USA: 2010. Measurement of functional capacity requirements of police officers to aid in development of an occupation-specific cardiac rehabilitation training program; pp. 7–10.
    1. Anderson G.S., Plecas D., Segger T. Police officer physical ability testing–re-validating a selection criterion. Polic. Int. J. Police Strateg. Manag. 2001;24:8–31. doi: 10.1108/13639510110382232.
    1. Beck A.Q. Master’s Thesis. University of Kentucky; Lexington, KY, USA: 2012. Relationship between Physical Fitness Measures and Occupational Physical Ability in University Law Enforcement Officers.
    1. Elsner K.L., Kolkhorst F.W. Metabolic demands of simulated firefighting tasks. Ergonomics. 2008;51:1418–1425. doi: 10.1080/00140130802120259.
    1. Michaelides M.A., Parpa K.M., Thompson J., Brown B. Predicting performance on a firefghter’s ability test from fitness parameters. Res. Q. Exerc. Sport. 2008;79:468–475. doi: 10.1080/02701367.2008.10599513.
    1. Michaelides M.A., Parpa K.M., Henry L.J., Thompson G.B., Brown B.S. Assessment of physical fitness aspects and their relationship to firefighters’ job abilities. J. Strength Cond. Res. 2011;25:956–965. doi: 10.1519/JSC.0b013e3181cc23ea.
    1. Rhea M.R., Alvar B.A., Gray R. Physical fitness and job performance of firefighters. J. Strength Cond. Res. Res. J. NSCA. 2004;18:348–352.
    1. Sheaff A.K., Bennett A., Hanson E.D., Kim Y.-S., Hsu J., Shim J.K., Edwards S.T., Hurley B.F. Physiological determinants of the candidate physical ability test in firefighters. J. Strength Cond. Res. 2010;24:3112–3122. doi: 10.1519/JSC.0b013e3181f0a8d5.
    1. Abel M. Concerns and benefits of on-duty exercise training for firefighters. NSCA TSCA Report. 2012;Volume 23:1–4.
    1. Abel M.G., Palmer T.G., Trubee N. Exercise program design for structural firefighters. Strength Cond. J. 2015;37:8–19. doi: 10.1519/SSC.0000000000000123.
    1. Abel M.G., Sell K., Dennison K. Design and implementation of fitness programs for firefighters. Strength Cond. J. 2011;33:31–42. doi: 10.1519/SSC.0b013e318212f412.
    1. Durand G., Tsismenakis A.J., Jahnke S.A., Baur D.M., Christophi C.A., Kales S.N. Firefighters’ physical activity: Relation to fitness and cardiovascular disease risk. Med. Sci. Sports Exerc. 2011;43:1752–1759. doi: 10.1249/MSS.0b013e318215cf25.
    1. Pawlak R., Clasey J.L., Palmer T., Symons T.B., Abel M.G. The effect of a novel tactical training program on physical fitness and occupational performance in firefighters. J. Strength Cond. Res. 2015;29:578–588. doi: 10.1519/JSC.0000000000000663.
    1. Smith D.L. Firefighter fitness: Improving performance and preventing injuries and fatalities. Curr. Sports Med. Rep. 2011;10:167–172. doi: 10.1249/JSR.0b013e31821a9fec.
    1. Leahy G. Concurrent Training: Is There an “Interference Effect” on Tactical Performance. NSCA TSAC Report. 2012;Volume 23:9–11.
    1. Abel M.G., Mortara A.J., Pettitt R.W. Evaluation of circuit-training intensity for firefighters. J. Strength Cond. Res. 2011;25:2895–2901. doi: 10.1519/JSC.0b013e31820da00c.
    1. Roberts M.A., O’dea J., Boyce A., Mannix E.T. Fitness levels of firefighter recruits before and after a supervised exercise training program. J. Strength Cond. Res. 2002;16:271–277.
    1. Peterson M.D., Dodd D.J., Alvar B.A., Rhea M.R., Favre M. Undulation training for development of hierarchical fitness and improved firefighter job performance. J. Strength Cond. Res. 2008;22:1683–1695. doi: 10.1519/JSC.0b013e31818215f4.
    1. Griffin S.C., Regan T.L., Harber P., Lutz E.A., Hu C., Peate W.F., Burgess J.L. Evaluation of a fitness intervention for new firefighters: Injury reduction and economic benefits. Inj. Prev. 2016;22:181–188. doi: 10.1136/injuryprev-2015-041785.
    1. Crawley A.A., Sherman R.A., Crawley W.R., Cosio-Lima L.M. Physical fitness of police academy cadets: Baseline characteristics and changes during a 16-week academy. J. Strength Cond. Res. 2016;30:1416–1424. doi: 10.1519/JSC.0000000000001229.
    1. Cocke C., Dawes J., Orr R.M. The use of 2 conditioning programs and the fitness characteristics of police academy cadets. J. Athl. Train. 2016;51:887–896. doi: 10.4085/1062-6050-51.8.06.
    1. Junior L.C.H., Costa L.O.P., Lopes A.D. Previous injuries and some training characteristics predict running-related injuries in recreational runners: A prospective cohort study. J. Physiother. 2013;59:263–269. doi: 10.1016/S1836-9553(13)70203-0.
    1. Parkkari J., Kannus P., Natri A., Lapinleimu I., Palvanen M., Heiskanen M., Vuori I., Jarvinen M. Active living and injury risk. Int. J. Sports Med. 2004;25:209–216.
    1. Domene P.A., Clarke N.D., Delextrat A.A., Easton C. Injury surveillance of female adult zumba® dancers. J. Sports Med. Phys. Fit. 2017;57:1642–1649. doi: 10.1249/01.mss.0000487595.97663.d7.
    1. Han A.P. Journal Retracts Ohio State CrossFit Study at Center of Lawsuits. [(accessed on 6 October 2017)]; Available online:
    1. Han A.P. Researcher Who Tangled with CrossFit Loses Two More Papers. [(accessed on 6 October 2017)]; Available online: .
    1. Moran S., Booker H., Staines J., Williams S. Rates and risk factors of injury in CrossFit: A prospective cohort study. J. Sports Med. Phys. Fit. 2017;57:1147–1153.
    1. Montalvo A.M., Shaefer H., Rodriguez B., Li T., Epnere K., Myer G.D. Retrospective injury epidemiology and risk factors for injury in CrossFit. J. Sports Sci. Med. 2017;16:53–59.
    1. Summitt R.J., Cotton R.A., Kays A.C., Slaven E.J. Shoulder injuries in individuals who participate in CrossFit training. Sports Health. 2016;8:541–546. doi: 10.1177/1941738116666073.
    1. Klimek C., Ashbeck C., Brook A.J., Durall C. Are injuries more common with CrossFit training than other forms of exercise? J. Sport Rehabil. 2018;27:295–299. doi: 10.1123/jsr.2016-0040.
    1. Meyer J., Morrison J., Zuniga J. The benefits and risks of CrossFit: A systematic review. Workplace Health Saf. 2017;65:612–618. doi: 10.1177/2165079916685568.
    1. Bergeron M.F., Nindl B.C., Deuster P.A., Baumgartner N., Kane S.F., Kraemer W.J., Sexauer L.R., Thompson W.R., O’Connor F.G. Consortium for health and military performance and american college of sports medicine consensus paper on extreme conditioning programs in military personnel. Curr. Sports Med. Rep. 2011;10:383–389. doi: 10.1249/JSR.0b013e318237bf8a.
    1. Grier T., Canham-Chervak M., McNulty V., Jones B.H. Extreme conditioning programs and injury risk in a US army brigade combat team. US Army Med. Dep. J. 2013;4:36–47.
    1. Knapik J.J. Extreme conditioning programs: Potential benefits and potential risks. J. Spec. Oper. Med. 2015;15:108–113.

Source: PubMed

3
Abonner