The Immunome in Two Inherited Forms of Pulmonary Fibrosis

Souheil El-Chemaly, Foo Cheung, Yuri Kotliarov, Kevin J O'Brien, William A Gahl, Jinguo Chen, Shira Y Perl, Angélique Biancotto, Bernadette R Gochuico, Souheil El-Chemaly, Foo Cheung, Yuri Kotliarov, Kevin J O'Brien, William A Gahl, Jinguo Chen, Shira Y Perl, Angélique Biancotto, Bernadette R Gochuico

Abstract

The immunome (immune cell phenotype, gene expression, and serum cytokines profiling) in pulmonary fibrosis is incompletely defined. Studies focusing on inherited forms of pulmonary fibrosis provide insights into mechanisms of fibrotic lung disease in general. To define the cellular and molecular immunologic phenotype in peripheral blood, high-dimensional flow cytometry and large-scale gene expression of peripheral blood mononuclear cells and serum proteomic multiplex analyses were performed and compared in a cohort with familial pulmonary fibrosis (FPF), an autosomal dominant disorder with incomplete penetrance; Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF), a rare autosomal recessive disorder; and their unaffected relatives. Our results showed high peripheral blood concentrations of activated central memory helper cells in patients with FPF. Proportions of CD38+ memory CD27- B-cells, IgA+ memory CD27+ B-cells, IgM+ and IgD+ B-cells, and CD39+ T helper cells were increased whereas those of CD39- T helper cells were reduced in patients affected with either familial or HPSPF. Gene expression and serum proteomic analyses revealed enrichment of upregulated genes associated with mitosis and cell cycle control in circulating mononuclear cells as well as altered levels of several analytes, including leptin, cytokines, and growth factors. In conclusion, dysregulation of the extra-pulmonary immunome is a phenotypic feature of FPF or HPSPF. Further studies investigating the blood immunome are indicated to determine the role of immune system dysregulation in the pathogenesis of pulmonary fibrosis.

Clinical trial registration: www.ClinicalTrials.gov, identifiers NCT00968084, NCT01200823, NCT00001456, and NCT00084305.

Keywords: B-cell; Hermansky–Pudlak syndrome; T-cell; cytokine; immunome; lymphocyte; pulmonary fibrosis; telomere disease.

Figures

Figure 1
Figure 1
Clinical images in patients with familial pulmonary fibrosis (FPF), Hermansky–Pudlak syndrome pulmonary fibrosis (HPSPF), and unaffected relatives (URels). High-resolution computed tomography scan images demonstrate lung fibrosis (white arrows) in patients with FPF (A) or HPSPF (B), and not in an URel (C). Whole mount electron microscopy images show absent platelet delta granules in a patient with Hermansky–Pudlak syndrome (D), size bar = 1 μm; normal control platelets contain delta granules (black arrows) (E), size bar = 0.5 μm.
Figure 2
Figure 2
Principal component analysis (PCA) of peripheral blood cells and serum immunome proteins in patients with familial pulmonary fibrosis (FPF), Hermansky–Pudlak syndrome pulmonary fibrosis (HPSPF), and unaffected relatives (URels). PCA of complete blood cell parameters shows clustering of patients with FPF, HPSPF, and URel (A). Subpopulations of patient groups are not found on PCA of peripheral blood mononuclear cell flow cytometry data (B). Patient groups also cluster with PCA of serum immunome proteomic data; one patient with FPF and their unaffected sibling segregate together as outliers (C).
Figure 3
Figure 3
Phenotyping of peripheral blood cell parameters in patients with familial pulmonary fibrosis (FPF), Hermansky–Pudlak syndrome pulmonary fibrosis (HPSPF), and unaffected relatives (URels). Concentrations of white blood cell (WBC), polymorphonuclear leukocyte (PMNs), basophils, monocytes, and platelets as well as basophil percent were significantly different in patients with FPF compared with those with HPSPF. Red blood cell (RBC) counts, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean platelet volume (MPV) were also significantly different between groups as shown.
Figure 4
Figure 4
Flow cytometry of peripheral blood mononuclear cell populations and serum immunome profile in patients with familial pulmonary fibrosis (FPF), Hermansky–Pudlak syndrome pulmonary fibrosis (HPSPF), and unaffected relatives (URel). Percentages of central memory helper cells were significantly higher in patients with FPF compared with patients with HPSPF (A). Percentages of CD38+ memory CD27− B-cells, IgA+ memory CD27+ B-cells, IgM+ and IgD+ B-cells, CD39+ T helper cells, and CD39− T helper cells were significantly different in patients affected with either FPF or HPSPF compared with URel (A,B). Serum concentrations of chemokine ligand-27 (CTAK), granulocyte colony-stimulation factor (G.CSF), haptoglobin, interferon-γ (IFN.g), interleukin-1rα (IL.1ra), interleukin-4 (IL.4), interleukin-7 (IL.7), interleukin-8 (IL.8), leptin, macrophage inflammatory protein 1β (MIP.1b), plasminogen activator inhibitor-1 (PAI.1), platelet-derived growth factor-bb (PDGF.bb), stem cell growth factor-β (SCGF.b), and tumor necrosis factor-α (TNFa) were significantly different between groups as shown (C).
Figure 5
Figure 5
Analysis of peripheral blood mononuclear cell microarray expression data in patients with familial pulmonary fibrosis (FPF), Hermansky–Pudlak syndrome pulmonary fibrosis (HPSPF), and unaffected relatives (URel). Heatmaps of relative expression intensities of 31 differentially expressed genes with false discovery rate-adjusted p-value <0.1 and absolute log2-fold change > 0.3 in any pairwise comparison between three groups are displayed (A). Significantly enriched blood transcription modules with adjusted p-value <10−3 in at least one of three pairwise comparisons are shown (B).

References

    1. Martinez FJ, Safrin S, Weycker D, Starko KM, Bradford WZ, King TE, Jr, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med (2005) 142:963–7.10.7326/0003-4819-142-12_Part_1-200506210-00005
    1. Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med (2001) 345:517–25.10.1056/NEJMra003200
    1. Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med (2015) 192:e3–19.10.1164/rccm.201506-1063ST
    1. El-Chemaly S, Ziegler SG, Calado RT, Wilson KA, Wu HP, Haughey M, et al. Natural history of pulmonary fibrosis in two subjects with the same telomerase mutation. Chest (2011) 139:1203–9.10.1378/chest.10-2048
    1. Newton CA, Batra K, Torrealba J, Kozlitina J, Glazer CS, Aravena C, et al. Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive. Eur Respir J (2016) 48:1710–20.10.1183/13993003.00308-2016
    1. Rosas IO, Ren P, Avila NA, Chow CK, Franks TJ, Travis WD, et al. Early interstitial lung disease in familial pulmonary fibrosis. Am J Respir Crit Care Med (2007) 176:698–705.10.1164/rccm.200702-254OC
    1. Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med (2007) 356:1317–26.10.1056/NEJMoa066157
    1. Fukuhara A, Tanino Y, Ishii T, Inokoshi Y, Saito K, Fukuhara N, et al. Pulmonary fibrosis in dyskeratosis congenita with TINF2 gene mutation. Eur Respir J (2013) 42:1757–9.10.1183/09031936.00149113
    1. Kropski JA, Mitchell DB, Markin C, Polosukhin VV, Choi L, Johnson JE, et al. A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia. Chest (2014) 146:e1–7.10.1378/chest.13-2224
    1. Stuart BD, Choi J, Zaidi S, Xing C, Holohan B, Chen R, et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet (2015) 47:512–7.10.1038/ng.3278
    1. Tsakiri KD, Cronkhite JT, Kuan PJ, Xing C, Raghu G, Weissler JC, et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A (2007) 104:7552–7.10.1073/pnas.0701009104
    1. Thomas AQ, Lane K, Phillips J, III, Prince M, Markin C, Speer M, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med (2002) 165:1322–8.10.1164/rccm.200112-123OC
    1. Wang Y, Kuan PJ, Xing C, Cronkhite JT, Torres F, Rosenblatt RL, et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet (2009) 84:52–9.10.1016/j.ajhg.2008.11.010
    1. Gahl WA, Brantly M, Kaiser-Kupfer MI, Iwata F, Hazelwood S, Shotelersuk V, et al. Genetic defects and clinical characteristics of patients with a form of oculocutaneous albinism (Hermansky-Pudlak syndrome). N Engl J Med (1998) 338:1258–64.10.1056/NEJM199804303381803
    1. Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet (2008) 9:359–86.10.1146/annurev.genom.9.081307.164303
    1. Ammann S, Schulz A, Krageloh-Mann I, Dieckmann NM, Niethammer K, Fuchs S, et al. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood (2016) 127:997–1006.10.1182/blood-2015-09-671636
    1. Badolato R, Prandini A, Caracciolo S, Colombo F, Tabellini G, Giacomelli M, et al. Exome sequencing reveals a pallidin mutation in a Hermansky-Pudlak-like primary immunodeficiency syndrome. Blood (2012) 119:3185–7.10.1182/blood-2012-01-404350
    1. Gil-Krzewska A, Murakami Y, Peruzzi G, O’Brien KJ, Merideth MA, Cullinane AR, et al. Natural killer cell activity and dysfunction in Hermansky-Pudlak syndrome. Br J Haematol (2017) 176:118–23.10.1111/bjh.14390
    1. Gochuico BR, Huizing M, Golas GA, Scher CD, Tsokos M, Denver SD, et al. Interstitial lung disease and pulmonary fibrosis in Hermansky-Pudlak syndrome type 2, an adaptor protein-3 complex disease. Mol Med (2012) 18:56–64.10.2119/molmed.2011.00198
    1. Huizing M, Scher CD, Strovel E, Fitzpatrick DL, Hartnell LM, Anikster Y, et al. Nonsense mutations in ADTB3A cause complete deficiency of the beta3A subunit of adaptor complex-3 and severe Hermansky-Pudlak syndrome type 2. Pediatr Res (2002) 51:150–8.10.1203/00006450-200202000-00006
    1. Anderson PD, Huizing M, Claassen DA, White J, Gahl WA. Hermansky-Pudlak syndrome type 4 (HPS-4): clinical and molecular characteristics. Hum Genet (2003) 113:10–7.10.1007/s00439-003-0933-5
    1. Brantly M, Avila NA, Shotelersuk V, Lucero C, Huizing M, Gahl WA. Pulmonary function and high-resolution CT findings in patients with an inherited form of pulmonary fibrosis, Hermansky-Pudlak syndrome, due to mutations in HPS-1. Chest (2000) 117:129–36.10.1378/chest.117.1.129
    1. El-Chemaly S, Malide D, Zudaire E, Ikeda Y, Weinberg BA, Pacheco-Rodriguez G, et al. Abnormal lymphangiogenesis in idiopathic pulmonary fibrosis with insights into cellular and molecular mechanisms. Proc Natl Acad Sci U S A (2009) 106:3958–63.10.1073/pnas.0813368106
    1. Avila NA, Brantly M, Premkumar A, Huizing M, Dwyer A, Gahl WA. Hermansky-Pudlak syndrome: radiography and CT of the chest compared with pulmonary function tests and genetic studies. AJR Am J Roentgenol (2002) 179:887–92.10.2214/ajr.179.4.1790887
    1. Kim TS, Lee KS, Chung MP, Han J, Park JS, Hwang JH, et al. Nonspecific interstitial pneumonia with fibrosis: high-resolution CT and pathologic findings. AJR Am J Roentgenol (1998) 171:1645–50.10.2214/ajr.171.6.9843306
    1. Kirshenbaum AS, Cruse G, Desai A, Bandara G, Leerkes M, Lee CC, et al. Immunophenotypic and ultrastructural analysis of mast cells in Hermansky-Pudlak syndrome type-1: a possible connection to pulmonary fibrosis. PLoS One (2016) 11:e0159177.10.1371/journal.pone.0159177
    1. Rouhani FN, Brantly ML, Markello TC, Helip-Wooley A, O’Brien K, Hess R, et al. Alveolar macrophage dysregulation in Hermansky-Pudlak syndrome type 1. Am J Respir Crit Care Med (2009) 180:1114–21.10.1164/rccm.200901-0023OC
    1. Cullinane AR, Yeager C, Dorward H, Carmona-Rivera C, Wu HP, Moss J, et al. Dysregulation of galectin-3. Implications for Hermansky-Pudlak syndrome pulmonary fibrosis. Am J Respir Cell Mol Biol (2014) 50:605–13.10.1165/rcmb.2013-0025OC
    1. Gochuico BR, Avila NA, Chow CK, Novero LJ, Wu HP, Ren P, et al. Progressive preclinical interstitial lung disease in rheumatoid arthritis. Arch Intern Med (2008) 168:159–66.10.1001/archinternmed.2007.59
    1. Biancotto A, Fuchs JC, Williams A, Dagur PK, McCoy JP, Jr. High dimensional flow cytometry for comprehensive leukocyte immunophenotyping (CLIP) in translational research. J Immunol Methods (2011) 363:245–61.10.1016/j.jim.2010.06.010
    1. Biancotto A, McCoy JP. Studying the human immunome: the complexity of comprehensive leukocyte immunophenotyping. Curr Top Microbiol Immunol (2014) 377:23–60.10.1007/82_2013_336
    1. Tsang JS, Schwartzberg PL, Kotliarov Y, Biancotto A, Xie Z, Germain RN, et al. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell (2014) 157:499–513.10.1016/j.cell.2014.03.031
    1. Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol (2014) 15:195–204.10.1038/ni.2789
    1. Weiner J 3rd, Domaszewska T. tmod: an R package for general and multivariate enrichment analysis. PeerJ Preprints (2016) 4:e2420v1.10.7287/peerj.preprints.2420v1
    1. Grumet M, Mauro V, Burgoon MP, Edelman GM, Cunningham BA. Structure of a new nervous system glycoprotein, Nr-CAM, and its relationship to subgroups of neural cell adhesion molecules. J Cell Biol (1991) 113:1399–412.10.1083/jcb.113.6.1399
    1. Craig VJ, Polverino F, Laucho-Contreras ME, Shi Y, Liu Y, Osorio JC, et al. Mononuclear phagocytes and airway epithelial cells: novel sources of matrix metalloproteinase-8 (MMP-8) in patients with idiopathic pulmonary fibrosis. PLoS One (2014) 9:e97485.10.1371/journal.pone.0097485
    1. Herazo-Maya JD, Noth I, Duncan SR, Kim S, Ma S, Tseng GC, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med (2013) 5:205ra136.10.1126/scitranslmed.3005964
    1. Calado RT, Young NS. Telomere diseases. N Engl J Med (2009) 361:2353–65.10.1056/NEJMra0903373
    1. Molyneaux PL, Willis Owen SA, Cox MJ, James P, Cowman S, Loebinger M, et al. Host-microbial interactions in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med (2017) 195(12):1640–50.10.1164/rccm.201607-1408OC
    1. Xue J, Kass DJ, Bon J, Vuga L, Tan J, Csizmadia E, et al. Plasma B lymphocyte stimulator and B cell differentiation in idiopathic pulmonary fibrosis patients. J Immunol (2013) 191:2089–95.10.4049/jimmunol.1203476
    1. Lafyatis R, O’Hara C, Feghali-Bostwick CA, Matteson E. B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum (2007) 56:3167–8.10.1002/art.22847
    1. Agrawal S, Gollapudi S, Su H, Gupta S. Leptin activates human B cells to secrete TNF-alpha, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J Clin Immunol (2011) 31:472–8.10.1007/s10875-010-9507-1
    1. Lam QL, Wang S, Ko OK, Kincade PW, Lu L. Leptin signaling maintains B-cell homeostasis via induction of Bcl-2 and cyclin D1. Proc Natl Acad Sci U S A (2010) 107:13812–7.10.1073/pnas.1004185107
    1. Martin-Romero C, Santos-Alvarez J, Goberna R, Sanchez-Margalet V. Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell Immunol (2000) 199:15–24.10.1006/cimm.1999.1594

Source: PubMed

3
Abonner