Understanding and optimizing brain health in HIV now: protocol for a longitudinal cohort study with multiple randomized controlled trials

Nancy E Mayo, Marie-Josée Brouillette, Lesley K Fellows, Positive Brain Health Now Investigators, Ross Anderson, Susan Bartlett, Bruce James Brew, Hélène Côté, José Côté, Lucette Cysique, Etienne de Villers-Sidani, Nandini Dendukuri, Marianne Harris, Marina Klein, Lisa Koski, Jean-Pierre Routy, Fiona Smail, Graham Smith, Rachel Therrien, Réjean Thomas, Benoit Trottier, Nancy E Mayo, Marie-Josée Brouillette, Lesley K Fellows, Positive Brain Health Now Investigators, Ross Anderson, Susan Bartlett, Bruce James Brew, Hélène Côté, José Côté, Lucette Cysique, Etienne de Villers-Sidani, Nandini Dendukuri, Marianne Harris, Marina Klein, Lisa Koski, Jean-Pierre Routy, Fiona Smail, Graham Smith, Rachel Therrien, Réjean Thomas, Benoit Trottier

Abstract

Background: Chronic HIV infection commonly affects both cognition and mental health, even with excellent systemic viral control. The causes of compromised brain health are likely to be a multi-factorial combination of HIV-related biological factors, co-morbidities such as aging and cerebrovascular disease, and the erosion of coping skills, physical health, and social supports resulting from the strains of living with a chronic illness.

Methods/design: This study aims to provide a better understanding of the relationship between cognitive complaints, depression, and objectively measured cognitive impairment in HIV, and of the key factors, whether biological or personal, which relate to these presentations and to their evolution over time. Characterization of this heterogeneity will permit more focused pathophysiological studies, and allow more targeted interventions. The project makes extensive use of Web-based research and health care delivery tools, aiming to provide cost-effective, "clinic ready" tools to improve brain health in HIV. This project has two overarching aims, reflecting our dual goals of understanding and improving brain health in HIV, focusing on cognitive impairment, its contributors and consequences. The objectives are to contribute evidence for the validity of a brief brain health assessment, to estimate the extent to which HIV-related cognition-relevant clinical factors and patient-centered outcomes inter-relate and evolve over time, allowing identification of the mechanisms underpinning longitudinal change in brain health and to contribute evidence for the feasibility, effectiveness potential, acceptability, and underlying mechanisms of promising interventions for optimizing brain health. We adopt a cohort multiple randomized control trials design. A total of 900 participants will be characterized prospectively over a 27-month period to answer questions about the evolution of outcomes of interest. All participants will be offered basic brain health self-management information. Sub-groups will participate in pilot studies of specific, more intensive interventions to provide pragmatic evidence for feasibility, effectiveness, and comparative effectiveness.

Discussion: This work will provide needed estimates of the burden, heterogeneity, evolution, and mechanisms underlying compromised brain health in HIV, and test a range of promising non-pharmacological interventions. This is an on-going study; the trials nested within this cohort that are currently recruiting participants were registered on 7 October 2015 (Clinicaltrials.gov NCT02571504 and NCT02571595).

Figures

Fig. 1
Fig. 1
Overview of research platform, including the main cohort, followed longitudinally, and the strategy for sampling from this cohort for multiple randomized controlled trials of non-pharmacological interventions
Fig. 2
Fig. 2
Wilson-Cleary outcome model. Characteristics of the individual include motivation, symptom amplification; characteristics of the environment include psychological and social supports

References

    1. Ances BM, Clifford DB. HIV-associated neurocognitive disorders and the impact of combination antiretroviral therapies. Curr Neurol Neurosci Rep. 2008;8:455–461. doi: 10.1007/s11910-008-0073-3.
    1. Gongvatana A, Harezlak J, Buchthal S, Daar E, Schifitto G, Campbell T, et al. Progressive cerebral injury in the setting of chronic HIV infection and antiretroviral therapy. J Neurovirol. 2013;19:209–218. doi: 10.1007/s13365-013-0162-1.
    1. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–1799. doi: 10.1212/01.WNL.0000287431.88658.8b.
    1. Ellis RJ, Rosario D, Clifford DB, McArthur JC, Simpson D, Alexander T, et al. Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER Study. Arch Neurol. 2010;67:552–558. doi: 10.1001/archneurol.2010.76.
    1. Robertson KR, Su Z, Margolis DM, Krambrink A, Havlir DV, Evans S, et al. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology. 2010;74:1260–1266. doi: 10.1212/WNL.0b013e3181d9ed09.
    1. Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression: Possible implications for functional neuropathology. Br J Psychiatry. 2001;178:200–206. doi: 10.1192/bjp.178.3.200.
    1. Au A, Cheng C, Chan I, Leung P, Li P, Heaton RK. Subjective memory complaints, mood, and memory deficits among HIV/AIDS patients in Hong Kong. J Clin Exp Neuropsychol. 2008;30:338–348. doi: 10.1080/13803390701416189.
    1. Castellon SA, Hinkin CH, Wood S, Yarema KT. Apathy, depression, and cognitive performance in HIV-1 infection. J Neuropsychiatry Clin Neurosci. 1998;10:320–329. doi: 10.1176/jnp.10.3.320.
    1. Cysique LA, Brew BJ. Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol. 2011;17:176–183. doi: 10.1007/s13365-011-0021-x.
    1. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: Charter Study. Neurology. 2010;75:2087–2096. doi: 10.1212/WNL.0b013e318200d727.
    1. Valcour VG, Shikuma CM, Watters MR, Sacktor NC. Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS. 2004;18(Suppl 1):S79–S86. doi: 10.1097/00002030-200401001-00012.
    1. Bing EG, Burnam MA, Longshore D, Fleishman JA, Sherbourne CD, London AS, et al. Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Arch Gen Psychiatry. 2001;58:721–728. doi: 10.1001/archpsyc.58.8.721.
    1. Jia H, Uphold CR, Wu S, Reid K, Findley K, Duncan PW. Health-related quality of life among men with HIV infection: effects of social support, coping, and depression. AIDS Patient Care STDS. 2004;18:594–603. doi: 10.1089/apc.2004.18.594.
    1. Letendre SL, McCutchan JA, Childers ME, Woods SP, Lazzaretto D, Heaton RK, et al. Enhancing antiretroviral therapy for human immunodeficiency virus cognitive disorders. Ann Neurol. 2004;56:416–423. doi: 10.1002/ana.20198.
    1. Power C, Boissé L, Rourke S, Gill MJ. NeuroAIDS: an evolving epidemic. Can J Neurol Sci. 2009;36:285–295. doi: 10.1017/S0317167100007009.
    1. Price RW, Yiannoutsos CT, Clifford DB, Zaborski L, Tselis A, Sidtis JJ, et al. Neurological outcomes in late HIV infection: adverse impact of neurological impairment on survival and protective effect of antiviral therapy. AIDS. 1999;13:1677–1685. doi: 10.1097/00002030-199909100-00011.
    1. Tozzi V, Balestra P, Galgani S, Murri R, Bellagamba R, Narciso P, et al. Neurocognitive performance and quality of life in patients with HIV infection. AIDS Res Hum Retroviruses. 2003;19:643–652. doi: 10.1089/088922203322280856.
    1. Vivithanaporn P, Heo G, Gamble J, Krentz HB, Hoke A, Gill MJ, et al. Neurologic disease burden in treated HIV/AIDS predicts survival: A population-based study. Neurology. 2010;75:1150–1158. doi: 10.1212/WNL.0b013e3181f4d5bb.
    1. Brouillette M-J, Mayo N, Fellows LK, Lebedeva E, Higgins J, Overton E, et al. A better screening tool for HIV-Associated Neurocognitive Disorders: Is it what clinicians need? AIDS. 2015;29:895–902. doi: 10.1097/QAD.0000000000000152.
    1. Foley J, Ettenhofer M, Wright MJ, Siddiqi I, Choi M, Thames AD, et al. Neurocognitive functioning in HIV-1 infection: effects of cerebrovascular risk factors and age. Clin Neuropsychol. 2010;24:265–285. doi: 10.1080/13854040903482830.
    1. Cysique LA, Brew BJ. Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: A review. Neuropsychol Rev. 2009;19:169–185. doi: 10.1007/s11065-009-9092-3.
    1. McArthur JC, Brew BJ. HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS. 2010;24:1367–1370. doi: 10.1097/QAD.0b013e3283391d56.
    1. Ances BM, Vaida F, Yeh MJ, Liang CL, Buxton RB, Letendre S, et al. HIV infection and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis. 2010;201:336–340. doi: 10.1086/649899.
    1. Relton C, Torgerson D, O’Cathain A, Nicholl J. Rethinking pragmatic randomised controlled trials: introducing the “cohort multiple randomised controlled trial” design. BMJ. 2010;340:c1066. doi: 10.1136/bmj.c1066.
    1. Feldman HH, Jacova C, Robillard A, Garcia A, Chow T, Borrie M, et al. Diagnosis and treatment of dementia: 2. Diagnosis. CMAJ. 2008;178:825–836. doi: 10.1503/cmaj.070798.
    1. Wilson IB, Cleary PD. Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA. 1995;273:59–65. doi: 10.1001/jama.1995.03520250075037.
    1. Portillo CJ, Mendez MR, Holzemer WL, Corless IB, Nicholas PK, Coleman C, et al. Quality of Life of Ethnic Minority Persons Living with HIV/AIDS. J Multicult Nurs Heal. 2005;11:31–37.
    1. Vidrine DJ, Amick BC, Gritz ER, Arduino RC. Assessing a conceptual framework of health-related quality of life in a HIV/AIDS population. Qual Life Res. 2005;14:923–933. doi: 10.1007/s11136-004-2148-1.
    1. Koski L, Brouillette M-J, Lalonde R, Hello B, Wong E, Tsuchida A, et al. Computerized testing augments pencil-and-paper tasks in measuring HIV-associated mild cognitive impairment. HIV Med. 2011;12:472–480. doi: 10.1111/j.1468-1293.2010.00910.x.
    1. Brouillette M-J, Fellows LK, Palladini L, Finch L, Thomas R, Mayo NE. Quantifying cognition at the bedside: a novel approach combining cognitive symptoms and signs in HIV. BMC Neurol. 2015;15:224. doi: 10.1186/s12883-015-0483-1.
    1. Sullivan MJ, Edgley K, Dehoux E. A survey of multiple sclerosis: I. Perceived cognitive problems and compensatory strategy use. Can J Rehabil. 1990;4:99–105.
    1. Takasaki H, Chien CW, Johnston V, Treleaven J, Jull G. Validity and reliability of the perceived deficit questionnaire to assess cognitive symptoms in people with chronic whiplash-associated disorders. Arch Phys Med Rehabil. 2012;93:1774–1781. doi: 10.1016/j.apmr.2012.05.013.
    1. Vogel A, Bhattacharya S, Larsen JL, Jacobsen S. Do subjective cognitive complaints correlate with cognitive impairment in systemic lupus erythematosus? A Danish outpatient study. Lupus. 2011;20:35–43. doi: 10.1177/0961203310382430.
    1. Bailis DS, Segall A, Chipperfield JG. Two views of self-rated general health status. Soc Sci Med. 2003;56:203–217. doi: 10.1016/S0277-9536(02)00020-5.
    1. Idler EL, Benyamini Y. Self-rated health and mortality: a review of twenty-seven community studies. J Health Soc Behav. 1997;38:21–37. doi: 10.2307/2955359.
    1. Romney DM, Evans DR. Toward a general model of health-related quality of life. Qual Life Res. 1996;5:235–241. doi: 10.1007/BF00434745.
    1. Nagin DS, Pagani L, Tremblay RE, Vitaro F. Life course turning points: the effect of grade retention on physical aggression. Dev Psychopathol. 2003;15:343–361. doi: 10.1017/S0954579403000191.
    1. Mayo NE, Fellows LK, Scott SC, Cameron J, Wood-Dauphinee S. A longitudinal view of apathy and its impact after stroke. Stroke. 2009;40:3299–3307. doi: 10.1161/STROKEAHA.109.554410.
    1. Xie H, Mayo N, Koski L. Identifying and characterizing trajectories of cognitive change in older persons with mild cognitive impairment. Dement Geriatr Cogn Disord. 2011;31:165–172. doi: 10.1159/000323568.
    1. Mayo NE, Scott SC, Dendukuri N, Ahmed S, Wood-Dauphinee S. Identifying response shift statistically at the individual level. Qual Life Res. 2008;17:627–639. doi: 10.1007/s11136-008-9329-2.
    1. Begg CB, Greenes RA. Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics. 1983;39:207–215. doi: 10.2307/2530820.
    1. Bell B, Morgan G, Kromrey J, Ferron J: The impact of small cluster size on multilevel models: a Monte Carlo examination of two-level models with binary and continuous predictors. Presented at: 2010. Joint Statistical Meetings, 2010 Jul 31–Aug 5; Vancouver, British Columbia, Canada.
    1. Maas CJM, Hox JJ. Sufficient sample sizes for multilevel modeling. Methodology. 2005;1:86–92. doi: 10.1027/1614-2241.1.3.86.
    1. Relton C, Bissell P, Smith C, Blackburn J, Cooper CL, Nicholl J, et al. South Yorkshire Cohort: a “cohort trials facility” study of health and weight - protocol for the recruitment phase. BMC Public Health. 2011;11:640. doi: 10.1186/1471-2458-11-640.
    1. Peckham EJ, Relton C, Raw J, Walters C, Thomas K, Smith C. A protocol for a trial of homeopathic treatment for irritable bowel syndrome. BMC Complement Altern Med. 2012;12:212. doi: 10.1186/1472-6882-12-212.
    1. Kearns B, Ara R, Young T, Relton C. Association between body mass index and health-related quality of life, and the impact of self-reported long-term conditions - cross-sectional study from the south Yorkshire cohort dataset. BMC Public Health. 2013;13:1009. doi: 10.1186/1471-2458-13-1009.
    1. Relton C, O’Cathain A, Nicholl J. A pilot “cohort multiple randomised controlled trial” of treatment by a homeopath for women with menopausal hot flushes. Contemp Clin Trials. 2012;33:853–859. doi: 10.1016/j.cct.2012.04.003.
    1. Viksveen P, Relton C. Depression treated by homeopaths: a study protocol for a pragmatic cohort multiple randomised controlled trial. Homeopathy. 2014;103:147–152. doi: 10.1016/j.homp.2014.01.004.

Source: PubMed

3
Abonner