Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: a pilot study

Marcos Fabio DosSantos, Ilkka Kristian Martikainen, Thiago Dias Nascimento, Tiffany M Love, Misty Dawn Deboer, Eric C Maslowski, André Antonio Monteiro, Maurice Borges Vincent, Jon-Kar Zubieta, Alexandre F DaSilva, Marcos Fabio DosSantos, Ilkka Kristian Martikainen, Thiago Dias Nascimento, Tiffany M Love, Misty Dawn Deboer, Eric C Maslowski, André Antonio Monteiro, Maurice Borges Vincent, Jon-Kar Zubieta, Alexandre F DaSilva

Abstract

Background: Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP.

Findings: In this study, we examined the regional μ-opioid receptor (μOR) availability in vivo (non-displaceable binding potential BPND) of TNP patients with positron emission tomography (PET) using the μOR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced μOR BPND in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the μOR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients.

Conclusions: Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous μ-opioid system, rather than only to the peripheral pathology. The decreased availability of μORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system.

Figures

Figure 1
Figure 1
Clinical profile of Trigeminal Neuropathic Pain patients recruited for this study (for more information, refer to the text). The pain location was accessed by a craniofacial pain map of the face [12]. This method (PainTrekW, University of Michigan) provides a 3D map of orofacial pain.
Figure 2
Figure 2
Changes in the μ-opioid receptor availability in Trigeminal Neuropathic Pain.A-C, Representation of decreased μOR BPND in the left NAc in axial (A), sagittal (B) and coronal (C) planes (T = 3.2). D, Plots of individual μOR BPND extracted from the left NAc. Each TNP patient is represented in a black circle and each healthy subject in a white circle. E, Correlations between MPQ scores (PRI and Sensory) and μOR BPND in the left NAc of TNP patients.

References

    1. DaSilva AF, DosSantos MF. The role of sensory fiber demography in trigeminal and postherpetic neuralgias. J Dent Res. 2012;91:17–24. doi: 10.1177/0022034511411300.
    1. DaSilva AF, Becerra L, Pendse G, Chizh B, Tully S, Borsook D. Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS One. 2008;3:e3396. doi: 10.1371/journal.pone.0003396.
    1. Zubieta J, Smith Y, Bueller J, Xu Y, Kilbourn M, Jewett D, Meyer C, Koeppe R, Stohler C. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293:311–315. doi: 10.1126/science.1060952.
    1. Jones AK, Cunningham VJ, Ha-Kawa S, Fujiwara T, Luthra SK, Silva S, Derbyshire S, Jones T. Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol. 1994;33:909–916. doi: 10.1093/rheumatology/33.10.909.
    1. Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, Garcia-Larrea L. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain. 2007;127:183–194. doi: 10.1016/j.pain.2006.10.013.
    1. Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK. Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci. 2007;27:10000–10006. doi: 10.1523/JNEUROSCI.2849-07.2007.
    1. Klega A, Eberle T, Buchholz HG, Maus S, Maihöfner C, Schreckenberger M, Birklein F. Central opioidergic neurotransmission in complex regional pain syndrome. Neurology. 2010;75:129–136. doi: 10.1212/WNL.0b013e3181e7ca2e.
    1. Society IH. The International Classification of Headache Disorders. Cephalagia. 2004;24:1–160.
    1. Okeson J. Orofacial Pain: guidelines for assessment, classification, and management/ the American Academy of Orofacial Pain. Carol Stream: Quitessencen Publishing Co; 1996.
    1. Taxonomy ITFo. Classification of Chronic Pain. IASP Press: Second Edition ed. Seattle; 1994.
    1. Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. Pain. 1975;1:277–299. doi: 10.1016/0304-3959(75)90044-5.
    1. DaSilva. Somatotopic activation in the human trigeminal pain pathway. Harvard University, School of Dental Medicine: PhD thesis; 2002.
    1. Dannals RF, Ravert HT, Frost JJ, Wilson AA, Burns HD, Wagner HN. Radiosynthesis of an opiate receptor binding radiotracer: [11C]carfentanil. Int J Appl Radiat Isot. 1985;36:303–306. doi: 10.1016/0020-708X(85)90089-4.
    1. Jewett DM. A simple synthesis of [11C]carfentanil using an extraction disk instead of HPLC. Nucl Med Biol. 2001;28:733–734. doi: 10.1016/S0969-8051(01)00226-8.
    1. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–840.
    1. Sprenger T, Willoch F, Miederer M, Schindler F, Valet M, Berthele A, Spilker ME, Förderreuther S, Straube A, Stangier I. et al.Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology. 2006;66:1108–1110. doi: 10.1212/01.wnl.0000204225.15947.f8.
    1. Willoch F, Schindler F, Wester HJ, Empl M, Straube A, Schwaiger M, Conrad B, Tölle TR. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain. 2004;108:213–220. doi: 10.1016/j.pain.2003.08.014.
    1. Jones AK, Watabe H, Cunningham VJ, Jones T. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain. 2004;8:479–485. doi: 10.1016/j.ejpain.2003.11.017.
    1. Jones AK, Kitchen ND, Watabe H, Cunningham VJ, Jones T, Luthra SK, Thomas DG. Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab. 1999;19:803–808.
    1. Love TM, Stohler CS, Zubieta JK. Positron emission tomography measures of endogenous opioid neurotransmission and impulsiveness traits in humans. Arch Gen Psychiatry. 2009;66:1124–1134. doi: 10.1001/archgenpsychiatry.2009.134.
    1. Mogenson GJ, Yang CR. The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol. 1991;295:267–290. doi: 10.1007/978-1-4757-0145-6_14.
    1. Cooper JC, Knutson B. Valence and salience contribute to nucleus accumbens activation. Neuroimage. 2008;39:538–547. doi: 10.1016/j.neuroimage.2007.08.009.
    1. Becerra L, Borsook D. Signal valence in the nucleus accumbens to pain onset and offset. Eur J Pain. 2008;12:866–869. doi: 10.1016/j.ejpain.2007.12.007.
    1. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron. 2007;55:325–336. doi: 10.1016/j.neuron.2007.06.028.
    1. Gear RW, Levine JD. Antinociception produced by an ascending spino-supraspinal pathway. J Neurosci. 1995;15:3154–3161.
    1. Gear RW, Levine JD. Nucleus accumbens facilitates nociception. Exp Neurol. 2011;229:502–506. doi: 10.1016/j.expneurol.2011.03.021.
    1. Imai S, Saeki M, Yanase M, Horiuchi H, Abe M, Narita M, Kuzumaki N, Suzuki T. Change in microRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain. J Neurosci. 2011;31:15294–15299. doi: 10.1523/JNEUROSCI.0921-11.2011.
    1. Scott DJ, Heitzeg MM, Koeppe RA, Stohler CS, Zubieta JK. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J Neurosci. 2006;26:10789–10795. doi: 10.1523/JNEUROSCI.2577-06.2006.
    1. Gustin SM, Peck CC, Wilcox SL, Nash PG, Murray GM, Henderson LA. Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci. 2011;31:5956–5964. doi: 10.1523/JNEUROSCI.5980-10.2011.
    1. Baliki MN, Geha PY, Fields HL, Apkarian AV. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron. 2010;66:149–160. doi: 10.1016/j.neuron.2010.03.002.
    1. Zubieta JK. Pain signal as threat and reward. Neuron. 2010;66:6–7. doi: 10.1016/j.neuron.2010.04.002.
    1. Harris RE, Zubieta JK, Scott DJ, Napadow V, Gracely RH, Clauw DJ. Traditional Chinese acupuncture and placebo (sham) acupuncture are differentiated by their effects on mu-opioid receptors (MORs) Neuroimage. 2009;47:1077–1085. doi: 10.1016/j.neuroimage.2009.05.083.
    1. Fields HL. Understanding how opioids contribute to reward and analgesia. Reg Anesth Pain Med. 2007;32:242–246.
    1. Leknes S, Tracey I. A common neurobiology for pain and pleasure. Nat Rev Neurosci. 2008;9:314–320.

Source: PubMed

3
Abonner