CCN2 Binds to Tubular Epithelial Cells in the Kidney

Sandra Rayego-Mateos, José Luis Morgado-Pascual, Carolina Lavoz, Raúl R Rodrigues-Díez, Laura Márquez-Expósito, Antonio Tejera-Muñoz, Lucía Tejedor-Santamaría, Irene Rubio-Soto, Vanessa Marchant, Marta Ruiz-Ortega, Sandra Rayego-Mateos, José Luis Morgado-Pascual, Carolina Lavoz, Raúl R Rodrigues-Díez, Laura Márquez-Expósito, Antonio Tejera-Muñoz, Lucía Tejedor-Santamaría, Irene Rubio-Soto, Vanessa Marchant, Marta Ruiz-Ortega

Abstract

Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression.

Trial registration: ClinicalTrials.gov NCT02606136 NCT04229004 NCT03955146.

Keywords: CCN2; CTGF; EGFR; kidney damage.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Evaluation of CCN2(IV) binding to renal tissue in the model of intra-renal injection. C57BL/6 mice were injected with Cy5-CCN2(IV) (dose of 2.5 ng/g of body weight, n = 3 mice per group) in the right kidney and sacrificed at different times (from 10 to 30 min). Frozen OCT-embedded renal samples were used for confocal microscopy. Red immunostaining (corresponding to CCN2(IV) labeled with Cy5 fluorophore) was found in tubular epithelial cells, showing CCN2(IV) binding to renal cells. Nuclei were stained with DAPI to distinguish renal structures. The overlaid images in red and blue (merge) indicated CCN2(IV) localization mainly in the membrane of tubuloepithelial cells. Figures show one representative mouse per group, and scale bar represents 5 μM.
Figure 2
Figure 2
CCN2 (IV) binding was located in the tubuli but not in other renal structures in the kidney. Mice were injected with Cy5-CCN2(IV) in the right kidney and studied 30 min later. Red immunostaining was only found in the tubuli but was not present in the glomeruli. Renal tissue autofluorescence (green) and DAPI staining (blue) show renal structures. The overlaid images indicate CCN2(IV) localization only in the tubuli. Figures show a representative mouse per group, and scale bar represents 20 μM.
Figure 3
Figure 3
Evaluation of CCN2(IV) binding to the kidney in the model of systemic administration in mice. C57BL/6 mice were i.p. injected with 2.5 ng/g of body weight of recombinant Cy5- CCN2(IV) and sacrificed 30, 45, and 60 min later. In the kidneys from Cy5-CCN2(IV)-injected mice, red immunostaining corresponding to CCN2(IV) labeled with Cy5 fluorophore (red staining) was observed by confocal microscopy. Nuclei were stained with DAPI to locate renal structures. The overlaid images in red and blue (merge) indicated CCN2 (IV) localization mainly in the membrane of tubular epithelial cells. Figures show a representative mouse per group of 3 done, and scale bar represents 5 μM.
Figure 4
Figure 4
Determination of CCN2(IV) binding to proximal or distal tubuli in the kidney in the model of systemic administration of CCN2(IV). Co-localization of Cy5-CCN2(VI) (red) staining with markers of proximal (LotusTetragonolobus Lectin, green) or distal (Dolichos Biflorus Lectin, green) tubuli in CCN2(IV)-injected mice. Proximal tubuli are the main sites of Cy5-CCN2 binding sites. The scale bar represents 5 μM.
Figure 5
Figure 5
Localization of CCN2(IV) binding and EGFR activation in tubuloepithelial cells in vivo. C57BL/6 mice were injected with CCN2(IV)-Cy5 (2.5 ng/g of body weight, n = 3 mice per group) in the right kidney, using its corresponding contralateral kidney as control and sacrificed at 30 min. Figure shows Cy5-CCN2(IV) binding in red, activated EGFR in green (corresponding to phosphorylated EGFR (Alexa fluor® 488)), and nuclei in blue (DAPI). The overlaid images show the colocalization of CCN2(IV) with EGFR activated in several tubule epithelial cells. A magnification is shown on the right. Figures show one representative mouse per group, and scale bar represents 5 μM.
Figure 6
Figure 6
In vitro binding of Cy5-CCN2(IV) to tubular epithelial cells via EGFR. Serum-starved human tubular epithelial cells were transfected with a siRNA against EGFR or its corresponding scramble control siRNA, both FAM-labeled (green) and then stimulated with Cy5-CCN2(IV) for 10 min. Only cells expressing EGFR can bind to Cy5-CCN2(IV) (red signal), mainly located in the cellular membrane, whereas this signal is not found in EGFR-silenced cells. The scale bar represents 20 μM.

References

    1. Takigawa M. An early history of CCN2/CTGF research: The road to CCN2 via hcs24, ctgf, ecogenin, and regenerin. J. Cell Commun. Signal. 2018;12:253–264. doi: 10.1007/s12079-017-0414-6.
    1. Bedore J., Leask A., Séguin C.A. Targeting the extracellular matrix: Matricellular proteins regulate cell-extracellular matrix communication within distinct niches of the intervertebral disc. Matrix Biol. 2014;37:124–130. doi: 10.1016/j.matbio.2014.05.005.
    1. Rayego-Mateos S., Campillo S., Rodrigues-Diez R.R., Tejera-Muñoz A., Marquez-Exposito L., Goldschmeding R., Rodríguez-Puyol D., Calleros L., Ruiz-Ortega M. Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin. Sci. 2021;135:1999–2029. doi: 10.1042/CS20201016.
    1. Feng D., Ngov C., Henley N., Boufaied N., Gerarduzzi C. Characterization of matricellular protein expression signatures in mechanistically diverse mouse models of kidney injury. Sci. Rep. 2019;9:16736. doi: 10.1038/s41598-019-52961-5.
    1. Perbal B. CCN proteins: Multifunctional signalling regulators. Lancet. 2004;363:62–64. doi: 10.1016/S0140-6736(03)15172-0.
    1. de Winter P., Leoni P., Abraham D. Connective tissue growth factor: Structure-function relationships of a mosaic, multifunctional protein. Growth Factors. 2008;26:80–91. doi: 10.1080/08977190802025602.
    1. Rayego-Mateos S., Rodrigues-Diez R., Morgado-Pascual J.L., Valentijn F., Valdivielso J.M., Goldschmeding R., Ruiz-Ortega M. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediat. Inflamm. 2018;2018:8739473. doi: 10.1155/2018/8739473.
    1. Markiewicz M., Nakerakanti S.S., Kapanadze B., Ghatnekar A., Trojanowska M. Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells. Microcirculation. 2011;18:1–11. doi: 10.1111/j.1549-8719.2010.00058.x.
    1. Rodrigues-Díez R., Rodrigues-Díez R.R., Rayego-Mateos S., Suarez-Alvarez B., Lavoz C., Stark Aroeira L., Sánchez-López E., Orejudo M., Alique M., Lopez-Larrea C., et al. The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. Lab. Investig. 2013;93:812–824. doi: 10.1038/labinvest.2013.67.
    1. Jun J.-I., Lau L.F. CCN2 induces cellular senescence in fibroblasts. J. Cell Commun. Signal. 2017;11:15–23. doi: 10.1007/s12079-016-0359-1.
    1. Valentijn F.A., Knoppert S.N., Pissas G., Rodrigues-Diez R.R., Marquez-Exposito L., Broekhuizen R., Mokry M., Kester L.A., Falke L.L., Goldschmeding R., et al. CCN2 Aggravates the immediate oxidative stress-DNA damage response following renal ischemia-reperfusion injury. Antioxidants. 2021;10:2020. doi: 10.3390/antiox10122020.
    1. Liu B.-C., Zhang J.-D., Zhang X.-L., Wu G.-Q., Li M.-X. Role of connective tissue growth factor (CTGF) module 4 in regulating epithelial mesenchymal transition (EMT) in HK-2 cells. Clin. Chim. Acta. 2006;373:144–150. doi: 10.1016/j.cca.2006.05.029.
    1. He M., Chen Z., Martin M., Zhang J., Sangwung P., Woo B., Tremoulet A.H., Shimizu C., Jain M.K., Burns J.C., et al. miR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition: Therapeutic implications in kawasaki disease. Circ. Res. 2017;120:354–365. doi: 10.1161/CIRCRESAHA.116.310233.
    1. Sánchez-López E., Rayego S., Rodrigues-Díez R., Rodriguez J.S., Rodrigues-Díez R., Rodríguez-Vita J., Carvajal G., Aroeira L.S., Selgas R., Mezzano S.A., et al. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-kappaB. J. Am. Soc. Nephrol. 2009;20:1513–1526. doi: 10.1681/ASN.2008090999.
    1. Sakai N., Nakamura M., Lipson K.E., Miyake T., Kamikawa Y., Sagara A., Shinozaki Y., Kitajima S., Toyama T., Hara A., et al. Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis. Sci. Rep. 2017;7:5392. doi: 10.1038/s41598-017-05624-2.
    1. Leask A., Abraham D.J. All in the CCN family: Essential matricellular signaling modulators emerge from the bunker. J. Cell Sci. 2006;119:4803–4810. doi: 10.1242/jcs.03270.
    1. Chaqour B. Caught between a “Rho” and a hard place: Are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J. Cell Commun. Signal. 2020;14:21–29. doi: 10.1007/s12079-019-00529-3.
    1. Sánchez-López E., Rodrigues Díez R., Rodríguez Vita J., Rayego Mateos S., Rodrigues Díez R.R., Rodríguez García E., Lavoz Barria C., Mezzano S., Egido J., Ortiz A., et al. Connective tissue growth factor (CTGF): A key factor in the onset and progression of kidney damage. Nefrologia. 2009;29:382–391. doi: 10.3265/Nefrologia.2009.29.5.5429.en.full.
    1. Phanish M.K., Winn S.K., Dockrell M.E.C. Connective tissue growth factor-(CTGF, CCN2)--a marker, mediator and therapeutic target for renal fibrosis. Nephron. Exp. Nephrol. 2010;114:e83–e92. doi: 10.1159/000262316.
    1. Ivkovic S., Yoon B.S., Popoff S.N., Safadi F.F., Libuda D.E., Stephenson R.C., Daluiski A., Lyons K.M. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003;130:2779–2791. doi: 10.1242/dev.00505.
    1. Rayego-Mateos S., Morgado-Pascual J.L., Rodrigues-Diez R.R., Rodrigues-Diez R., Falke L.L., Mezzano S., Ortiz A., Egido J., Goldschmeding R., Ruiz-Ortega M. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J. Pathol. 2018;244:227–241. doi: 10.1002/path.5007.
    1. Rodrigues-Díez Raul R., Tejera-Muñoz A., Esteban V., Steffensen Lasse B., Rodrigues-Díez R., Orejudo M., Rayego-Mateos S., Falke Lucas L., Cannata-Ortiz P., Ortiz A., et al. CCN2 (Cellular communication network factor 2) deletion alters vascular integrity and function predisposing to aneurysm formation. Hypertension. 2021 doi: 10.1161/HYPERTENSIONAHA.121.18201.
    1. Gupta S., Clarkson M.R., Duggan J., Brady H.R. Connective tissue growth factor: Potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int. 2000;58:1389–1399. doi: 10.1046/j.1523-1755.2000.00301.x.
    1. Riser B.L., Denichilo M., Cortes P., Baker C., Grondin J.M., Yee J., Narins R.G. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J. Am. Soc. Nephrol. 2000;11:25–38. doi: 10.1681/ASN.V11125.
    1. Rupérez M., Ruiz-Ortega M., Esteban V., Lorenzo O., Mezzano S., Plaza J.J., Egido J. Angiotensin II increases connective tissue growth factor in the kidney. Am. J. Pathol. 2003;163:1937–1947. doi: 10.1016/S0002-9440(10)63552-3.
    1. Toda N., Mukoyama M., Yanagita M., Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm. Regen. 2018;38:14. doi: 10.1186/s41232-018-0070-0.
    1. Shi-Wen X., Leask A., Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008;19:133–144. doi: 10.1016/j.cytogfr.2008.01.002.
    1. Slagman M.C.J., Nguyen T.Q., Waanders F., Vogt L., Hemmelder M.H., Laverman G.D., Goldschmeding R., Navis G. Effects of antiproteinuric intervention on elevated connective tissue growth factor (CTGF/CCN-2) plasma and urine levels in nondiabetic nephropathy. Clin. J. Am. Soc. Nephrol. 2011;6:1845–1850. doi: 10.2215/CJN.08190910.
    1. Tam F.W.K., Riser B.L., Meeran K., Rambow J., Pusey C.D., Frankel A.H. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy. Cytokine. 2009;47:37–42. doi: 10.1016/j.cyto.2009.04.001.
    1. Guha M., Xu Z.-G., Tung D., Lanting L., Natarajan R. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J. 2007;21:3355–3368. doi: 10.1096/fj.06-6713com.
    1. Okada H., Kikuta T., Kobayashi T., Inoue T., Kanno Y., Takigawa M., Sugaya T., Kopp J.B., Suzuki H. Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J. Am. Soc. Nephrol. 2005;16:133–143. doi: 10.1681/ASN.2004040339.
    1. Yokoi H., Mukoyama M., Nagae T., Mori K., Suganami T., Sawai K., Yoshioka T., Koshikawa M., Nishida T., Takigawa M., et al. Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 2004;15:1430–1440. doi: 10.1097/01.ASN.0000130565.69170.85.
    1. Lau L.F. Cell surface receptors for CCN proteins. J. Cell Commun. Signal. 2016;10:121–127. doi: 10.1007/s12079-016-0324-z.
    1. Rayego-Mateos S., Rodrigues-Díez R., Morgado-Pascual J.L., Rodrigues Díez R.R., Mas S., Lavoz C., Alique M., Pato J., Keri G., Ortiz A., et al. Connective tissue growth factor is a new ligand of epidermal growth factor receptor. J. Mol. Cell Biol. 2013;5:323–335. doi: 10.1093/jmcb/mjt030.
    1. Wahab N.A., Weston B.S., Mason R.M. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J. Am. Soc. Nephrol. 2005;16:340–351. doi: 10.1681/ASN.2003100905.
    1. Sibilia M., Kroismayr R., Lichtenberger B.M., Natarajan A., Hecking M., Holcmann M. The epidermal growth factor receptor: From development to tumorigenesis. Differentiation. 2007;75:770–787. doi: 10.1111/j.1432-0436.2007.00238.x.
    1. Bronte G., Terrasi M., Rizzo S., Sivestris N., Ficorella C., Cajozzo M., Di Gaudio F., Gulotta G., Siragusa S., Gebbia N., et al. EGFR genomic alterations in cancer: Prognostic and predictive values. Front. Biosci. 2011;3:879–887. doi: 10.2741/296.
    1. Martinez-Useros J., Garcia-Foncillas J. The challenge of blocking a wider family members of EGFR against head and neck squamous cell carcinomas. Oral Oncol. 2015;51:423–430. doi: 10.1016/j.oraloncology.2015.02.092.
    1. Zeng F., Singh A.B., Harris R.C. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp. Cell Res. 2009;315:602–610. doi: 10.1016/j.yexcr.2008.08.005.
    1. Lautrette A., Li S., Alili R., Sunnarborg S.W., Burtin M., Lee D.C., Friedlander G., Terzi F. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: A new therapeutic approach. Nat. Med. 2005;11:867–874. doi: 10.1038/nm1275.
    1. Terzi F., Burtin M., Hekmati M., Federici P., Grimber G., Briand P., Friedlander G. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J. Clin. Investig. 2000;106:225–234. doi: 10.1172/JCI8315.
    1. Flamant M., Bollée G., Hénique C., Tharaux P.-L. Epidermal growth factor: A new therapeutic target in glomerular disease. Nephrol. Dial. Transplant. 2012;27:1297–1304. doi: 10.1093/ndt/gfs030.
    1. Tang J., Liu N., Zhuang S. Role of epidermal growth factor receptor in acute and chronic kidney injury. Kidney Int. 2013;83:804–810. doi: 10.1038/ki.2012.435.
    1. Melderis S., Hagenstein J., Warkotsch M.T., Dang J., Herrnstadt G.R., Niehus C.B., Neumann K., Panzer U., Berasain C., Avila M.A., et al. Amphiregulin aggravates glomerulonephritis via recruitment and activation of myeloid cells. J. Am. Soc. Nephrol. 2020;31:1996–2012. doi: 10.1681/ASN.2019111215.
    1. Rodrigues-Diez R.R., Garcia-Redondo A.B., Orejudo M., Rodrigues-Diez R., Briones A.M., Bosch-Panadero E., Kery G., Pato J., Ortiz A., Salaices M., et al. The C-terminal module IV of connective tissue growth factor, through EGFR/Nox1 signaling, activates the NF-κB pathway and proinflammatory factors in vascular smooth muscle cells. Antioxid. Redox Signal. 2015;22:29–47. doi: 10.1089/ars.2013.5500.
    1. Lai L.W., Moeckel G.W., Lien Y.H. Kidney-targeted liposome-mediated gene transfer in mice. Gene Ther. 1997;4:426–431. doi: 10.1038/sj.gt.3300406.
    1. Lavoz C., Alique M., Rodrigues-Diez R., Pato J., Keri G., Mezzano S., Egido J., Ruiz-Ortega M. Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J. Pathol. 2015;236:407–420. doi: 10.1002/path.4537.
    1. Sweeney C., Carraway K.L. Ligand discrimination by ErbB receptors: Differential signaling through differential phosphorylation site usage. Oncogene. 2000;19:5568–5573. doi: 10.1038/sj.onc.1203913.
    1. Crean J.K.G., Finlay D., Murphy M., Moss C., Godson C., Martin F., Brady H.R. The role of p42/44 MAPK and protein kinase B in connective tissue growth factor induced extracellular matrix protein production, cell migration, and actin cytoskeletal rearrangement in human mesangial cells. J. Biol. Chem. 2002;277:44187–44194. doi: 10.1074/jbc.M203715200.
    1. Sánchez-López E., Rodriguez-Vita J., Cartier C., Rupérez M., Esteban V., Carvajal G., Rodrígues-Díez R., Plaza J.J., Egido J., Ruiz-Ortega M. Inhibitory effect of interleukin-1beta on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. Am. J. Physiol. Renal Physiol. 2008;294:F149–F160. doi: 10.1152/ajprenal.00129.2007.
    1. Hu X., Wang H., Liu J., Fang X., Tao K., Wang Y., Li N., Shi J., Wang Y., Ji P., et al. The role of ERK and JNK signaling in connective tissue growth factor induced extracellular matrix protein production and scar formation. Arch. Dermatol. Res. 2013;305:433–445. doi: 10.1007/s00403-013-1334-9.
    1. Ruiz-Ortega M., Rayego-Mateos S., Lamas S., Ortiz A., Rodrigues-Diez R.R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 2020;16:269–288. doi: 10.1038/s41581-019-0248-y.
    1. Zhang C., Meng X., Zhu Z., Yang X., Deng A. Role of connective tissue growth factor in renal tubular epithelial-myofibroblast transdifferentiation and extracellular matrix accumulation in vitro. Life Sci. 2004;75:367–379. doi: 10.1016/j.lfs.2004.02.005.
    1. Frazier K.S., Paredes A., Dube P., Styer E. Connective tissue growth factor expression in the rat remnant kidney model and association with tubular epithelial cells undergoing transdifferentiation. Vet. Pathol. 2000;37:328–335. doi: 10.1354/vp.37-4-328.
    1. Rodrigues-Díez R., Carvajal-González G., Sánchez-López E., Rodríguez-Vita J., Rodrigues Díez R., Selgas R., Ortiz A., Egido J., Mezzano S., Ruiz-Ortega M. Pharmacological modulation of epithelial mesenchymal transition caused by angiotensin II. Role of ROCK and MAPK pathways. Pharm. Res. 2008;25:2447–2461. doi: 10.1007/s11095-008-9636-x.
    1. Liu X.-C., Liu B.-C., Zhang X.-L., Li M.-X., Zhang J.-D. Role of ERK1/2 and PI3-K in the regulation of CTGF-induced ILK expression in HK-2 cells. Clin. Chim. Acta. 2007;382:89–94. doi: 10.1016/j.cca.2007.03.029.
    1. Ramazani Y., Knops N., Elmonem M.A., Nguyen T.Q., Arcolino F.O., van den Heuvel L., Levtchenko E., Kuypers D., Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol. 2018;68–69:44–66. doi: 10.1016/j.matbio.2018.03.007.
    1. Kaasbøll O.J., Gadicherla A.K., Wang J.-H., Monsen V.T., Hagelin E.M.V., Dong M.-Q., Attramadal H. Connective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation. J. Biol. Chem. 2018;293:17953–17970. doi: 10.1074/jbc.RA118.004559.
    1. Dean R.A., Butler G.S., Hamma-Kourbali Y., Delbé J., Brigstock D.R., Courty J., Overall C.M. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: Disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective. Mol. Cell. Biol. 2007;27:8454–8465. doi: 10.1128/MCB.00821-07.
    1. Gerritsen K.G., Abrahams A.C., Peters H.P., Nguyen T.Q., Koeners M.P., den Hoedt C.H., Dendooven A., van den Dorpel M.A., Blankestijn P.J., Wetzels J.F., et al. Effect of GFR on plasma N-terminal connective tissue growth factor (CTGF) concentrations. Am. J. Kidney Dis. 2012;59:619–627. doi: 10.1053/j.ajkd.2011.12.019.
    1. Riser B.L., Cortes P., DeNichilo M., Deshmukh P.V., Chahal P.S., Mohammed A.K., Yee J., Kahkonen D. Urinary CCN2 (CTGF) as a possible predictor of diabetic nephropathy: Preliminary report. Kidney Int. 2003;64:451–458. doi: 10.1046/j.1523-1755.2003.00130.x.
    1. Li W., Cui M., Wei Y., Kong X., Tang L., Xu D. Inhibition of the expression of TGF-β1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell. Physiol. Biochem. 2012;30:749–757. doi: 10.1159/000341454.
    1. Mason R.M. Fell-Muir lecture: Connective tissue growth factor (CCN2)—A pernicious and pleiotropic player in the development of kidney fibrosis. Int. J. Exp. Pathol. 2013;94:1–16. doi: 10.1111/j.1365-2613.2012.00845.x.
    1. Adler S.G., Schwartz S., Williams M.E., Arauz-Pacheco C., Bolton W.K., Lee T., Li D., Neff T.B., Urquilla P.R., Sewell K.L. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin. J. Am. Soc. Nephrol. 2010;5:1420–1428. doi: 10.2215/CJN.09321209.
    1. Higgins B., Kolinsky K., Smith M., Beck G., Rashed M., Adames V., Linn M., Wheeldon E., Gand L., Birnboeck H., et al. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models. Anti-Cancer Drugs. 2004;15:503–512. doi: 10.1097/01.cad.0000127664.66472.60.
    1. Jonker D.J., O’Callaghan C.J., Karapetis C.S., Zalcberg J.R., Tu D., Au H.-J., Berry S.R., Krahn M., Price T., Simes R.J., et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med. 2007;357:2040–2048. doi: 10.1056/NEJMoa071834.
    1. Li D., Ambrogio L., Shimamura T., Kubo S., Takahashi M., Chirieac L.R., Padera R.F., Shapiro G.I., Baum A., Himmelsbach F., et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27:4702–4711. doi: 10.1038/onc.2008.109.
    1. Li J., Zhao M., He P., Hidalgo M., Baker S.D. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin. Cancer Res. 2007;13:3731–3737. doi: 10.1158/1078-0432.CCR-07-0088.
    1. Mok T.S., Wu Y.-L., Thongprasert S., Yang C.-H., Chu D.-T., Saijo N., Sunpaweravong P., Han B., Margono B., Ichinose Y., et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009;361:947–957. doi: 10.1056/NEJMoa0810699.
    1. Pirker R., Pereira J.R., Szczesna A., von Pawel J., Krzakowski M., Ramlau R., Vynnychenko I., Park K., Yu C.-T., Ganul V., et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): An open-label randomised phase III trial. Lancet. 2009;373:1525–1531. doi: 10.1016/S0140-6736(09)60569-9.
    1. Ramos A.M., Fernández-Fernández B., Pérez-Gómez M.V., Carriazo Julio S.M., Sanchez-Niño M.D., Sanz A., Ruiz-Ortega M., Ortiz A. Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opin. Drug Discov. 2020;15:101–115. doi: 10.1080/17460441.2020.1690450.
    1. Vallon V., Thomson S.C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 2020;16:317–336. doi: 10.1038/s41581-020-0256-y.
    1. Li J., Liu H., Takagi S., Nitta K., Kitada M., Srivastava S.P., Takagaki Y., Kanasaki K., Koya D. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight. 2020;5:e129034. doi: 10.1172/jci.insight.129034.

Source: PubMed

3
Abonner