Application of Stem Cell Therapy for ACL Graft Regeneration

Canlong Wang, Yejun Hu, Shichen Zhang, Dengfeng Ruan, Zizhan Huang, Peiwen He, Honglu Cai, Boon Chin Heng, Xiao Chen, Weiliang Shen, Canlong Wang, Yejun Hu, Shichen Zhang, Dengfeng Ruan, Zizhan Huang, Peiwen He, Honglu Cai, Boon Chin Heng, Xiao Chen, Weiliang Shen

Abstract

Graft regeneration after anterior cruciate ligament (ACL) reconstruction surgery is a complex three-stage process, which usually takes a long duration and often results in fibrous scar tissue formation that exerts a detrimental impact on the patients' prognosis. Hence, as a regeneration technique, stem cell transplantation has attracted increasing attention. Several different stem cell types have been utilized in animal experiments, and almost all of these have shown good capacity in improving tendon-bone regeneration. Various differentiation inducers have been widely applied together with stem cells to enhance specific lineage differentiation, such as recombinant gene transfection, growth factors, and biomaterials. Among the various different types of stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) have been investigated the most, while ligament stem progenitor cells (LDSCs) have demonstrated the best potential in generating tendon/ligament lineage cells. In the clinic, 4 relevant completed trials have been reported, but only one trial with BMSCs showed improved outcomes, while 5 relevant trials are still in progress. This review describes the process of ACL graft regeneration after implantation and summarizes the current application of stem cells from bench to bedside, as well as discusses future perspectives in this field.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2021 Canlong Wang et al.

Figures

Figure 1
Figure 1
Schematic model for graft regeneration after ACL reconstruction. (a) Early stage characterized by necrosis, fiber disintegration, and cytokine release; neutrophils, macrophagocytes, and mesenchymal stem cells (MSC) can be observed in the interface in order, and then macrophagocytes and MSC migrate into the inner tendon. The collagen fibers displayed a bimodal distribution, with large ones constituting the majority; (b) remodeling stage marked with Sharpey fibers (arrow), cell migration, vascularization, ECM remodeling, various growth factor activities, and disordered organization of collagen fibers (bimodal distribution with small ones constituting the majority); (c) ligamentization stage marked with vascularization gradually disappearing, fibrocartilage formation, and ordered collagen with almost unimodal small fibers; (d) normal ACL, 4-layer direct insertion including ligament, fibrocartilage, mineralized fibrocartilage, and bone in order. The collagen fibers showed unclear bimodal distribution.
Figure 2
Figure 2
Features of included animal studies. (a) Cell resources; (b) augmentations; (c) animal models; (d) general study outcomes. BMSC: bone marrow-derived mesenchymal stem cells; ADSC: adipose-derived stem cells; hUCB-MSC: human umbilical cord blood-derived mesenchymal stem cells; TDSC: tendon-derived stem cells; LDSC: ligament-derived stem cells.
Figure 3
Figure 3
The number of ongoing and completed clinical projects with positive or negative results in the application of different stem cell lineages after ACL reconstruction. BMSC: bone marrow-derived mesenchymal stem cells; MPC: mesenchymal precursor cell; ADSC: adipose tissue-derived stem cell; hCDB-MSC: human cord blood-derived mesenchymal stem cell.

References

    1. Risberg M. A., Lewek M., Snyder-Mackler L. A systematic review of evidence for anterior cruciate ligament rehabilitation: how much and what type? Physical Therapy in Sport. 2004;5(3):125–145. doi: 10.1016/j.ptsp.2004.02.003.
    1. Carey J. L., Shea K. G. AAOS clinical practice guideline. The Journal of the American Academy of Orthopaedic Surgeons. 2015;23(5):e6–e8. doi: 10.5435/JAAOS-D-15-00095.
    1. Bollen S. Epidemiology of knee injuries: diagnosis and triage. British Journal of Sports Medicine. 2000;34(3):227–228. doi: 10.1136/bjsm.34.3.227-a.
    1. Florida S. E., VanDusen K. W., Mahalingam V. D., et al. In vivo structural and cellular remodeling of engineered bone-ligament-bone constructs used for anterior cruciate ligament reconstruction in sheep. Connective Tissue Research. 2016;57(6):526–538. doi: 10.1080/03008207.2016.1187141.
    1. Biau D. J., Tournoux C., Katsahian S., Schranz P., Nizard R. ACL reconstruction: a meta-analysis of functional scores. Clinical Orthopaedics and Related Research. 2007;458:180–187. doi: 10.1097/BLO.0b013e31803dcd6b.
    1. Gobbi A., Domzalski M., Pascual J., Zanazzo M. Hamstring anterior cruciate ligament reconstruction: is it necessary to sacrifice the gracilis? Arthroscopy. 2005;21(3):275–280. doi: 10.1016/j.arthro.2004.10.016.
    1. Pitman M. I., Nainzadeh N., Menche D., Gasalberti R., Eun Kyoo S. The intraoperative evaluation of the neurosensory function of the anterior cruciate ligament in humans using somatosensory evoked potentials. Arthroscopy. 1992;8(4):442–447. doi: 10.1016/0749-8063(92)90005-V.
    1. Sánchez M., Anitua E., Azofra J., Prado R., Muruzabal F., Andia I. Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy. 2010;26(4):470–480. doi: 10.1016/j.arthro.2009.08.019.
    1. Grana W. A., Egle D. M., Mahnken R., Goodhart C. W. An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. The American Journal of Sports Medicine. 1994;22(3):344–351. doi: 10.1177/036354659402200309.
    1. Lu H. H., Thomopoulos S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annual Review of Biomedical Engineering. 2013;15:201–226.
    1. Kawamura S., Ying L., Kim H. J., Dynybil C., Rodeo S. A. Macrophages accumulate in the early phase of tendon-bone healing. Journal of Orthopaedic Research. 2005;23(6):1425–1432. doi: 10.1016/j.orthres.2005.01.014.1100230627.
    1. Takeuchi H., Niki Y., Matsunari H., et al. Temporal changes in cellular repopulation and collagen fibril remodeling and regeneration after allograft anterior cruciate ligament reconstruction: an experimental study using Kusabira-Orange transgenic pigs. The American Journal of Sports Medicine. 2016;44(9):2375–2383. doi: 10.1177/0363546516650881.
    1. Goradia V. K., Rochat M. C., Grana W. A., Rohrer M. D., Prasad H. S. Tendon-to-bone healing of a semitendinosus tendon autograft used for ACL reconstruction in a sheep model. The American Journal of Knee Surgery. 2000;13(3):143–151.
    1. Zuk P. A., Zhu M., Ashjian P., et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.e02-02-0105.
    1. Caplan A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology. 2007;213(2):341–347.
    1. Caplan A. I., Dennis J. E. Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry. 2006;98(5):1076–1084.
    1. Duthon V. B., Barea C., Abrassart S., Fasel J. H., Fritschy D., Ménétrey J. Anatomy of the anterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy. 2006;14(3):204–213. doi: 10.1007/s00167-005-0679-9.
    1. Marieswaran M., Jain I., Garg B., Sharma V., Kalyanasundaram D. A review on biomechanics of anterior cruciate ligament and materials for reconstruction. Applied Bionics and Biomechanics. 2018;2018:14. doi: 10.1155/2018/4657824.4657824
    1. Janssen R. P., Scheffler S. U. Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2014;22(9):2102–2108.
    1. Abe S., Kurosaka M., Iguchi T., Yoshiya S., Hirohata K. Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy. 1993;9(4):394–405. doi: 10.1016/S0749-8063(05)80313-5.
    1. Kleiner J. B., Amiel D., Roux R. D., Akeson W. H. Origin of replacement cells for the anterior cruciate ligament autograft. Journal of Orthopaedic Research. 1986;4(4):466–474. doi: 10.1002/jor.1100040410.
    1. Kuroda R., Kurosaka M., Yoshiya S., Mizuno K. Localization of growth factors in the reconstructed anterior cruciate ligament: immunohistological study in dogs. Knee Surgery, Sports Traumatology, Arthroscopy. 2000;8(2):120–126. doi: 10.1007/s001670050198.
    1. Scheffler S. U., Unterhauser F. N., Weiler A. Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2008;16(9):834–842. doi: 10.1007/s00167-008-0560-8.
    1. Weiler A., Peters G., Mäurer J., Unterhauser F. N., Südkamp N. P. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. The American Journal of Sports Medicine. 2001;29(6):751–761. doi: 10.1177/03635465010290061401.
    1. Liu S., Sun Y., Wan F., Ding Z., Chen S., Chen J. Advantages of an attached semitendinosus tendon graft in anterior cruciate ligament reconstruction in a rabbit model. The American Journal of Sports Medicine. 2018;46(13):3227–3236. doi: 10.1177/0363546518799357.
    1. Liu S., Li H., Tao H., Sun Y., Chen S., Chen J. A randomized clinical trial to evaluate attached hamstring anterior cruciate ligament graft maturity with magnetic resonance imaging. The American Journal of Sports Medicine. 2018;46(5):1143–1149. doi: 10.1177/0363546517752918.
    1. Yoshikawa T., Tohyama H., Katsura T., et al. Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. The American Journal of Sports Medicine. 2006;34(12):1918–1925. doi: 10.1177/0363546506294469.
    1. Jackson J. R., Minton J. A., Ho M. L., Wei N., Winkler J. D. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. The Journal of Rheumatology. 1997;24(7):1253–1259.
    1. Shino K., Kawasaki T., Hirose H., Gotoh I., Inoue M., Ono K. Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. Journal of Bone and Joint Surgery. British Volume (London) 1984;66(5):672–681.
    1. Lu H., Chen C., Xie S., Tang Y., Qu J. Tendon healing in bone tunnel after human anterior cruciate ligament reconstruction: a systematic review of histological results. The Journal of Knee Surgery. 2019;32(5):454–462.
    1. Petersen W., Unterhauser F., Pufe T., Zantop T., Südkamp N. P., Weiler A. The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Archives of Orthopaedic and Trauma Surgery. 2003;123(4):168–174. doi: 10.1007/s00402-002-0462-z.
    1. Unterhauser F. N., Bail H. J., H??her J.??., Haas N. P., Weiler A. Endoligamentous revascularization of an anterior cruciate ligament graft. Clinical Orthopaedics and Related Research. 2003;414:276–288. doi: 10.1097/01.blo.0000079442.64912.51.
    1. Åhlén M., Roshani L., Lidén M., Struglics A., Rostgård-Christensen L., Kartus J. Inflammatory cytokines and biomarkers of cartilage metabolism 8 years after anterior cruciate ligament reconstruction: results from operated and contralateral knees. The American Journal of Sports Medicine. 2015;43(6):1460–1466. doi: 10.1177/0363546515574059.
    1. Marumo K., Saito M., Yamagishi T., Fujii K. The “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. The American Journal of Sports Medicine. 2005;33(8):1166–1173. doi: 10.1177/0363546504271973.
    1. Sofu H., Camurcu Y., Issin A., Ucpunar H., Ozcan S., Duman S. Should orthopedic surgeons consider reducing the negative effects of Outerbridge grade 2 patellofemoral chondral lesion on early postoperative recovery during anterior cruciate ligament reconstruction. European Journal of Orthopaedic Surgery & Traumatology: Orthopedie Traumatologie. 2019;29(2):471–478. doi: 10.1007/s00590-018-2303-y.
    1. Vogrin M., Rupreht M., Crnjac A., Dinevski D., Krajnc Z., Rečnik G. The effect of platelet-derived growth factors on knee stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wiener Klinische Wochenschrift. 2010;122(Supplement. 2):91–95. doi: 10.1007/s00508-010-1340-2.
    1. Azcárate A. V., Lamo-Espinosa J., Beola J. D. A., Gonzalez M. H., Gasque G. M., Nin J. R. V. Comparison between two different platelet-rich plasma preparations and control applied during anterior cruciate ligament reconstruction. Is there any evidence to support their use? Injury. 2014;45(Supplement 4):S36–S41. doi: 10.1016/S0020-1383(14)70008-7.
    1. Agarwalla A., Puzzitiello R. N., Liu J. N., et al. Timeline for maximal subjective outcome improvement after anterior cruciate ligament reconstruction. The American Journal of Sports Medicine. 2019;47(10):2501–2509. doi: 10.1177/0363546518803365.
    1. Rama P., Matuska S., Paganoni G., Spinelli A., de Luca M., Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. The New England Journal of Medicine. 2010;363(2):147–155. doi: 10.1056/NEJMoa0905955.
    1. Trounson A., McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22.
    1. Mifune Y., Matsumoto T., Ota S., et al. Therapeutic potential of anterior cruciate ligament-derived stem cells for anterior cruciate ligament reconstruction. Cell Transplantation. 2012;21(8):1651–1665. doi: 10.3727/096368912X647234.
    1. Li H. G., Fan J., Sun L., Liu X., Cheng P., Fan H. Functional regeneration of ligament-bone interface using a triphasic silk- based graft. Biomaterials. 2016;106:180–192. doi: 10.1016/j.biomaterials.2016.08.012.
    1. Kosaka M., Nakase J., Hayashi K., Tsuchiya H. Adipose-derived regenerative cells promote tendon-bone healing in a rabbit model. Arthroscopy. 2016;32(5):851–859. doi: 10.1016/j.arthro.2015.10.012.
    1. Sakaguchi Y., Sekiya I., Yagishita K., Muneta T. Comparison of human stem cells derived from various mesenchymal tissues - superiority of synovium as a cell source. Arthritis and Rheumatism. 2005;52(8):2521–2529. doi: 10.1002/art.21212.
    1. Uccelli A., Moretta L., Pistoia V. Mesenchymal stem cells in health and disease. Nature Reviews. Immunology. 2008;8(9):726–736. doi: 10.1038/nri2395.
    1. Lim J., Hui J., Li L., Thambyah A., Goh J., Lee E. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy. 2004;20(9):899–910. doi: 10.1016/S0749-8063(04)00653-X.
    1. Hur C. I., Ahn H. W., Seon J. K., Song E. K., Kim G. E. Mesenchymal stem cells decrease tunnel widening of anterior cruciate ligament reconstruction in rabbit model. International Journal of Stem Cells. 2019;12(1):162–169. doi: 10.15283/ijsc18022.
    1. Zhang Y., Khan D., Delling J., Tobiasch E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. Scientific World Journal. 2012;2012, article 793823:14. doi: 10.1100/2012/793823.
    1. Otero-Ortega L., Gutiérrez-Fernández M., Ramos-Cejudo J., et al. White matter injury restoration after stem cell administration in subcortical ischemic stroke. Stem Cell Research & Therapy. 2015;6(1):p. 121. doi: 10.1186/s13287-015-0111-4.
    1. Uysal A. C., Mizuno H. Tendon regeneration and repair with adipose derived stem cells. Current Stem Cell Research & Therapy. 2010;5(2):161–167.
    1. Schubert T., Xhema D., Vériter S., et al. The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells. Biomaterials. 2011;32(34):8880–8891. doi: 10.1016/j.biomaterials.2011.08.009.
    1. Lafosse A., Desmet C., Aouassar N., et al. Autologous adipose stromal cells seeded onto a human collagen matrix for dermal regeneration in chronic wounds: clinical proof of concept. Plastic and Reconstructive Surgery. 2015;136(2):279–295. doi: 10.1097/PRS.0000000000001437.
    1. Eagan M. J., Zuk P. A., Zhao K. W., et al. The suitability of human adipose-derived stem cells for the engineering of ligament tissue. Journal of Tissue Engineering and Regenerative Medicine. 2012;6(9):702–709. doi: 10.1002/term.474.
    1. Teuschl A. H., Tangl S., Heimel P., et al. Osteointegration of a novel silk fiber-based ACL scaffold by formation of a ligament-bone interface. The American Journal of Sports Medicine. 2019;47(3):620–627. doi: 10.1177/0363546518818792.
    1. Kim K., Zhao R., Doi A., et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology. 2011;29(12):1117–1119. doi: 10.1038/nbt.2052.
    1. Bi Y., Ehirchiou D., Kilts T. M., et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine. 2007;13(10):1219–1227. doi: 10.1038/nm1630.
    1. Stanco D., Viganò M., Orfei C. P., et al. In vitro characterization of stem/progenitor cells from semitendinosus and gracilis tendons as a possible new tool for cell-based therapy for tendon disorders. Joints. 2014;2(4):159–168.
    1. Tan Q., Lui P. P. Y., Rui Y. F., Wong Y. M. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Engineering. Part A. 2012;18(7-8):840–851. doi: 10.1089/ten.tea.2011.0362.
    1. Lui P. P., Wong O. T., Lee Y. W. Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine. 2014;42(3):681–689.
    1. Stanco D., Viganò M., Perucca Orfei C., et al. Multidifferentiation potential of human mesenchymal stem cells from adipose tissue and hamstring tendons for musculoskeletal cell-based therapy. Regenerative Medicine. 2015;10(6):729–743. doi: 10.2217/rme.14.92.
    1. Ghebes C. A., Kelder C., Schot T., et al. Anterior cruciate ligament- and hamstring tendon-derived cells: in vitro differential properties of cells involved in ACL reconstruction. Journal of Tissue Engineering and Regenerative Medicine. 2017;11(4):1077–1088. doi: 10.1002/term.2009.
    1. Chen B., Zhang J., Nie D., Zhao G., Fu F. H., Wang J. H.‐. C. Characterization of the structure of rabbit anterior cruciate ligament and its stem/progenitor cells. Journal of Cellular Biochemistry. 2019;120:7446–7457. doi: 10.1002/jcb.28019.
    1. Ogata Y., Mabuchi Y., Shinoda K., et al. Anterior cruciate ligament-derived mesenchymal stromal cells have a propensity to differentiate into the ligament lineage. Regenerative Therapy. 2018;8:20–28. doi: 10.1016/j.reth.2017.12.001.
    1. Hao Z., Wu H., Li Y., Wang S., Lu J. Comparison of biological characteristics between bone marrow mesenchymal stem cells and anterior cruciate ligament derived mesenchymal stem cells in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31(4):473–480. doi: 10.7507/1002-1892.201611021.
    1. Hu Y., Ran J., Zheng Z., et al. Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomaterialia. 2018;71:168–183. doi: 10.1016/j.actbio.2018.02.019.
    1. Mifune Y., Matsumoto T., Takayama K., et al. Tendon graft revitalization using adult anterior cruciate ligament (ACL)-derived CD34+ cell sheets for ACL reconstruction. Biomaterials. 2013;34(22):5476–5487. doi: 10.1016/j.biomaterials.2013.04.013.
    1. Matsumoto T., Ingham S. M., Mifune Y., et al. Isolation and characterization of human anterior cruciate ligament-derived vascular stem cells. Stem Cells and Development. 2012;21(6):859–872. doi: 10.1089/scd.2010.0528.
    1. Woods S., Bates N., Dunn S. L., Serracino-Inglott F., Hardingham T. E., Kimber S. J. Generation of human-induced pluripotent stem cells from anterior cruciate ligament. Journal of Orthopaedic Research. 2020;38(1):92–104. doi: 10.1002/jor.24493.
    1. Park S. H., Choi Y. J., Moon S. W., et al. Three-dimensional bio-printed scaffold sleeves with mesenchymal stem cells for enhancement of tendon-to-bone healing in anterior cruciate ligament reconstruction using soft-tissue tendon graft. Arthroscopy. 2018;34(1):166–179. doi: 10.1016/j.arthro.2017.04.016.
    1. Jang K. M., Lim H. C., Jung W. Y., Moon S. W., Wang J. H. Efficacy and safety of human umbilical cord blood-derived mesenchymal stem cells in anterior cruciate ligament reconstruction of a rabbit model: new strategy to enhance tendon graft healing. Arthroscopy. 2015;31(8):1530–1539. doi: 10.1016/j.arthro.2015.02.023.
    1. Yang J. B., Zhu X. Z., Xiong H. Z., Li Y. W., Jin Y., Liu Y. Biocompatibility of human amniotic mesenchymal stem cells with human acellular amniotic membrane scaffold. Chinese Journal of Tissue Engineering Research. 2018;22(5):742–747.
    1. Morito T., Muneta T., Hara K., et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology. 2008;47(8):1137–1143. doi: 10.1093/rheumatology/ken114.
    1. Takenaka C., Nishishita N., Takada N., Jakt L. M., Kawamata S. Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53. Experimental Hematology. 2010;38(2):154–162.e2. doi: 10.1016/j.exphem.2009.11.003.
    1. Loh Y. H., Agarwal S., Park I. H., et al. Generation of induced pluripotent stem cells from human blood. Blood. 2009;113(22):5476–5479. doi: 10.1182/blood-2009-02-204800.
    1. Wakitani S., Takaoka K., Hattori T., et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology. 2003;42(1):162–165. doi: 10.1093/rheumatology/keg024.
    1. Kouroupis D., Kyrkou A., Triantafyllidi E., et al. Generation of stem cell-based bioartificial anterior cruciate ligament (ACL) grafts for effective ACL rupture repair. Stem Cell Research. 2016;17(2):448–457. doi: 10.1016/j.scr.2016.04.016.
    1. Shen H., Yoneda S., Abu‐Amer Y., Guilak F., Gelberman R. H. Stem cell-derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. Journal of Orthopaedic Research. 2019;38:117–127. doi: 10.1002/jor.24406.
    1. Wang Y. J., He G., Guo Y., et al. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. Journal of Cellular and Molecular Medicine. 2019;23(8):5475–5485. doi: 10.1111/jcmm.14430.
    1. Chamberlain C. S., Clements A. E. B., Kink J. A., et al. Extracellular vesicle-educated macrophages promote early Achilles tendon healing. Stem Cells. 2019;37(5):652–662. doi: 10.1002/stem.2988.
    1. Davey M. S., Hurley E. T., Withers D., Moran R., Moran C. J. Anterior cruciate ligament reconstruction with platelet-rich plasma: a systematic review of randomized control trials. Arthroscopy-the Journal of Arthroscopic and Related Surgery. 2020;36(4):1204–1210. doi: 10.1016/j.arthro.2019.11.004.
    1. Trams E., Kulinski K., Kozar-Kaminska K., Pomianowski S., Kaminski R. The clinical use of platelet-rich plasma in knee disorders and surgery-a systematic review and meta-analysis. Life. 2020;10(6)
    1. Teng C., Zhou C., Xu D., Bi F. Combination of platelet-rich plasma and bone marrow mesenchymal stem cells enhances tendon-bone healing in a rabbit model of anterior cruciate ligament reconstruction. Journal of Orthopaedic Surgery and Research. 2016;11(1):p. 96. doi: 10.1186/s13018-016-0433-7.
    1. Setiawati R., Utomo D. N., Rantam F. A., Ifran N. N., Budhiparama N. C. Early graft tunnel healing after anterior cruciate ligament reconstruction with intratunnel injection of bone marrow mesenchymal stem cells and vascular endothelial growth factor. Orthopaedic Journal of Sports Medicine. 2017;5(6):p. 232596711770854. doi: 10.1177/2325967117708548.
    1. Zhang X., Ma Y., Fu X., et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Scientific Reports. 2016;6(1):19073–19073. doi: 10.1038/srep19073.
    1. Chen B., Li B., Qi Y. J., et al. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2. Scientific Reports. 2016;6(1):p. 25940. doi: 10.1038/srep25940.
    1. Chen J. C., Jacobs C. R. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Research & Therapy. 2013;4(5):p. 107.
    1. Kelly D. J., Jacobs C. R. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Research. Part C, Embryo Today. 2010;90(1):75–85.
    1. Altman G. H., Lu H. H., Horan R. L., et al. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. Journal of Biomechanical Engineering. 2002;124(6):742–749. doi: 10.1115/1.1519280.
    1. Berry C. C., Shelton J. C., Bader D. L., Lee D. A. Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Engineering. 2003;9(4):613–624. doi: 10.1089/107632703768247313.
    1. Song F., Jiang D., Wang T., et al. Mechanical loading improves tendon-bone healing in a rabbit anterior cruciate ligament reconstruction model by promoting proliferation and matrix formation of mesenchymal stem cells and tendon cells. Cellular Physiology and Biochemistry. 2017;41(3):875–889. doi: 10.1159/000460005.
    1. Moreau J. E., Bramono D. S., Horan R. L., Kaplan D. L., Altman G. H. Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Engineering. Part A. 2008;14(7):1161–1172. doi: 10.1089/ten.tea.2007.0147.
    1. Park S. A., Kim I. A., Lee Y. J., et al. Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected to mechanical stimuli. Journal of Bioscience and Bioengineering. 2006;102(5):402–412. doi: 10.1263/jbb.102.402.
    1. Woo S. L., Gomez M. A., Sites T. J., Newton P. O., Orlando C. A., Akeson W. H. The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. The Journal of Bone and Joint Surgery. American Volume. 1987;69(8):1200–1211. doi: 10.2106/00004623-198769080-00014.
    1. Lin J. X., Zhou W., Han S., et al. Cell-material interactions in tendon tissue engineering. Acta Biomaterialia. 2018;70:1–11. doi: 10.1016/j.actbio.2018.01.012.
    1. Chen J., Altman G. H., Karageorgiou V., et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. Journal of Biomedical Materials Research. Part A. 2003;67(2):559–570. doi: 10.1002/jbm.a.10120.
    1. Murphy A. R., John P. S., Kaplan D. L. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials. 2008;29(19):2829–2838.
    1. James R., Toti U. S., Laurencin C. T., Kumbar S. G. Electrospun nanofibrous scaffolds for engineering soft connective tissues. Methods in Molecular Biology. 2011;726:243–258. doi: 10.1007/978-1-61779-052-2_16.
    1. Cardwell R. D., Dahlgren L. A., Goldstein A. S. Electrospun fibre diameter, not alignment, affects mesenchymal stem cell differentiation into the tendon/ligament lineage. Journal of Tissue Engineering and Regenerative Medicine. 2014;8(12):937–945. doi: 10.1002/term.1589.
    1. Engler A. J., Griffin M. A., Sen S., Bönnemann C. G., Sweeney H. L., Discher D. E. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. Journal of Cell Biology. 2004;166(6):877–887. doi: 10.1083/jcb.200405004.
    1. Handorf A. M., Zhou Y., Halanski M. A., Li W. J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 2015;11(1):1–15. doi: 10.1080/15476278.2015.1019687.
    1. Keselowsky B. G., Collard D. M., Garcia A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(17):5953–5957.
    1. Yin Z., Chen X., Chen J. L., et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31(8):2163–2175. doi: 10.1016/j.biomaterials.2009.11.083.
    1. Zhang C., Yuan H., Liu H., et al. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials. 2015;53:716–730. doi: 10.1016/j.biomaterials.2015.02.051.
    1. Qiu J., Li D., Mou X., et al. Effects of graphene quantum dots on the self-renewal and differentiation of mesenchymal stem cells. Advanced Healthcare Materials. 2016;5(6):702–710. doi: 10.1002/adhm.201500770.
    1. Fan H., Liu H., Wong E. J. W., Toh S. L., Goh J. C. H. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008;29(23):3324–3337. doi: 10.1016/j.biomaterials.2008.04.012.
    1. Zhu J. X., Zhang X., Shao Z., et al. In vivo study of ligament-bone healing after anterior cruciate ligament reconstruction using autologous tendons with mesenchymal stem cells affinity peptide conjugated electrospun nanofibrous scaffold. Journal of Nanomaterials. 2013;2013:11. doi: 10.1155/2013/831873.831873
    1. Lu W., Xu J., Dong S., et al. Anterior cruciate ligament reconstruction in a rabbit model using a decellularized allogenic semitendinous tendon combined with autologous bone marrow-derived mesenchymal stem cells. Stem Cells Translational Medicine. 2019;8(9):971–982. doi: 10.1002/sctm.18-0132.
    1. Ju Y. J., Muneta T., Yoshimura H., Koga H., Sekiya I. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell and Tissue Research. 2008;332(3):469–478. doi: 10.1007/s00441-008-0610-z.
    1. Agung M., Ochi M., Yanada S., et al. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surgery, Sports Traumatology, Arthroscopy. 2006;14(12):1307–1314. doi: 10.1007/s00167-006-0124-8.
    1. Maerz T., Fleischer M., Newton M. D., et al. Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture. Osteoarthritis and cartilage. 2017;25(8):1335–1344.
    1. Kanaya A., Deie M., Adachi N., Nishimori M., Yanada S., Ochi M. Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy. 2007;23(6):610–617. doi: 10.1016/j.arthro.2007.01.013.
    1. Wang Y., Shimmin A., Ghosh P., et al. Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomised trial. Arthritis Research & Therapy. 2017;19(1):180–180. doi: 10.1186/s13075-017-1391-0.
    1. Centeno C., Markle J., Dodson E., et al. Symptomatic anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow concentrate and platelet products: a non-controlled registry study. Journal of Translational Medicine. 2018;16(1):p. 246. doi: 10.1186/s12967-018-1623-3.
    1. Silva A., Sampaio R., Fernandes R., Pinto E. Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA. 2014;22(1):66–71. doi: 10.1007/s00167-012-2279-9.
    1. Alentorn-Geli E., Seijas R., Martínez-de la Torre A., et al. Effects of autologous adipose-derived regenerative stem cells administered at the time of anterior cruciate ligament reconstruction on knee function and graft healing. Journal of Orthopaedic Surgery. 2019;27(3):p. 230949901986758. doi: 10.1177/2309499019867580.
    1. Park S. W. M. J. H. W. S. H. A randomized clinical trial for safety and efficacy of human umbilical cord blood derived mesenchymal stem cells to enhance tendon graft healing in anterior cruciate ligament reconstruction with two years follow up. 2019. .
    1. Hays P. L., Kawamura S., Deng X. H., et al. The role of macrophages in early healing of a tendon graft in a bone tunnel. The Journal of Bone and Joint Surgery. American Volume. 2008;90(3):565–579. doi: 10.2106/JBJS.F.00531.
    1. Sözkesen S., Karahan H. G., Kurtulmus A., Kayali C., Altay T. PRP on preventıon of tunnel enlargement in ACL reconstructıon. Ortopedia, Traumatologia, Rehabilitacja. 2018;20(4):285–291. doi: 10.5604/01.3001.0012.6462.
    1. Havis E., Bonnin M.-A., Olivera-Martinez I., et al. Transcriptomic analysis of mouse limb tendon cells during development. Development. 2014;141(19):3683–3696. doi: 10.1242/dev.108654.
    1. Tang J. B., Wu Y. F., Cao Y., et al. Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons. Scientific Reports. 2016;6
    1. Brown J. P., Finley V. G., Kuo C. K. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. Journal of Biomechanics. 2014;47(1):214–222. doi: 10.1016/j.jbiomech.2013.09.018.
    1. Fan J., Sun L., Chen X., et al. Implementation of a stratified approach and gene immobilization to enhance the osseointegration of a silk-based ligament graft. Journal of Materials Chemistry B. 2017;5(34):7035–7050. doi: 10.1039/C7TB01579H.
    1. Kuo C. K., Tuan R. S. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Engineering. Part A. 2008;14(10):1615–1627. doi: 10.1089/ten.tea.2006.0415.
    1. Nourissat G., Berenbaum F., Duprez D. Tendon injury: from biology to tendon repair. Nature Reviews Rheumatology. 2015;11(4):223–233.
    1. Brent A. E., Tabin C. J. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea 3 and Erm to regulate scleraxis expression. Development. 2004;131(16):3885–3896. doi: 10.1242/dev.01275.
    1. Francis-West P. H., Parish J., Lee K., Archer C. W. BMP/GDF-signalling interactions during synovial joint development. Cell and Tissue Research. 1999;296(1):111–119. doi: 10.1007/s004410051272.
    1. Pryce B. A., Watson S. S., Murchison N. D., Staverosky J. A., Dünker N., Schweitzer R. Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development. 2009;136(8):1351–1361. doi: 10.1242/dev.027342.
    1. Koyama E., Shibukawa Y., Nagayama M., et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Developmental Biology. 2008;316(1):62–73. doi: 10.1016/j.ydbio.2008.01.012.
    1. Feng C., Chan W. C. W., Lam Y., et al. Lgr 5 and Col 22a1 mark progenitor cells in the lineage toward juvenile articular chondrocytes. Stem Cell Reports. 2019;13(4):713–729. doi: 10.1016/j.stemcr.2019.08.006.
    1. Soeda T., Deng J. M., de Crombrugghe B., Behringer R. R., Nakamura T., Akiyama H. Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis. 2010;48(11):635–644. doi: 10.1002/dvg.20667.
    1. Chen X., Song X. H., Yin Z., et al. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells. 2009;27(6):1276–1287. doi: 10.1002/stem.61.
    1. Nakajima T., Ikeya M. Development of pluripotent stem cell-based human tenocytes. Development, Growth & Differentiation. 2020;63:38–46.
    1. Tan S. L., Ahmad T. S., Ng W. M., et al. Identification of pathways mediating growth differentiation Factor5-Induced tenogenic differentiation in human bone marrow stromal cells. PLoS One. 2015;10(11, article e0140869) doi: 10.1371/journal.pone.0140869.
    1. Shen H., Gelberman R. H., Silva M. J., Sakiyama-Elbert S. E., Thomopoulos S. BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS One. 2013;8(10, article e77613) doi: 10.1371/journal.pone.0077613.
    1. Eliasson P., Fahlgren A., Aspenberg P. Mechanical load and BMP signaling during tendon repair: a role for follistatin? Clinical Orthopaedics and Related Research. 2008;466(7):1592–1597.
    1. Liu J., Tao X., Chen L., Han W., Zhou Y., Tang K. CTGF positively regulates BMP12 induced tenogenic differentiation of tendon stem cells and signaling. Cellular Physiology and Biochemistry. 2015;35(5):1831–1845. doi: 10.1159/000373994.
    1. Yin Z., Guo J., Wu T. Y., et al. Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Translational Medicine. 2016;5(8):1106–1116. doi: 10.5966/sctm.2015-0215.
    1. Miyabara S., Yuda Y., Kasashima Y., Kuwano A., Arai K. Regulation of tenomodulin expression via Wnt/β-catenin signaling in equine bone marrow-derived mesenchymal stem cells. Journal of Equine Science. 2014;25(1):7–13. doi: 10.1294/jes.25.7.
    1. Takayama K., Kawakami Y., Mifune Y., et al. The effect of blocking angiogenesis on anterior cruciate ligament healing following stem cell transplantation. Biomaterials. 2015;60:9–19. doi: 10.1016/j.biomaterials.2015.03.036.
    1. Yoshihara M., Hayashizaki Y., Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Reviews and Reports. 2017;13(1):7–16.
    1. Sun Y., Chen W., Hao Y., et al. Stem cell-conditioned medium promotes graft remodeling of midsubstance and intratunnel incorporation after anterior cruciate ligament reconstruction in a rat model. The American Journal of Sports Medicine. 2019;47(10):2327–2337. doi: 10.1177/0363546519859324.
    1. Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–1301. doi: 10.1634/stemcells.2005-0342.
    1. Fraser J. K., Wulur I., Alfonso Z., Hedrick M. H. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology. 2006;24(4):150–154. doi: 10.1016/j.tibtech.2006.01.010.
    1. Bi Y., Kilts T., Inkson C., Shi S., Young M. F. Identification of tendon stem cells and the implications for understanding ectopic ossification. Journal of Bone and Mineral Research. 2006;21, article S133-S
    1. Prager P., Schieker M., Jakob F., Docheva D., Konrads C., Steinert A. Characterization of human telomerase reverse transcriptase immortalized anterior cruciate ligament cell lines. Biomedical Journal. 2019;42(6):371–380. doi: 10.1016/j.bj.2019.05.005.
    1. Vazin T., Freed W. J. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restorative Neurology and Neuroscience. 2010;28(4):589–603. doi: 10.3233/RNN-2010-0543.
    1. Riggs J. W., Barrilleaux B. L., Varlakhanova N., Bush K. M., Chan V., Knoepfler P. S. Induced pluripotency and oncogenic transformation are related processes. Stem Cells and Development. 2013;22(1):37–50. doi: 10.1089/scd.2012.0375.
    1. Zhao T. B., Zhang Z. N., Rong Z., Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–215. doi: 10.1038/nature10135.
    1. Silva A., Sampaio R., Fernandes R., Pinto E. Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee surgery, sports traumatology. Knee Surgery, Sports Traumatology, Arthroscopy. 2014;22(1):66–71.

Source: PubMed

3
Abonner