Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

D Val-Laillet, E Aarts, B Weber, M Ferrari, V Quaresima, L E Stoeckel, M Alonso-Alonso, M Audette, C H Malbert, E Stice, D Val-Laillet, E Aarts, B Weber, M Ferrari, V Quaresima, L E Stoeckel, M Alonso-Alonso, M Audette, C H Malbert, E Stice

Abstract

Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.

Keywords: 5-HT, serotonin; ADHD, attention deficit hyperactivity disorder; AN, anorexia nervosa; ANT, anterior nucleus of the thalamus; B N, bulimia nervosa; BAT, brown adipose tissue; BED, binge eating disorder; BMI, body mass index; BOLD, blood oxygenation level dependent; BS, bariatric surgery; Brain; CBF, cerebral blood flow; CCK, cholecystokinin; Cg25, subgenual cingulate cortex; DA, dopamine; DAT, dopamine transporter; DBS, deep brain stimulation; DBT, deep brain therapy; DTI, diffusion tensor imaging; ED, eating disorders; EEG, electroencephalography; Eating disorders; GP, globus pallidus; HD-tDCS, high-definition transcranial direct current stimulation; HFD, high-fat diet; HHb, deoxygenated-hemoglobin; Human; LHA, lateral hypothalamus; MER, microelectrode recording; MRS, magnetic resonance spectroscopy; Nac, nucleus accumbens; Neuroimaging; Neuromodulation; O2Hb, oxygenated-hemoglobin; OCD, obsessive–compulsive disorder; OFC, orbitofrontal cortex; Obesity; PD, Parkinson's disease; PET, positron emission tomography; PFC, prefrontal cortex; PYY, peptide tyrosine tyrosine; SPECT, single photon emission computed tomography; STN, subthalamic nucleus; TMS, transcranial magnetic stimulation; TRD, treatment-resistant depression; VBM, voxel-based morphometry; VN, vagus nerve; VNS, vagus nerve stimulation; VS, ventral striatum; VTA, ventral tegmental area; aCC, anterior cingulate cortex; dTMS, deep transcranial magnetic stimulation; daCC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; fMRI, functional magnetic resonance imaging; fNIRS, functional near-infrared spectroscopy; lPFC, lateral prefrontal cortex; pCC, posterior cingulate cortex; rCBF, regional cerebral blood flow; rTMS, repetitive transcranial magnetic stimulation; rtfMRI, real-time functional magnetic resonance imaging; tACS, transcranial alternate current stimulation; tDCS, transcranial direct current stimulation; tRNS, transcranial random noise stimulation; vlPFC, ventrolateral prefrontal cortex; vmH, ventromedial hypothalamus; vmPFC, ventromedial prefrontal cortex.

Figures

Fig. 1
Fig. 1
A model of the cognitive control of emotion (MCCE). (A) Diagram of the processing steps involved in generating an emotion and the ways in which cognitive control processes (blue box) might be used to regulate them. As described in the text, the effects of different emotion regulation strategies (the red arrows descending from the cognitive control processes box) can be understood in terms of the stages of the emotion generation sequence that they influence. The pink box seen at the appraisal stage is meant to indicate that neural systems involved in generating emotion support this process. (B) Neural systems involved in using cognitive strategies, such as reappraisal, to regulate emotion (left, blue boxes), systems involved in generating those responses (left, pink boxes), and systems with an undefined or intermediary role in reappraisal (left, yellow boxes; adapted from Ochsner et al., 2012 with permission). Brain schematic representations were provided by Servier Medical Art (http://www.servier.fr).
Fig. 2
Fig. 2
Schematic of real-time functional magnetic resonance imaging (rtfMRI) control loop. Typically, echo planar imaging (EPI) images are extracted from the magnetic resonance (MR) scanner online, analyzed by third-party software, and then presented back to the subject for the purposes of neural self-regulation (adapted from Weiskopf et al., 2004) mEPI: multi-echo EPI; EMG: electromyography.
Fig. 3
Fig. 3
Pictures of (A) butterfly coils for transcranial magnetic stimulation (TMS) and (B) electrodes and battery for transcranial direct current stimulation (tDCS).
Fig. 4
Fig. 4
Changes in glucose metabolism observed via positron emission tomography (PET) imaging after injection of 18FDG (fluorodeoxyglucose), between vagal stimulated vs. sham animals. N = 8 Yucatán minipigs in both groups. VNS (vagus nerve stimulation) therapy was applied during 8 days on ventral and dorsal vagal trunks at the level of the abdomen. The cuff electrodes were placed surgically using a coelioscopic approach. p < 0.0001 with FDR (false discovery rate correction) (see text for details).
Fig. 5
Fig. 5
DBT targets: (A) subthalamic nucleus (coronal view, yellow, labeled “STN”); (B) anterior nucleus of thalamus (3D rendering, dark blue, labeled “anterior”); (C) subgenual anterior cingulate (medial view, region high-lighted in red); (D) nucleus accumbens (medial view, blue circle) (Wiki).
Fig. 6
Fig. 6
Schematic representation showing how potential neurotherapeutic strategies could be included in the therapeutic treatment plan for patients suffering from obesity and/or eating disorders. (A) Simplified therapeutic treatment plan categorizing the different options according to the degree of severity of the patient's condition (BMI, comorbidities, etc.) and/or the degree of invasiveness of the interventions (in green: prevention programs and basic behavioral requirements for a healthy lifestyle; in blue: minimally invasive interventions; in red: invasive interventions requiring surgery/anesthesia). In the dotted box are indicated the therapeutic options discussed in the review. (B) Potential neurotherapeutic strategies against obesity and/or eating disorders, which target specific brain areas or complete neural networks regulating food intake, reward, attention, and homeostasis. (C) Examples of criteria analysis for the assessment of therapeutic options for an individual patient. Acceptability (pre- or post-intervention) of the therapy is patient-dependent. Some criteria are therapy-dependent, such as the invasiveness, technical nature, reversibility, and cost. The efficacy and adaptability of the therapy depend on the interaction between patient and therapy, and can be estimated upon data from a characterized clinical population. Adequation between therapy and patient is conditioned by all the aforementioned criteria, but also by external factors such as the social environment, the geographical/temporal availability of therapy, and the healthcare system the patient depends on. On the schematic three hypothetical intervention strategies to treat obesity in a lambda patient, e.g. a diet (in green), a minimally invasive therapy (in blue), and an invasive therapy (red) are represented. (D) In the context of individualized medicine, the absolute requirement is a good phenotyping of the clinical populations and individual patients, but also a good knowledge of the population/individual health trajectories. According to the type of disease/disorder, the individual history, and the degree of severity of the patient's condition, different therapeutic options can be considered. But within a given clinical population (e.g. morbidly obese), different phenotypes can exist and condition the choice of the treatment. Neuroimaging can help identifying neural vulnerability factors and markers, selecting the best treatment option, and shaping therapeutic strategies (e.g. rtfMRI neurofeedback or brain target identification for neuromodulation protocols).

References

    1. Aarts E., Van Holstein M., Hoogman M., Onnink M., Kan C., Franke B., Buitelaar J., Cools R. Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder: a pilot study on the role of striatal dopamine. Behav. Pharmacol. 2015;26(1–2):227–240.
    1. Abubakr A., Wambacq I. Long-term outcome of vagus nerve stimulation therapy in patients with refractory epilepsy. J. Clin. Neurosci. 2008;15(2):127–129.
    1. Adams T.D., Davidson L.E., Litwin S.E., Kolotkin R.L., LaMonte M.J., Pendleton R.C., Strong M.B., Vinik R., Wanner N.A., Hopkins P.N., Gress R.E., Walker J.M., Cloward T.V., Nuttall R.T., Hammoud A., Greenwood J.L., Crosby R.D., McKinlay R., Simper S.C., Smith S.C. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308(11):1122–1131.
    1. Adcock R.A., Lutomski K., Mcleod S.R., Soneji D.J., Gabrieli J.D. Real-time fMRI during the psychotherapy session: toward a methodology to augment therapeutic benefit, exemplary data. 2005. Human Brain Mapping Conference.
    1. Aerts H.J., Velazquez E.R., Leijenaar R.T., Parmar C., Grossmann P., Cavalho S., Bussink J., Monshouwer R., Haibe-Kains B., Rietveld D., Hoebers F., Rietbergen M.M., Leemans C.R., Dekker A., Quackenbush J., Gillies R.J., Lambin P. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014;5:4006.
    1. Aldao A., Nolen-Hoeksema S. Specificity of cognitive emotion regulation strategies: a transdiagnostic examination. Behav. Res. Ther. 2010;48(10):974–983.
    1. Alexander B., Warner-Schmidt J., Eriksson T., Tamminga C., Arango-Lievano M., Arango-Llievano M., Ghose S., Vernov M., Stavarache M., Stavarche M., Musatov S., Flajolet M., Svenningsson P., Greengard P., Kaplitt M.G. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci. Transl. Med. 2010;2(54):54ra76.
    1. . Epilepsy: aetiology, epidemiology and prognosis. Available:
    1. Alonso-Alonso M. Translating tDCS into the field of obesity: mechanism-driven approaches. Front. Hum. Neurosci. 2013;7:512.
    1. Alonso-Alonso M., Pascual-Leone A. The right brain hypothesis for obesity. JAMA. 2007;297(16):1819–1822.
    1. Amami P., Dekker I., Piacentini S., Ferré F., Romito L.M., Franzini A., Foncke E.M., Albanese A. Impulse control behaviours in patients with Parkinson's disease after subthalamic deep brain stimulation: de novo cases and 3-year follow-up. J. Neurol. Neurosurg. Psychiatry. 2014
    1. Amhaoul H., Staelens S., Dedeurwaerdere S. Imaging brain inflammation in epilepsy. Neuroscience. 2014;279:238–252.
    1. Appelhans B.M., Woolf K., Pagoto S.L., Schneider K.L., Whited M.C., Liebman R. Inhibiting food reward: delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women. Obesity Silver Spring. 2011;19(11):2175–2182.
    1. Arle J.E., Shils J.L. Essential Neuromodulation. Academic Press; 2011.
    1. Avena N.M., Rada P., Hoebel B.G. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience. 2008;156(4):865–871.
    1. Avena N.M., Rada P., Moise N., Hoebel B.G. Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience. 2006;139(3):813–820.
    1. Azuma K., Uchiyama I., Takano H., Tanigawa M., Azuma M., Bamba I., Yoshikawa T. Changes in cerebral blood flow during olfactory stimulation in patients with multiple chemical sensitivity: a multi-channel near-infrared spectroscopic study. PLOS One. 2013;8(11):e80567.
    1. Balodis I.M., Molina N.D., Kober H., Worhunsky P.D., White M.A., Rajita Sinha S., Grilo C.M., Potenza M.N. Divergent neural substrates of inhibitory control in binge eating disorder relative to other manifestations of obesity. Obesity Silver Spring. 2013;21(2):367–377.
    1. Bannier S., Montaurier C., Derost P.P., Ulla M., Lemaire J.J., Boirie Y., Morio B., Durif F. Overweight after deep brain stimulation of the subthalamic nucleus in Parkinson disease: long term follow-up. J. Neurol. Neurosurg. Psychiatry. 2009;80(5):484–488.
    1. Barker A.T. An introduction to the basic principles of magnetic nerve stimulation. J. Clin. Neurophysiol. 1991;8(1):26–37.
    1. Barth K.S., Rydin-Gray S., Kose S., Borckardt J.J., O'Neil P.M., Shaw D., Madan A., Budak A., George M.S. Food cravings and the effects of left prefrontal repetitive transcranial magnetic stimulation using an improved sham condition. Front. Psychiatry. 2011;2:9.
    1. Bartholdy S., Musiat P., Campbell I.C., Schmidt U. The potential of neurofeedback in the treatment of eating disorders: a review of the literature. Eur. Eat. Disord. Rev. 2013;21(6):456–463.
    1. Bassareo V., Musio P., Di Chiara G. Reciprocal responsiveness of nucleus accumbens shell and core dopamine to food- and drug-conditioned stimuli. Psychopharmacology (Berl.) 2011;214(3):687–697.
    1. Batterink L., Yokum S., Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage. 2010;52(4):1696–1703.
    1. Bembich S., Lanzara C., Clarici A., Demarini S., Tepper B.J., Gasparini P., Grasso D.L. Individual differences in prefrontal cortex activity during perception of bitter taste using fNIRS methodology. Chem. Senses. 2010;35(9):801–812.
    1. Bériault S., Al Subaie F., Mok K., Sadikot A.F., Pike G.B. Medical Image Computing and Computer Assisted Intervention — MICCAI. Springer; Toronto: 2011. Automatic trajectory planning of DBS neurosurgery from multi-modal MRI datasets; pp. 259–267.
    1. Bern E.M., O'Brien R.F. Is it an eating disorder, gastrointestinal disorder, or both? Curr. Opin. Pediatr. 2013;25(4):463–470.
    1. Berridge K.C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl.) 2007;191(3):391–431.
    1. Berridge K.C. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 2009;97(5):537–550.
    1. Berridge K.C., Ho C.Y., Richard J.M., Difeliceantonio A.G. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.
    1. Berridge K.C., Robinson T.E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 1998;28(3):309–369.
    1. Berthoud H.R. The neurobiology of food intake in an obesogenic environment. Proc. Nutr. Soc. 2012;71(4):478–487.
    1. Besson M., Belin D., Mcnamara R., Theobald D.E., Castel A., Beckett V.L., Crittenden B.M., Newman A.H., Everitt B.J., Robbins T.W., Dalley J.W. Dissociable control of impulsivity in rats by dopamine d2/3 receptors in the core and shell subregions of the nucleus accumbens. Neuropsychopharmacology. 2010;35(2):560–569.
    1. Bielajew C., Stenger J., Schindler D. Factors that contribute to the reduced weight gain following chronic ventromedial hypothalamic stimulation. Behav. Brain Res. 1994;62(2):143–148.
    1. Bikson M., Bestmann S., Edwards D. Neuroscience: transcranial devices are not playthings. Nature. 2013;501(7466):167.
    1. Biraben A., Guerin S., Bobillier E., Val-Laillet D., Malbert C.H. Central activation after chronic vagus nerve stimulation in pigs: contribution of functional imaging. Bull. Acad. Vet. Fr. 2008;161
    1. Birbaumer N., Ramos Murguialday A., Weber C., Montoya P. Neurofeedback and brain–computer interface clinical applications. Int. Rev. Neurobiol. 2009;86:107–117.
    1. Birbaumer N., Ruiz S., Sitaram R. Learned regulation of brain metabolism. Trends Cogn. Sci. 2013;17(6):295–302.
    1. Blackshaw L.A., Brookes S.J.H., Grundy D., Schemann M. Sensory transmission in the gastrointestinal tract. Neurogastroenterol. Motil. 2007;19(1 Suppl):1–19.
    1. Blundell J.E., Cooling J. Routes to obesity: phenotypes, food choices and activity. Br. J. Nutr. 2000;83(Suppl. 1):S33–SS38.
    1. Bodenlos J.S., Schneider K.L., Oleski J., Gordon K., Rothschild A.J., Pagoto S.L. Vagus nerve stimulation and food intake: effect of body mass index. J. Diabetes Sci. Technol. 2014;8(3):590–595.
    1. Bolen S.D., Chang H.Y., Weiner J.P., Richards T.M., Shore A.D., Goodwin S.M., Johns R.A., Magnuson T.H., Clark J.M. Clinical outcomes after bariatric surgery: a five-year matched cohort analysis in seven US states. Obes. Surg. 2012;22(5):749–763.
    1. Bové J., Perier C. Neurotoxin-based models of Parkinson's disease. Neuroscience. 2012;211:51–76.
    1. Bowirrat A., Oscar-Berman M. Relationship between dopaminergic neurotransmission, alcoholism, and reward deficiency syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005;132B(1):29–37.
    1. Bralten J., Franke B., Waldman I., Rommelse N., Hartman C., Asherson P., Banaschewski T., Ebstein R.P., Gill M., Miranda A., Oades R.D., Roeyers H., Rothenberger A., Sergeant J.A., Oosterlaan J., Sonuga-Barke E., Steinhausen H.C., Faraone S.V., Buitelaar J.K., Arias-Vásquez A. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD. J. Am. Acad. Child Adolesc. Psychiatry. 2013;52(11):1204–1212.
    1. Brown F.D., Fessler R.G., Rachlin J.R., Mullan S. Changes in food intake with electrical stimulation of the ventromedial hypothalamus in dogs. J. Neurosurg. 1984;60(6):1253–1257.
    1. Brühl A.B., Scherpiet S., Sulzer J., Stämpfli P., Seifritz E., Herwig U. Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: a proof-of-concept study. Brain Topogr. 2014;27(1):138–148.
    1. Brunoni A.R., Amadera J., Berbel B., Volz M.S., Rizzerio B.G., Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 2011;14(8):1133–1145.
    1. Buchwald H., Oien D.M. Metabolic/bariatric surgery worldwide. Obes. Surg. 2013;2011:427–436.
    1. Burger K.S., Berner L.A. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Physiol. Behav. 2014;136:121–127.
    1. Burger K.S., Stice E. Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. Am. J. Clin. Nutr. 2012;95(4):810–817.
    1. Burger K.S., Stice E. Greater striatopallidal adaptive coding during cue-reward learning and food reward habituation predict future weight gain. Neuroimage. 2014;99:122–128.
    1. Burneo J.G., Faught E., Knowlton R., Morawetz R., Kuzniecky R. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59(3):463–464.
    1. Bush G., Luu P., Posner M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 2000;4(6):215–222.
    1. Camilleri M., Toouli J., Herrera M.F., Kulseng B., Kow L., Pantoja J.P., Marvik R., Johnsen G., Billington C.J., Moody F.G., Knudson M.B., Tweden K.S., Vollmer M., Wilson R.R., Anvari M. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery. 2008;143(6):723–731.
    1. Camus M., Halelamien N., Plassmann H., Shimojo S., O'Doherty J., Camerer C., Rangel A. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices. Eur. J. Neurosci. 2009;30(10):1980–1988.
    1. Caravaggio F., Raitsin S., Gerretsen P., Nakajima S., Wilson A., Graff-Guerrero A. Ventral striatum binding of a dopamine D2/3 receptor agonist but not antagonist predicts normal body mass index. Biol. Psychiatry. 2015;77:196–202.
    1. Caria A., Sitaram R., Birbaumer N. Real-time fMRI: a tool for local brain regulation. Neuroscientist. 2012;18(5):487–501.
    1. Caria A., Sitaram R., Veit R., Begliomini C., Birbaumer N. Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biol. Psychiatry. 2010;68(5):425–432.
    1. Caria A., Veit R., Sitaram R., Lotze M., Weiskopf N., Grodd W., Birbaumer N. Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage. 2007;35(3):1238–1246.
    1. Cazettes F., Cohen J.I., Yau P.L., Talbot H., Convit A. Obesity-mediated inflammation may damage the brain circuit that regulates food intake. Brain Res. 2011;1373:101–109.
    1. Chakravarty M.M., Bertrand G., Hodge C.P., Sadikot A.F., Collins D.L. The creation of a brain atlas for image guided neurosurgery using serial histological data. Neuroimage. 2006;30(2):359–376.
    1. Chang S.H., Stoll C.R., Song J., Varela J.E., Eagon C.J., Colditz G.A. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003–2012. J.A.M.A. Surg. 2014;149(3):275–287.
    1. Chang S.Y., Kimble C.J., Kim I., Paek S.B., Kressin K.R., Boesche J.B., Whitlock S.V., Eaker D.R., Kasasbeh A., Horne A.E., Blaha C.D., Bennet K.E., Lee K.H. Development of the Mayo investigational neuromodulation control system: toward a closed-loop electrochemical feedback system for deep brain stimulation. J. Neurosurg. 2013;119(6):1556–1565.
    1. Chapin H., Bagarinao E., Mackey S. Real-time fMRI applied to pain management. Neurosci. Lett. 2012;520(2):174–181.
    1. Chen P.S., Yang Y.K., Yeh T.L., Lee I.H., Yao W.J., Chiu N.T., Lu R.B. Correlation between body mass index and striatal dopamine transporter availability in healthy volunteers — a SPECT study. Neuroimage. 2008;40(1):275–279.
    1. Choi E.Y., Yeo B.T., Buckner R.L. The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 2012;108(8):2242–2263.
    1. Chouinard-Decorte F., Felsted J., Small D.M. Increased amygdala response and decreased influence of internal state on amygdala response to food in overweight compared to healthy weight individuals. Appetite. 2010;54(3):639.
    1. Christou N.V., Look D., Maclean L.D. Weight gain after short- and long-limb gastric bypass in patients followed for longer than 10 years. Ann. Surg. 2006;244(5):734–740.
    1. Clouard C., Meunier-Salaün M.C., Val-Laillet D. Food preferences and aversions in human health and nutrition: how can pigs help the biomedical research? Animal. 2012;6(1):118–136.
    1. Cohen M.X., Krohn-Grimberghe A., Elger C.E., Weber B. Dopamine gene predicts the brain's response to dopaminergic drug. Eur. J. Neurosci. 2007;26(12):3652–3660.
    1. Conway C.R., Sheline Y.I., Chibnall J.T., Bucholz R.D., Price J.L., Gangwani S., Mintun M.A. Brain blood-flow change with acute vagus nerve stimulation in treatment-refractory major depressive disorder. Brain Stimul. 2012;5(2):163–171.
    1. Coquery N., Francois O., Lemasson B., Debacker C., Farion R., Rémy C., Barbier E.L. Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma. J. Cereb. Blood Flow Metab. 2014;34(8):1354–1362.
    1. Cornier M.A., Salzberg A.K., Endly D.C., Bessesen D.H., Tregellas J.R. Sex-based differences in the behavioral and neuronal responses to food. Physiol. Behav. 2010;99(4):538–543.
    1. Cortese D.A. A vision of individualized medicine in the context of global health. Clin. Pharmacol. Ther. 2007;82(5):491–493.
    1. Covasa M., Ritter R.C. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278(1):R166–RR170.
    1. Cox A.J., West N.P., Cripps A.W. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207–215.
    1. Cutini S., Basso Moro S., Bisconti S. Review: Functional near infrared optical imaging in cognitive neuroscience: an introductory review. J. Near Infrared Spectrosc. 2012;20(1):75–92.
    1. D'Haese P.F., Cetinkaya E., Konrad P.E., Kao C., Dawant B.M. Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. I. E.E.E. Trans. Med. Imaging. 2005;24(11):1469–1478.
    1. Daly D.M., Park S.J., Valinsky W.C., Beyak M.J. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J. Physiol. 2011;589(11):2857–2870.
    1. Datta A., Bansal V., Diaz J., Patel J., Reato D., Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–207.
    1. Davis J.F., Tracy A.L., Schurdak J.D., Tschöp M.H., Lipton J.W., Clegg D.J., Benoit S.C. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav. Neurosci. 2008;122(6):1257–1263.
    1. De Weijer B.A., Van De Giessen E., Janssen I., Berends F.J., Van De Laar A., Ackermans M.T., Fliers E., La Fleur S.E., Booij J., Serlie M.J. Striatal dopamine receptor binding in morbidly obese women before and after gastric bypass surgery and its relationship with insulin sensitivity. Diabetologia. 2014;57(5):1078–1080.
    1. De Weijer B.A., Van De Giessen E., Van Amelsvoort T.A., Boot E., Braak B., Janssen I.M., Van De Laar A., Fliers E., Serlie M.J., Booij J. Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. E.J.N.M.M.I. Res. 2011;1(1):37.
    1. Decharms R.C. Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn. Sci. 2007;11(11):473–481.
    1. Decharms R.C. Applications of real-time fMRI. Nat. Rev. Neurosci. 2008;9(9):720–729.
    1. Decharms R.C., Maeda F., Glover G.H., Ludlow D., Pauly J.M., Soneji D., Gabrieli J.D., Mackey S.C. Control over brain activation and pain learned by using real-time functional MRI. Proc. Natl. Acad. Sci. U. S. A. 2005;102(51):18626–18631.
    1. Dedeurwaerdere S., Cornelissen B., Van Laere K., Vonck K., Achten E., Slegers G., Boon P. Small animal positron emission tomography during vagus nerve stimulation in rats: A pilot study. Epilepsy Res. 2005;67(3):133–141.
    1. Del Parigi A., Chen K., Gautier J.F., Salbe A.D., Pratley R.E., Ravussin E., Reiman E.M., Tataranni P.A. Sex differences in the human brain's response to hunger and satiation. Am. J. Clin. Nutr. 2002;75(6):1017–1022.
    1. Delgado J.M., Anand B.K. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am. J. Physiol. 1953;172(1):162–168.
    1. Delparigi A., Chen K., Salbe A.D., Hill J.O., Wing R.R., Reiman E.M., Tataranni P.A. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int. J. Obes. (Lond) 2007;31(3):440–448.
    1. Demos K.E., Heatherton T.F., Kelley W.M. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J. Neurosci. 2012;32(16):5549–5552.
    1. Denis G.V., Hamilton J.A. Healthy obese persons: how can they be identified and do metabolic profiles stratify risk? Curr. Opin. Endocrinol. Diabetes Obes. 2013;20(5):369–376.
    1. Denys D., Mantione M., Figee M., Van Den Munckhof P., Koerselman F., Westenberg H., Bosch A., Schuurman R. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive–compulsive disorder. Arch. Gen. Psychiatry. 2010;67(10):1061–1068.
    1. Digiorgi M., Rosen D.J., Choi J.J., Milone L., Schrope B., Olivero-Rivera L., Restuccia N., Yuen S., Fisk M., Inabnet W.B., Bessler M. Re-emergence of diabetes after gastric bypass in patients with mid- to long-term follow-up. Surg. Obes. Relat. Dis. 2010;6(3):249–253.
    1. Divoux J.L., [!(%xInRef|ce:surname)!] B., [!(%xInRef|ce:surname)!] M., Malbert C.H., Watabe K., Matono S., Ayabe M., Kiyonaga A., Anzai K., Higaki Y., Tanaka H. Early changes in brain metabolism following vagal stimulation. Obes. Facts. 2014;7(1):26–35.
    1. Domingue B.W., Belsky D.W., Harris K.M., Smolen A., Mcqueen M.B., Boardman J.D. Polygenic risk predicts obesity in both white and black young adults. PLOS One. 2014;9(7):e101596.
    1. Donovan C.M., Bohland M. Hypoglycemic detection at the portal vein: absent in humans or yet to be elucidated? Diabetes. 2009;58(1):21–23.
    1. Downar J., Sankar A., Giacobbe P., Woodside B., Colton P. Unanticipated rapid remission of refractory bulimia nervosa, during high-dose repetitive transcranial magnetic stimulation of the dorsomedial prefrontal cortex: a case report. Front. Psychiatry. 2012;3:30.
    1. Dunn J.P., Cowan R.L., Volkow N.D., Feurer I.D., Li R., Williams D.B., Kessler R.M., Abumrad N.N. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–130.
    1. Dunn J.P., Kessler R.M., Feurer I.D., Volkow N.D., Patterson B.W., Ansari M.S., Li R., Marks-Shulman P., Abumrad N.N. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care. 2012;35(5):1105–1111.
    1. Ehlis A.C., Schneider S., Dresler T., Fallgatter A.J. Application of functional near-infrared spectroscopy in psychiatry. Neuroimage. 2014;85(1):478–488.
    1. Eisenstein S.A., Antenor-Dorsey J.A., Gredysa D.M., Koller J.M., Bihun E.C., Ranck S.A., Arbeláez A.M., Klein S., Perlmutter J.S., Moerlein S.M., Black K.J., Hershey T. A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[(11)C]methyl)benperidol. Synapse. 2013;67(11):748–756.
    1. El-Sayed Moustafa J.S., Froguel P. From obesity genetics to the future of personalized obesity therapy. Nat. Rev. Endocrinol. 2013;9(7):402–413.
    1. Fava M. Diagnosis and definition of treatment-resistant depression. Biol. Psychiatry. 2003;53(8):649–659.
    1. Felsted J.A., Ren X., Chouinard-Decorte F., Small D.M. Genetically determined differences in brain response to a primary food reward. J. Neurosci. 2010;30(7):2428–2432.
    1. Ferrari M., Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921–935.
    1. Ferreira J.G., Tellez L.A., Ren X., Yeckel C.W., de Araujo I.E. Regulation of fat intake in the absence of flavour signalling. J. Physiol. 2012;590(4):953–972.
    1. Finkelstein E.A., Khavjou O.A., Thompson H., Trogdon J.G., Pan L., Sherry B., Dietz W. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 2012;42(6):563–570.
    1. Finkelstein E.A., Trogdon J.G., Cohen J.W., Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood) 2009;28(5):w822–ww831.
    1. Fladby T., Bryhn G., Halvorsen O., Rosé I., Wahlund M., Wiig P., Wetterberg L. Olfactory response in the temporal cortex of the elderly measured with near-infrared spectroscopy: a preliminary feasibility study. J. Cereb. Blood Flow Metab. 2004;24(6):677–680.
    1. Flegal K.M., Carroll M.D., Ogden C.L., Curtin L.R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–241.
    1. Fox M.D., Buckner R.L., White M.P., Greicius M.D., Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry. 2012;72(7):595–603.
    1. Fox M.D., Halko M.A., Eldaief M.C., Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) Neuroimage. 2012;62(4):2232–2243.
    1. Frank S., Lee S., Preissl H., Schultes B., Birbaumer N., Veit R. The obese brain athlete: self-regulation of the anterior insula in adiposity. PLOS One. 2012;7(8):e42570.
    1. Frank S., Wilms B., Veit R., Ernst B., Thurnheer M., Kullmann S., Fritsche A., Birbaumer N., Preissl H., Schultes B. Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery. Int. J. Obes. (Lond) 2014;38(3):341–348.
    1. Fregni F., Orsati F., Pedrosa W., Fecteau S., Tome F.A., Nitsche M.A., Mecca T., Macedo E.C., Pascual-Leone A., Boggio P.S. Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite. 2008;51(1):34–41.
    1. Gabrieli J.D., Ghosh S.S., Whitfield-Gabrieli S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron. 2015;85(1):11–26.
    1. Gagnon C., Desjardins-Crépeau L., Tournier I., Desjardins M., Lesage F., Greenwood C.E., Bherer L. Near-infrared imaging of the effects of glucose ingestion and regulation on prefrontal activation during dual-task execution in healthy fasting older adults. Behav. Brain Res. 2012;232(1):137–147.
    1. García-García I., Narberhaus A., Marqués-Iturria I., Garolera M., Rădoi A., Segura B., Pueyo R., Ariza M., Jurado M.A. Neural responses to visual food cues: insights from functional magnetic resonance imaging. Eur. Eat. Disord. Rev. 2013;21(2):89–98.
    1. Gearhardt A.N., Yokum S., Stice E., Harris J.L., Brownell K.D. Relation of obesity to neural activation in response to food commercials. Soc. Cogn. Affect. Neurosci. 2014;9(7):932–938.
    1. Geha P.Y., Aschenbrenner K., Felsted J., O'Malley S.S., Small D.M. Altered hypothalamic response to food in smokers. Am. J. Clin. Nutr. 2013;97(1):15–22.
    1. Geiger B.M., Haburcak M., Avena N.M., Moyer M.C., Hoebel B.G., Pothos E.N. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159(4):1193–1199.
    1. Geliebter A. Neuroimaging of gastric distension and gastric bypass surgery. Appetite. 2013;71:459–465.
    1. Gibbons C., Finlayson G., Dalton M., Caudwell P., Blundell J.E. Metabolic phenotyping guidelines: studying eating behaviour in humans. J. Endocrinol. 2014;222(2):G1–G12.
    1. Goddard E., Ashkan K., Farrimond S., Bunnage M., Treasure J. Right frontal lobe glioma presenting as anorexia nervosa: further evidence implicating dorsal anterior cingulate as an area of dysfunction. Int. J. Eat. Disord. 2013;46(2):189–192.
    1. Goldman R.L., Borckardt J.J., Frohman H.A., O'Neil P.M., Madan A., Campbell L.K., Budak A., George M.S. Prefrontal cortex transcranial direct current stimulation (tDCS) temporarily reduces food cravings and increases the self-reported ability to resist food in adults with frequent food craving. Appetite. 2011;56(3):741–746.
    1. Goldman R.L., Canterberry M., Borckardt J.J., Madan A., Byrne T.K., George M.S., O'Neil P.M., Hanlon C.A. Executive control circuitry differentiates degree of success in weight loss following gastric-bypass surgery. Obesity Silver Spring. 2013;21(11):2189–2196.
    1. Gologorsky Y., Ben-Haim S., Moshier E.L., Godbold J., Tagliati M., Weisz D., Alterman R.L. Transgressing the ventricular wall during subthalamic deep brain stimulation surgery for Parkinson disease increases the risk of adverse neurological sequelae. Neurosurgery. 2011;69(2):294–299.
    1. Gorgulho A.A., Pereira J.L., Krahl S., Lemaire J.J., De Salles A. Neuromodulation for eating disorders: obesity and anorexia. Neurosurg. Clin. N. Am. 2014;25(1):147–157.
    1. Gortz L., Bjorkman A.C., Andersson H., Kral J.G. Truncal vagotomy reduces food and liquid intake in man. Physiol. Behav. 1990;48(6):779–781.
    1. Green E., Murphy C. Altered processing of sweet taste in the brain of diet soda drinkers. Physiol. Behav. 2012;107(4):560–567.
    1. Guo J., Simmons W.K., Herscovitch P., Martin A., Hall K.D. Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol. Psychiatry. 2014;19(10):1078–1084.
    1. Guo T., Finnis K.W., Parrent A.G., Peters T.M. Visualization and navigation system development and application for stereotactic deep-brain neurosurgeries. Comput. Aided Surg. 2006;11(5):231–239.
    1. Hall K.D., Hammond R.A., Rahmandad H. Dynamic interplay among homeostatic, hedonic, and cognitive feedback circuits regulating body weight. Am. J. Public. Health. 2014;104(7):1169–1175.
    1. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–199.
    1. Halperin R., Gatchalian C.L., Adachi T.J., Carter J., Leibowitz S.F. Relationship of adrenergic and electrical brain stimulation induced feeding responses. Pharmacol. Biochem. Behav. 1983;18(3):415–422.
    1. Halpern C.H., Tekriwal A., Santollo J., Keating J.G., Wolf J.A., Daniels D., Bale T.L. Amelioration of binge eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. J. Neurosci. 2013;33(17):7122–7129.
    1. Haltia L.T., Rinne J.O., Merisaari H., Maguire R.P., Savontaus E., Helin S., Någren K., Kaasinen V. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse. 2007;61(9):748–756.
    1. Hannukainen J., Guzzardi M., Virtanen K., Sanguinetti E., Nuutila P., Iozzo P. Imaging of organ metabolism in obesity and diabetes: treatment perspectives. Curr. Pharm. Des. 2014
    1. Harada H., Tanaka M., Kato T. Brain olfactory activation measured by near-infrared spectroscopy in humans. J. Laryngol. Otol. 2006;120(8):638–643.
    1. Hariz M.I. Complications of deep brain stimulation surgery. Mov. Disord. 2002;17(Suppl. 3):S162–SS166.
    1. Hasegawa Y., Tachibana Y., Sakagami J., Zhang M., Urade M., Ono T. Flavor-enhanced modulation of cerebral blood flow during Gum chewing. PLOS One. 2013;8(6):e66313.
    1. Hassenstab J.J., Sweet L.H., Del Parigi A., Mccaffery J.M., Haley A.P., Demos K.E., Cohen R.A., Wing R.R. Cortical thickness of the cognitive control network in obesity and successful weight loss maintenance: a preliminary MRI study. Psychiatry Res. 2012;202(1):77–79.
    1. Hausmann A., Mangweth B., Walpoth M., Hoertnagel C., Kramer-Reinstadler K., Rupp C.I., Hinterhuber H. Repetitive transcranial magnetic stimulation (rTMS) in the double-blind treatment of a depressed patient suffering from bulimia nervosa: a case report. Int. J. Neuropsychopharmacol. 2004;7(3):371–373.
    1. Helmers S.L., Begnaud J., Cowley A., Corwin H.M., Edwards J.C., Holder D.L., Kostov H., Larsson P.G., Levisohn P.M., De Menezes M.S., Stefan H., Labiner D.M. Application of a computational model of vagus nerve stimulation. Acta Neurol. Scand. 2012;126:336–343.
    1. Henderson J.M. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front. Integr. Neurosci. 2012;6:15.
    1. Higashi T., Sone Y., Ogawa K., Kitamura Y.T., Saiki K., Sagawa S., Yanagida T., Seiyama A. Changes in regional cerebral blood volume in frontal cortex during mental work with and without caffeine intake: functional monitoring using near-infrared spectroscopy. J. Biomed. Opt. 2004;9(4):788–793.
    1. Hinds O., Ghosh S., Thompson T.W., Yoo J.J., Whitfield-Gabrieli S., Triantafyllou C., Gabrieli J.D. Computing moment-to-moment BOLD activation for real-time neurofeedback. Neuroimage. 2011;54(1):361–368.
    1. Hollmann M., Hellrung L., Pleger B., Schlögl H., Kabisch S., Stumvoll M., Villringer A., Horstmann A. Neural correlates of the volitional regulation of the desire for food. Int. J. Obes. (Lond) 2012;36(5):648–655.
    1. Hoshi Y. Towards the next generation of near-infrared spectroscopy. Philos. Trans. A Math. Phys. Eng. Sci. 2011;369(1955):4425–4439.
    1. Hosseini S.M., Mano Y., Rostami M., Takahashi M., Sugiura M., Kawashima R. Decoding what one likes or dislikes from single-trial fNIRS measurements. Neuroreport. 2011;22(6):269–273.
    1. Hu C., Kato Y., Luo Z. Activation of human prefrontal cortex to pleasant and aversive taste using functional near-infrared spectroscopy. FNS. 2014;5(2):236–244.
    1. Insel T.R. Translating scientific opportunity into public health impact: a strategic plan for research on mental illness. Arch. Gen. Psychiatry. 2009;66(2):128–133.
    1. Insel T.R., Voon V., Nye J.S., Brown V.J., Altevogt B.M., Bullmore E.T., Goodwin G.M., Howard R.J., Kupfer D.J., Malloch G., Marston H.M., Nutt D.J., Robbins T.W., Stahl S.M., Tricklebank M.D., Williams J.H., Sahakian B.J. Innovative solutions to novel drug development in mental health. Neurosci. Biobehav. Rev. 2013;37(10 1):2438–2444.
    1. Ishimaru T., Yata T., Horikawa K., Hatanaka S. Near-infrared spectroscopy of the adult human olfactory cortex. Acta Otolaryngol. Suppl. 2004;95–98(553):95–98.
    1. Israël M., Steiger H., Kolivakis T., Mcgregor L., Sadikot A.F. Deep brain stimulation in the subgenual cingulate cortex for an intractable eating disorder. Biol. Psychiatry. 2010;67(9):e53–ee54.
    1. Jackson P.A., Kennedy D.O. The application of near infrared spectroscopy in nutritional intervention studies. Front. Hum. Neurosci. 2013;7:473.
    1. Jackson P.A., Reay J.L., Scholey A.B., Kennedy D.O. Docosahexaenoic acid-rich fish oil modulates the cerebral hemodynamic response to cognitive tasks in healthy young adults. Biol. Psychol. 2012;89(1):183–190.
    1. Jauch-Chara K., Kistenmacher A., Herzog N., Schwarz M., Schweiger U., Oltmanns K.M. Repetitive electric brain stimulation reduces food intake in humans. Am. J. Clin. Nutr. 2014;100:1003–1009.
    1. Jáuregui-Lobera I. Electroencephalography in eating disorders. Neuropsychiatr. Dis. Treat. 2012;8:1–11.
    1. Jenkinson C.P., Hanson R., Cray K., Wiedrich C., Knowler W.C., Bogardus C., Baier L. Association of dopamine D2 receptor polymorphisms Ser311Cys and TaqIA with obesity or type 2 diabetes mellitus in Pima Indians. Int. J. Obes. Relat. Metab. Disord. 2000;24(10):1233–1238.
    1. Jirsa V.K., Sporns O., Breakspear M., Deco G., Mcintosh A.R. Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol. 2010;148(3):189–205.
    1. Johnson P.M., Kenny P.J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 2010;13(5):635–641.
    1. Jönsson E.G., Nöthen M.M., Grünhage F., Farde L., Nakashima Y., Propping P., Sedvall G.C. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry. 1999;4(3):290–296.
    1. Jorge J., Van Der Zwaag W., Figueiredo P. EEG–fMRI integration for the study of human brain function. Neuroimage. 2014;102:24–34.
    1. Kamolz S., Richter M.M., Schmidtke A., Fallgatter A.J. Transcranial magnetic stimulation for comorbid depression in anorexia. Nervenarzt. 2008;79(9):1071–1073.
    1. Kanai R., Chaieb L., Antal A., Walsh V., Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr. Biol. 2008;18(23):1839–1843.
    1. Karlsson H.K., Tuominen L., Tuulari J.J., Hirvonen J., Parkkola R., Helin S., Salminen P., Nuutila P., Nummenmaa L. Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain. J. Neurosci. 2015;35(9):3959–3965.
    1. Karlsson H.K., Tuulari J.J., Hirvonen J., Lepomäki V., Parkkola R., Hiltunen J., Hannukainen J.C., Soinio M., Pham T., Salminen P., Nuutila P., Nummenmaa L. Obesity is associated with white matter atrophy: a combined diffusion tensor imaging and voxel-based morphometric study. Obesity Silver Spring. 2013;21(12):2530–2537.
    1. Karlsson J., Taft C., Rydén A., Sjöström L., Sullivan M. Ten-year trends in health-related quality of life after surgical and conventional treatment for severe obesity: the SOS intervention study. Int. J. Obes. (Lond) 2007;31(8):1248–1261.
    1. Katsareli E.A., Dedoussis G.V. Biomarkers in the field of obesity and its related comorbidities. Expert Opin. Ther. Targets. 2014;18(4):385–401.
    1. Kaye W.H., Wagner A., Fudge J.L., Paulus M. Neurocircuitry of eating disorders. Curr. Topol. Behav. Neurosci. 2010;6:37–57.
    1. Kaye W.H., Wierenga C.E., Bailer U.F., Simmons A.N., Wagner A., Bischoff-Grethe A. Does a shared neurobiology for foods and drugs of abuse contribute to extremes of food ingestion in anorexia and bulimia nervosa? Biol. Psychiatry. 2013;73(9):836–842.
    1. Kekic M., Mcclelland J., Campbell I., Nestler S., Rubia K., David A.S., Schmidt U. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings. Appetite. 2014;78:55–62.
    1. Kelley A.E., Baldo B.A., Pratt W.E., Will M.J. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol. Behav. 2005;86(5):773–795.
    1. Kelley A.E., Schiltz C.A., Landry C.F. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol. Behav. 2005;86(1–2):11–14.
    1. Kelley A.E., Will M.J., Steininger T.L., Zhang M., Haber S.N. Restricted daily consumption of a highly palatable food (chocolate ensure(R)) alters striatal enkephalin gene expression. Eur. J. Neurosci. 2003;18(9):2592–2598.
    1. Kennedy D.O., Haskell C.F. Cerebral blood flow and behavioural effects of caffeine in habitual and non-habitual consumers of caffeine: a near infrared spectroscopy study. Biol. Psychol. 2011;86(3):298–306.
    1. Kennedy D.O., Wightman E.L., Reay J.L., Lietz G., Okello E.J., Wilde A., Haskell C.F. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am. J. Clin. Nutr. 2010;91(6):1590–1597.
    1. Kentish S., Li H., Philp L.K., O'Donnell T.A., Isaacs N.J., Young R.L., Wittert G.A., Blackshaw L.A., Page A.J. Diet-induced adaptation of vagal afferent function. J. Physiol. 2012;590(1):209–221.
    1. Kessler R.M., Zald D.H., Ansari M.S., Li R., Cowan R.L. Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity. Synapse. 2014;68(7):317–320.
    1. Khan M.F., Mewes K., Gross R.E., Skrinjar O. Assessment of brain shift related to deep brain stimulation surgery. Stereotact. Funct. Neurosurg. 2008;86(1):44–53.
    1. Kirkland A. Think of the hippopotamus: rights consciousness in the fat acceptance movement. Law Soc. Rev. 2008;42(2):397–432.
    1. Kirsch P., Reuter M., Mier D., Lonsdorf T., Stark R., Gallhofer B., Vaitl D., Hennig J. Imaging gene-substance interactions: the effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward. Neurosci. Lett. 2006;405(3):196–201.
    1. Kishinevsky F.I., Cox J.E., Murdaugh D.L., Stoeckel L.E., Cook E.W., 3rd, Weller R.E. fMRI reactivity on a delay discounting task predicts weight gain in obese women. Appetite. 2012;58(2):582–592.
    1. Knight E.J., Min H.K., Hwang S.C., Marsh M.P., Paek S., Kim I., Felmlee J.P., Abulseoud O.A., Bennet K.E., Frye M.A., Lee K.H. Nucleus accumbens deep brain stimulation results in insula and prefrontal activation: a large animal FMRI study. PLOS One. 2013;8(2):e56640.
    1. Kobayashi E., Karaki M., Kusaka T., Kobayashi R., Itoh S., Mori N. Functional optical hemodynamic imaging of the olfactory cortex in normosmia subjects and dysosmia subjects. Acta Otolaryngol. Suppl. 2009:79–84.
    1. Kobayashi E., Karaki M., Touge T., Deguchi K., Ikeda K., Mori N., Doi S. Olfactory assessment using near-infrared spectroscopy. ICME. International Conference on Complex Medical Engineering. (Kobe, Japan) 2012
    1. Kobayashi E., Kusaka T., Karaki M., Kobayashi R., Itoh S., Mori N. Functional optical hemodynamic imaging of the olfactory cortex. Laryngoscope. 2007;117(3):541–546.
    1. Kober H., Mende-Siedlecki P., Kross E.F., Weber J., Mischel W., Hart C.L., Ochsner K.N. Prefrontal–striatal pathway underlies cognitive regulation of craving. Proc. Natl. Acad. Sci. U. S. A. 2010;107(33):14811–14816.
    1. Kokan N., Sakai N., Doi K., Fujio H., Hasegawa S., Tanimoto H., Nibu K. Near-infrared spectroscopy of orbitofrontal cortex during odorant stimulation. Am. J. Rhinol. Allergy. 2011;25(3):163–165.
    1. Konagai, C., Watanabe, H., Abe, K., Tsuruoka, N., Koga, Y., Effects of essence of chicken on cognitive brain function: a near-infrared spectroscopy study, vol. 77(1) (2013a). Biosci Biotechnol Biochem, pp. 178–181
    2. 10.1271/bbb.120706] [Pubmed: 23291775].

    1. Konagai C., Yanagimoto K., Hayamizu K., Han L., Tsuji T., Koga Y. Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers. Clin. Interv. Aging. 2013;8:1247–1257.
    1. Kral J.G., Paez W., Wolfe B.M. Vagal nerve function in obesity: therapeutic implications. World J. Surg. 2009;33(10):1995–2006.
    1. Krolczyk G., Zurowski D., Sobocki J., Słowiaczek M.P., Laskiewicz J., Matyja A., Zaraska K., Zaraska W., Thor P.J. Effects of continuous microchip (MC) vagal neuromodulation on gastrointestinal function in rats. J. Physiol. Pharmacol. 2001;52(4 1):705–715.
    1. Krug M.E., Carter C.S. Conflict control loop theory of cognitive control. In: Mangun G.R., editor. The Neuroscience of Attention: Attentional Control and Selection. Oxford University Press; New York: 2012. pp. 229–249.
    1. Kumar V., Gu Y., Basu S., Berglund A., Eschrich S.A., Schabath M.B., Forster K., Aerts H.J., Dekker A., Fenstermacher D., Goldgof D.B., Hall L.O., Lambin P., Balagurunathan Y., Gatenby R.A., Gillies R.J. Radiomics: the process and the challenges. Magn. Reson. Imaging. 2012;30(9):1234–1248.
    1. Laćan G., De Salles A.A., Gorgulho A.A., Krahl S.E., Frighetto L., Behnke E.J., Melega W.P. Modulation of food intake following deep brain stimulation of the ventromedial hypothalamus in the vervet monkey. Laboratory investigation. J. Neurosurg. 2008;108(2):336–342.
    1. Lambert C., Zrinzo L., Nagy Z., Lutti A., Hariz M., Foltynie T., Draganski B., Ashburner J., Frackowiak R. Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage. 2012;60(1):83–94.
    1. Lambin P., Rios-Velazquez E., Leijenaar R., Carvalho S., Van Stiphout R.G., Granton P., Zegers C.M., Gillies R., Boellard R., Dekker A., Aerts H.J. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer. 2012;48(4):441–446.
    1. Lapenta O.M., Sierve K.D., de Macedo E.C., Fregni F., Boggio P.S. Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite. 2014;83:42–48.
    1. Laruelle M., Gelernter J., Innis R.B. D2 receptors binding potential is not affected by Taq1 polymorphism at the D2 receptor gene. Mol. Psychiatry. 1998;3(3):261–265.
    1. Laskiewicz J., Królczyk G., Zurowski G., Sobocki J., Matyja A., Thor P.J. Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats. J. Physiol. Pharmacol. 2003;54(4):603–610.
    1. Le D.S., Pannacciulli N., Chen K., Del Parigi A., Salbe A.D., Reiman E.M., Krakoff J. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am. J. Clin. Nutr. 2006;84(4):725–731.
    1. Lee S., Ran Kim K., Ku J., Lee J.H., Namkoong K., Jung Y.C. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa. Psychiatry Res. 2014;221(1):43–48.
    1. Lehmkuhle M.J., Mayes S.M., Kipke D.R. Unilateral neuromodulation of the ventromedial hypothalamus of the rat through deep brain stimulation. J. Neural Eng. 2010;7(3):036006.
    1. LeWitt P.A., Rezai A.R., Leehey M.A., Ojemann S.G., Flaherty A.W., Eskandar E.N., Kostyk S.K., Thomas K., Sarkar A., Siddiqui M.S., Tatter S.B., Schwalb J.M., Poston K.L., Henderson J.M., Kurlan R.M., Richard I.H., Van Meter L., Sapan C.V., During M.J., Kaplitt M.G. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–319.
    1. Li X., Hartwell K.J., Borckardt J., Prisciandaro J.J., Saladin M.E., Morgan P.S., Johnson K.A., Lematty T., Brady K.T., George M.S. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study. Addict Biol. 2013;18(4):739–748.
    1. Lipsman N., Woodside D.B., Giacobbe P., Hamani C., Carter J.C., Norwood S.J., Sutandar K., Staab R., Elias G., Lyman C.H., Smith G.S., Lozano A.M. Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet. 2013;381(9875):1361–1370.
    1. Little T.J., Feinle-Bisset C. Oral and gastrointestinal sensing of dietary fat and appetite regulation in humans: modification by diet and obesity. Front. Neurosci. 2010;4:178.
    1. Livhits M., Mercado C., Yermilov I., Parikh J.A., Dutson E., Mehran A., Ko C.Y., Gibbons M.M. Preoperative predictors of weight loss following bariatric surgery: systematic review. Obes. Surg. 2012;22(1):70–89.
    1. Locke M.C., Wu S.S., Foote K.D., Sassi M., Jacobson C.E., Rodriguez R.L., Fernandez H.H., Okun M.S. Weight changes in subthalamic nucleus vs globus pallidus internus deep brain stimulation: results from the COMPARE Parkinson disease deep brain stimulation cohort. Neurosurgery. 2011;68(5):1233–1237.
    1. Logan G.D., Cowan W.B., Davis K.A. On the ability to inhibit simple and choice reaction time responses: a model and a method. J. Exp. Psychol. Hum. Percept. Perform. 1984;10(2):276–291.
    1. Luu S., Chau T. Neural representation of degree of preference in the medial prefrontal cortex. Neuroreport. 2009;20(18):1581–1585.
    1. Lyons K.E., Wilkinson S.B., Overman J., Pahwa R. Surgical and hardware complications of subthalamic stimulation: a series of 160 procedures. Neurology. 2004;63(4):612–616.
    1. Machii K., Cohen D., Ramos-Estebanez C., Pascual-Leone A. Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin. Neurophysiol. 2006;117(2):455–471.
    1. Macia F., Perlemoine C., Coman I., Guehl D., Burbaud P., Cuny E., Gin H., Rigalleau V., Tison F. Parkinson's disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov. Disord. 2004;19(2):206–212.
    1. Magro D.O., Geloneze B., Delfini R., Pareja B.C., Callejas F., Pareja J.C. Long-term weight regain after gastric bypass: a 5-year prospective study. Obes. Surg. 2008;18(6):648–651.
    1. Makino M., Tsuboi K., Dennerstein L. Prevalence of eating disorders: a comparison of western and non-western countries. MedGenMed. 2004;6(3):49.
    1. Malbert C.H. Brain imaging during feeding behaviour. Fundam. Clin. Pharmacol. 2013;27:26.
    1. Manta S., El Mansari M., Debonnel G., Blier P. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int. J. Neuropsychopharmacol. 2013;16(2):459–470.
    1. Mantione M., Nieman D.H., Figee M., Denys D. Cognitive-behavioural therapy augments the effects of deep brain stimulation in obsessive–compulsive disorder. Psychol. Med. 2014;44:3515–3522.
    1. Mantione M., Van De Brink W., Schuurman P.R., Denys D. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery. 2010;66(1):E218.
    1. Martin D.M., Liu R., Alonzo A., Green M., Loo C.K. Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Exp. Brain Res. 2014;232:3345–3351.
    1. Martin D.M., Liu R., Alonzo A., Green M., Player M.J., Sachdev P., Loo C.K. Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. Int. J. Neuropsychopharmacol. 2013;16(9):1927–1936.
    1. Matsumoto T., Saito K., Nakamura A., Saito T., Nammoku T., Ishikawa M., Mori K. Dried-bonito aroma components enhance salivary hemodynamic responses to broth tastes detected by near-infrared spectroscopy. J. Agric. Food Chem. 2012;60(3):805–811.
    1. Mccaffery J.M., Haley A.P., Sweet L.H., Phelan S., Raynor H.A., Del Parigi A., Cohen R., Wing R.R. Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. Am. J. Clin. Nutr. 2009;90(4):928–934.
    1. Mcclelland J., Bozhilova N., Campbell I., Schmidt U. A systematic review of the effects of neuromodulation on eating and body weight: evidence from human and animal studies. Eur. Eat. Disorders Rev. 2013;21(6):436–455.
    1. Mcclelland J., Bozhilova N., Nestler S., Campbell I.C., Jacob S., Johnson-Sabine E., Schmidt U. Improvements in symptoms following neuronavigated repetitive transcranial magnetic stimulation (rTMS) in severe and enduring anorexia nervosa: findings from two case studies. Eur. Eat. Disord. Rev. 2013;21(6):500–506.
    1. Mccormick L.M., Keel P.K., Brumm M.C., Bowers W., Swayze V., Andersen A., Andreasen N. Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa. Int. J. Eat. Disord. 2008;41(7):602–610.
    1. Mclaughlin N.C., Didie E.R., Machado A.G., Haber S.N., Eskandar E.N., Greenberg B.D. Improvements in anorexia symptoms after deep brain stimulation for intractable obsessive–compulsive disorder. Biol. Psychiatry. 2013;73(9):e29–ee31.
    1. Mcneal D.R. Analysis of a model for excitation of myelinated nerve. I. E.E.E. Trans. Biomed. Eng. 1976;23(4):329–337.
    1. Miller A.L., Lee H.J., Lumeng J.C. Obesity-associated biomarkers and executive function in children. Pediatr. Res. 2015;77(1–2):143–147.
    1. Miocinovic S., Parent M., Butson C.R., Hahn P.J., Russo G.S., Vitek J.L., Mcintyre C.C. Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J. Neurophysiol. 2006;96(3):1569–1580.
    1. Mitchison D., Hay P.J. The epidemiology of eating disorders: genetic, environmental, and societal factors. Clin. Epidemiol. 2014;6:89–97.
    1. Miyagi Y., Shima F., Sasaki T. Brain shift: an error factor during implantation of deep brain stimulation electrodes. J. Neurosurg. 2007;107(5):989–997.
    1. Miyake A., Friedman N.P., Emerson M.J., Witzki A.H., Howerter A., Wager T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 2000;41(1):49–100.
    1. Mogenson G.J. Stability and modification of consummatory behaviors elicited by electrical stimulation of the hypothalamus. Physiol. Behav. 1971;6(3):255–260.
    1. Montaurier C., Morio B., Bannier S., Derost P., Arnaud P., Brandolini-Bunlon M., Giraudet C., Boirie Y., Durif F. Mechanisms of body weight gain in patients with Parkinson's disease after subthalamic stimulation. Brain. 2007;130(7):1808–1818.
    1. Montenegro R.A., Okano A.H., Cunha F.A., Gurgel J.L., Fontes E.B., Farinatti P.T. Prefrontal cortex transcranial direct current stimulation associated with aerobic exercise change aspects of appetite sensation in overweight adults. Appetite. 2012;58(1):333–338.
    1. Nagamitsu S., Araki Y., Ioji T., Yamashita F., Ozono S., Kouno M., Iizuka C., Hara M., Shibuya I., Ohya T., Yamashita Y., Tsuda A., Kakuma T., Matsuishi T. Prefrontal brain function in children with anorexia nervosa: a near-infrared spectroscopy study. Brain Dev. 2011;33(1):35–44.
    1. Nagamitsu S., Yamashita F., Araki Y., Iizuka C., Ozono S., Komatsu H., Ohya T., Yamashita Y., Kakuma T., Tsuda A., Matsuishi T. Characteristic prefrontal blood volume patterns when imaging body type, high-calorie food, and mother–child attachment in childhood anorexia nervosa: a near infrared spectroscopy study. Brain Dev. 2010;32(2):162–167.
    1. Nakamura H., Iwamoto M., Washida K., Sekine K., Takase M., Park B.J., Morikawa T., Miyazaki Y. Influences of casein hydrolysate ingestion on cerebral activity, autonomic nerve activity, and anxiety. J. Physiol. Anthropol. 2010;29(3):103–108.
    1. Nederkoorn C., Smulders F.T., Havermans R.C., Roefs A., Jansen A. Impulsivity in obese women. Appetite. 2006;47(2):253–256.
    1. Neville M.J., Johnstone E.C., Walton R.T. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum. Mutat. 2004;23(6):540–545.
    1. Ng M., Fleming T., Robinson M., Thomson B., Graetz N., Margono C., Mullany E.C., Biryukov S., Abbafati C., Abera S.F., Abraham J.P., Abu-Rmeileh N.M., Achoki T., Albuhairan F.S., Alemu Z.A., Alfonso R., Ali M.K., Ali R., Guzman N.A., Ammar W., Anwari P., Banerjee A., Barquera S., Basu S., Bennett D.A., Bhutta Z., Blore J., Cabral N., Nonato I.C., Chang J.C., Chowdhury R., Courville K.J., Criqui M.H., Cundiff D.K., Dabhadkar K.C., Dandona L., Davis A., Dayama A., Dharmaratne S.D., Ding E.L., Durrani A.M., Esteghamati A., Farzadfar F., Fay D.F., Feigin V.L., Flaxman A., Forouzanfar M.H., Goto A., Green M.A., Gupta R., Hafezi-Nejad N., Hankey G.J., Harewood H.C., Havmoeller R., Hay S., Hernandez L., Husseini A., Idrisov B.T., Ikeda N., Islami F., Jahangir E., Jassal S.K., Jee S.H., Jeffreys M., Jonas J.B., Kabagambe E.K., Khalifa S.E., Kengne A.P., Khader Y.S., Khang Y.H., Kim D., Kimokoti R.W., Kinge J.M., Kokubo Y., Kosen S., Kwan G., Lai T., Leinsalu M., Li Y., Liang X., Liu S., Logroscino G., Lotufo P.A., Lu Y., Ma J., Mainoo N.K., Mensah G.A., Merriman T.R., Mokdad A.H., Moschandreas J., Naghavi M., Naheed A., Nand D., Narayan K.M., Nelson E.L., Neuhouser M.L., Nisar M.I., Ohkubo T., Oti S.O., Pedroza A. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study. Lancet. 2014;384:766–781.
    1. Nitsche M.A., Cohen L.G., Wassermann E.M., Priori A., Lang N., Antal A., Paulus W., Hummel F., Boggio P.S., Fregni F., Pascual-Leone A. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;2008(3):206–223.
    1. Noble E.P., Noble R.E., Ritchie T., Syndulko K., Bohlman M.C., Noble L.A., Zhang Y., Sparkes R.S., Grandy D.K. D2 dopamine receptor gene and obesity. Int. J. Eat. Disord. 1994;15(3):205–217.
    1. Noordenbos G., Oldenhave A., Muschter J., Terpstra N. Characteristics and treatment of patients with chronic eating disorders. UEDI. 2002;10(1):15–29.
    1. Novakova L., Haluzik M., Jech R., Urgosik D., Ruzicka F., Ruzicka E. Hormonal regulators of food intake and weight gain in Parkinson's disease after subthalamic nucleus stimulation. Neuro Endocrinol. Lett. 2011;32(4):437–441.
    1. Novakova L., Ruzicka E., Jech R., Serranova T., Dusek P., Urgosik D. Increase in body weight is a non-motor side effect of deep brain stimulation of the subthalamic nucleus in Parkinson's disease. Neuro Endocrinol. Lett. 2007;28(1):21–25.
    1. Ochoa M., Lallès J.P., Malbert C.H., Val-Laillet D. Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur. J. Nutr. 2015;54(1):1–24.
    1. Ochsner K.N., Silvers J.A., Buhle J.T. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann. N. Y. Acad. Sci. 2012;1251:E1–E24.
    1. Okamoto M., Dan H., Clowney L., Yamaguchi Y., Dan I. Activation in ventro-lateral prefrontal cortex during the act of tasting: an fNIRS study. Neurosci. Lett. 2009;451(2):129–133.
    1. Okamoto M., Dan H., Singh A.K., Hayakawa F., Jurcak V., Suzuki T., Kohyama K., Dan I. Prefrontal activity during flavor difference test: application of functional near-infrared spectroscopy to sensory evaluation studies. Appetite. 2006;47(2):220–232.
    1. Okamoto M., Dan I. Functional near-infrared spectroscopy for human brain mapping of taste-related cognitive functions. J. Biosci. Bioeng. 2007;103(3):207–215.
    1. Okamoto M., Matsunami M., Dan H., Kohata T., Kohyama K., Dan I. Prefrontal activity during taste encoding: an fNIRS study. Neuroimage. 2006;31(2):796–806.
    1. Okamoto M., Wada Y., Yamaguchi Y., Kyutoku Y., Clowney L., Singh A.K., Dan I. Process-specific prefrontal contributions to episodic encoding and retrieval of tastes: a functional NIRS study. Neuroimage. 2011;54(2):1578–1588.
    1. Ono Y. Prefrontal activity correlating with perception of sweetness during eating. ICME. International Conference on Complex Medical Engineering. (Kobe, Japan) 2012:2012.
    1. Page A.J., Symonds E., Peiris M., Blackshaw L.A., Young R.L. Peripheral neural targets in obesity. Br. J. Pharmacol. 2012;166(5):1537–1558.
    1. Pajunen P., Kotronen A., Korpi-Hyövälti E., Keinänen-Kiukaanniemi S., Oksa H., Niskanen L., Saaristo T., Saltevo J.T., Sundvall J., Vanhala M., Uusitupa M., Peltonen M. Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D survey. B.M.C. Public. Health. 2011;11:754.
    1. Pannacciulli N., Del Parigi A., Chen K., Le D.S., Reiman E.M., Tataranni P.A. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage. 2006;31(4):1419–1425.
    1. Pardo J.V., Sheikh S.A., Kuskowski M.A., Surerus-Johnson C., Hagen M.C., Lee J.T., Rittberg B.R., Adson D.E. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int. J. Obes. (Lond.) 2007;31:1756–1759.
    1. Parmet, W.E. (2014), Beyond paternalism: rethinking the limits of public health law. Connecticut Law Review Northeastern University School of Law Research Paper No. 194-2014
    1. Pascual-Leone A., Davey N., Rothwell J., Wassermann E., Puri B. Handbook of Transcranial Magnetic Stimulation. Arnold; London: 2002.
    1. Patenaude B., Smith S.M., Kennedy D.N., Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56(3):907–922.
    1. Pathan S.A., Jain G.K., Akhter S., Vohora D., Ahmad F.J., Khar R.K. Insights into the novel three ‘D’s of epilepsy treatment: drugs, delivery systems and devices. Drug Discov. Today. 2010;15(17–18):717–732.
    1. Perlmutter J.S., Mink J.W. Deep brain stimulation. Annu. Rev. Neurosci. 2006;29:229–257.
    1. Petersen A. From bioethics to a sociology of bio-knowledge. Soc. Sci. Med. 2013;98:264–270.
    1. Petersen E.A., Holl E.M., Martinez-Torres I., Foltynie T., Limousin P., Hariz M.I., Zrinzo L. Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery. 2010;67(3 Suppl):213–221.
    1. Pohjalainen T., Rinne J.O., Någren K., Lehikoinen P., Anttila K., Syvälahti E.K., Hietala J. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol. Psychiatry. 1998;3(3):256–260.
    1. Rasmussen E.B., Lawyer S.R., Reilly W. Percent body fat is related to delay and probability discounting for food in humans. Behav. Processes. 2010;83(1):23–30.
    1. Reinert K.R., Po'e E.K., Barkin S.L. The relationship between executive function and obesity in children and adolescents: a systematic literature review. J. Obes. 2013;2013:820956.
    1. Renfrew Center Foundation for Eating Disorders. Eating Disorders 101 Guide: A Summary of Issues, Statistics and Resources. Renfrew Center Foundation for Eating Disorders; 2003.
    1. Reyt S., Picq C., Sinniger V., Clarençon D., Bonaz B., David O. Dynamic causal modelling and physiological confounds: a functional MRI study of vagus nerve stimulation. NeuroImage. 2010;52:1456–1464.
    1. Ridding M.C., Rothwell J.C. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat. Rev. Neurosci. 2007;8(7):559–567.
    1. Robbins T.W., Everitt B.J. Functions of dopamine in the dorsal and ventral striatum. Seminars in Neuroscience. 1992;4(2):119–127.
    1. Robertson E.M., Théoret H., Pascual-Leone A. Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J. Cogn. Neurosci. 2003;15(7):948–960.
    1. Rosin B., Slovik M., Mitelman R., Rivlin-Etzion M., Haber S.N., Israel Z., Vaadia E., Bergman H. Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism. Neuron. 2011;72(2):370–384.
    1. Roslin M., Kurian M. The use of electrical stimulation of the vagus nerve to treat morbid obesity. epilepsy &amp. Behaviour. 2001;2:S11–SS16.
    1. Rossi S., Hallett M., Rossini P.M., Pascual-Leone A., Safety of TMS Consensus Group Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009;120(12):2008–2039.
    1. Rota G., Sitaram R., Veit R., Erb M., Weiskopf N., Dogil G., Birbaumer N. Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Hum. Brain Mapp. 2009;30(5):1605–1614.
    1. Rudenga K.J., Small D.M. Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite. 2012;58(2):504–507.
    1. Ruffin M., Nicolaidis S. Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res. 1999;846(1):23–29.
    1. Saddoris M.P., Sugam J.A., Cacciapaglia F., Carelli R.M. Rapid dopamine dynamics in the accumbens core and shell: learning and action. Front. Biosci. Elite Ed. 2013;5:273–288.
    1. Sagi Y., Tavor I., Hofstetter S., Tzur-Moryosef S., Blumenfeld-Katzir T., Assaf Y. Learning in the fast lane: new insights into neuroplasticity. Neuron. 2012;73(6):1195–1203.
    1. Saikali S., Meurice P., Sauleau P., Eliat P.A., Bellaud P., Randuineau G., Vérin M., Malbert C.H. A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J. Neurosci. Methods. 2010;192(1):102–109.
    1. Saito-Iizumi K., Nakamura A., Matsumoto T., Fujiki A., Yamamoto N., Saito T., Nammoku T., Mori K. Ethylmaltol odor enhances salivary hemodynamic responses to sucrose taste as detected by near-infrared spectroscopy. Chem. Percept. 2013;6(2):92–100.
    1. Sander C.Y., Hooker J.M., Catana C., Normandin M.D., Alpert N.M., Knudsen G.M., Vanduffel W., Rosen B.R., Mandeville J.B. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc. Natl. Acad. Sci. U. S. A. 2013;110(27):11169–11174.
    1. Sani S., Jobe K., Smith A., Kordower J.H., Bakay R.A. Deep brain stimulation for treatment of obesity in rats. J. Neurosurg. 2007;107(4):809–813.
    1. Sarr M.G., Billington C.J., Brancatisano R., Brancatisano A., Toouli J., Kow L., Nguyen N.T., Blackstone R., Maher J.W., Shikora S., Reeds D.N., Eagon J.C., Wolfe B.M., O'Rourke R.W., Fujioka K., Takata M., Swain J.M., Morton J.M., Ikramuddin S., Schweitzer M. The EMPOWER Study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes. Surg. 2012;22(11):1771–1782.
    1. Sauleau P., Lapouble E., Val-Laillet D., Malbert C.H. The pig model in brain imaging and neurosurgery. Animal. 2009;3(8):1138–1151.
    1. Sauleau P., Leray E., Rouaud T., Drapier S., Drapier D., Blanchard S., Drillet G., Péron J., Vérin M. Comparison of weight gain and energy intake after subthalamic versus pallidal stimulation in Parkinson's disease. Mov. Disord. 2009;24(14):2149–2155.
    1. Schallert T. Reactivity to food odors during hypothalamic stimulation in rats not experienced with stimulation-induced eating. Physiol. Behav. 1977;18(6):1061–1066.
    1. Schecklmann M., Schaldecker M., Aucktor S., Brast J., Kirchgässner K., Mühlberger A., Warnke A., Gerlach M., Fallgatter A.J., Romanos M. Effects of methylphenidate on olfaction and frontal and temporal brain oxygenation in children with ADHD. J. Psychiatr. Res. 2011;45(11):1463–1470.
    1. Schecklmann M., Schenk E., Maisch A., Kreiker S., Jacob C., Warnke A., Gerlach M., Fallgatter A.J., Romanos M. Altered frontal and temporal brain function during olfactory stimulation in adult attention-deficit/hyperactivity disorder. Neuropsychobiology. 2011;63(2):66–76.
    1. Schmidt U., Campbell I.C. Treatment of eating disorders cannot remain ‘brainless’: the case for brain-directed treatments. Eur. Eat. Disord. Rev. 2013;21(6):425–427.
    1. Scholkmann F., Kleiser S., Metz A.J., Zimmermann R., Mata Pavia J., Wolf U., Wolf M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage. 2014;85(1):6–27.
    1. Scholtz S., Miras A.D., Chhina N., Prechtl C.G., Sleeth M.L., Daud N.M., Ismail N.A., Durighel G., Ahmed A.R., Olbers T., Vincent R.P., Alaghband-Zadeh J., Ghatei M.A., Waldman A.D., Frost G.S., Bell J.D., Le Roux C.W., Goldstone A.P. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902.
    1. Schultz W., Dayan P., Montague P.R. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–1599.
    1. Shah M., Simha V., Garg A. Review: long-term impact of bariatric surgery on body weight, comorbidities, and nutritional status. J. Clin. Endocrinol. Metab. 2006;91(11):4223–4231.
    1. Shikora S., Toouli J., Herrera M.F., Kulseng B., Zulewski H., Brancatisano R., Kow L., Pantoja J.P., Johnsen G., Brancatisano A., Tweden K.S., Knudson M.B., Billington C.J. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J. Obes. 2013;2013:245683.
    1. Shimokawa T., Misawa T., Suzuki K. Neural representation of preference relationships. Neuroreport. 2008;19(16):1557–1561.
    1. Shott M.E., Cornier M.A., Mittal V.A., Pryor T.L., Orr J.M., Brown M.S., Frank G.K. Orbitofrontal cortex volume and brain reward response in obesity. Int. J. Obes. (Lond) 2015;39:214–221.
    1. Siep N., Roefs A., Roebroeck A., Havermans R., Bonte M., Jansen A. Fighting food temptations: the modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation. Neuroimage. 2012;60(1):213–220.
    1. Sierens D.K., Kutz S., Pilitsis J.G., Bakay R.a.E. Stereotactic surgery with microelectrode recordings. In: Bakay R.a.E., editor. Movement Disorder Surgery. The Essentials. Thieme Medical Publishers; New York: 2008. pp. 83–114.
    1. Silvers J.A., Insel C., Powers A., Franz P., Weber J., Mischel W., Casey B.J., Ochsner K.N. Curbing craving: behavioral and brain evidence that children regulate craving when instructed to do so but have higher baseline craving than adults. Psychol. Sci. 2014;25(10):1932–1942.
    1. Sitaram R., Lee S., Ruiz S., Rana M., Veit R., Birbaumer N. Real-time support vector classification and feedback of multiple emotional brain states. Neuroimage. 2011;56(2):753–765.
    1. Sizonenko S.V., Babiloni C., De Bruin E.A., Isaacs E.B., Jönsson L.S., Kennedy D.O., Latulippe M.E., Mohajeri M.H., Moreines J., Pietrini P., Walhovd K.B., Winwood R.J., Sijben J.W. Brain imaging and human nutrition: which measures to use in intervention studies? Br. J. Nutr. 2013;110(Suppl. 1):S1–S30.
    1. Small D.M., Jones-Gotman M., Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage. 2003;19(4):1709–1715.
    1. Small D.M., Zatorre R.J., Dagher A., Evans A.C., Jones-Gotman M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain. 2001;124(9):1720–1733.
    1. Smink F.R., Van Hoeken D., Hoek H.W. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr. Psychiatry Rep. 2012;14(4):406–414.
    1. Sotak B.N., Hnasko T.S., Robinson S., Kremer E.J., Palmiter R.D. Dysregulation of dopamine signaling in the dorsal striatum inhibits feeding. Brain Res. 2005;1061(2):88–96.
    1. Southon A., Walder K., Sanigorski A.M., Zimmet P., Nicholson G.C., Kotowicz M.A., Collier G. The Taq IA and Ser311 Cys polymorphisms in the dopamine D2 receptor gene and obesity. Diabetes Nutr. Metab. 2003;16(1):72–76.
    1. Spitz M.R., Detry M.A., Pillow P., Hu Y., Amos C.I., Hong W.K., Wu X. Variant alleles of the D2 dopamine receptor gene and obesity. Nutr. Res. 2000;20(3):371–380.
    1. Stagg C.J., Nitsche M.A. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.
    1. Starr P.A., Martin A.J., Ostrem J.L., Talke P., Levesque N., Larson P.S. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J. Neurosurg. 2010;112(3):479–490.
    1. Stearns A.T., Balakrishnan A., Radmanesh A., Ashley S.W., Rhoads D.B., Tavakkolizadeh A. Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Dig. Dis. Sci. 2012;57(5):1281–1290.
    1. Steele K.E., Prokopowicz G.P., Schweitzer M.A., Magunsuon T.H., Lidor A.O., Kuwabawa H., Kumar A., Brasic J., Wong D.F. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes. Surg. 2010;20(3):369–374.
    1. Steinbrink J., Villringer A., Kempf F., Haux D., Boden S., Obrig H. Illuminating the BOLD signal: combined fMRI–fNIRS studies. Magn. Reson. Imaging. 2006;24(4):495–505.
    1. Stenger J., Fournier T., Bielajew C. The effects of chronic ventromedial hypothalamic stimulation on weight gain in rats. Physiol. Behav. 1991;50(6):1209–1213.
    1. Stephan F.K., Valenstein E.S., Zucker I. Copulation and eating during electrical stimulation of the rat hypothalamus. Physiol. Behav. 1971;7(4):587–593.
    1. Stergiakouli E., Gaillard R., Tavaré J.M., Balthasar N., Loos R.J., Taal H.R., Evans D.M., Rivadeneira F., St Pourcain B., Uitterlinden A.G., Kemp J.P., Hofman A., Ring S.M., Cole T.J., Jaddoe V.W., Davey Smith G., Timpson N.J. Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity Silver Spring. 2014;22:2252–2259.
    1. Stice E., Burger K.S., Yokum S. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. Am. J. Clin. Nutr. 2013;98(6):1377–1384.
    1. Stice E., Spoor S., Bohon C., Small D.M. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science. 2008;322(5900):449–452.
    1. Stice E., Spoor S., Bohon C., Veldhuizen M.G., Small D.M. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J. Abnorm. Psychol. 2008;117(4):924–935.
    1. Stice E., Yokum S., Blum K., Bohon C. Weight gain is associated with reduced striatal response to palatable food. J. Neurosci. 2010;30(39):13105–13109.
    1. Stice E., Yokum S., Bohon C., Marti N., Smolen A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage. 2010;50(4):1618–1625.
    1. Stice E., Yokum S., Burger K., Epstein L., Smolen A. Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J. Neurosci. 2012;32(29):10093–10100.
    1. Stice E., Yokum S., Burger K.S., Epstein L.H., Small D.M. Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J. Neurosci. 2011;31(12):4360–4366.
    1. Stice E., Yokum S., Burger K.S., Rohde P., Shaw H., Gau J.M. A pilot randomized trial of a cognitive reappraisal obesity prevention program. Physiol. Behav. 2015;138:124–132.
    1. Stoeckel L.E., Garrison K.A., Ghosh S., Wighton P., Hanlon C.A., Gilman J.M., Greer S., Turk-Browne N.B., deBettencourt M.T., Scheinost D., Craddock C., Thompson T., Calderon V., Bauer C.C., George M., Breiter H.C., Whitfield-Gabrieli S., Gabrieli J.D., LaConte S.M., Hirshberg L. Optimizing real time fMRI neurofeedback for therapeutic discovery and development. NeuroImage Clin. 2014;5:245–255.
    1. Stoeckel L.E., Ghosh S., Hinds O., Tighe A., Coakley A., Gabrieli J.D.E., Whitfield-Gabrieli S., Evins A. real time fMRI neurofeedback targeting reward- and inhibitory control-related brain regions in cigarette smokers. 2011. American College of Neuropsychopharmacology, 50th Annual Meeting.
    1. Stoeckel L.E., Ghosh S., Keshavan A., Stern J.P., Calderon V., Curran M.T., Whitfield-Gabrieli S., Gabrieli J.D.E., Evins A.E. 2013. (2013a). “The effect of real time fMRI neurofeedback on food and cigarette cue reactivity”. American College of Neuropsychopharmacology, 52nd Annual Meeting.
    1. Stoeckel L.E., Murdaugh D.L., Cox J.E., Cook E.W., 3rd, Weller R.E. Greater impulsivity is associated with decreased brain activation in obese women during a delay discounting task. Brain Imaging Behav. 2013;7(2):116–128.
    1. Strowd R.E., Cartwright M.S., Passmore L.V., Ellis T.L., Tatter S.B., Siddiqui M.S. Weight change following deep brain stimulation for movement disorders. J. Neurol. 2010;257(8):1293–1297.
    1. Suda M., Uehara T., Fukuda M., Sato T., Kameyama M., Mikuni M. Dieting tendency and eating behavior problems in eating disorder correlate with right frontotemporal and left orbitofrontal cortex: a near-infrared spectroscopy study. J. Psychiatr. Res. 2010;44(8):547–555.
    1. Sullivan P.F. Mortality in anorexia nervosa. Am. J. Psychiatry. 1995;152(7):1073–1074.
    1. Sulzer J., Haller S., Scharnowski F., Weiskopf N., Birbaumer N., Blefari M.L., Bruehl A.B., Cohen L.G., Decharms R.C., Gassert R., Goebel R., Herwig U., Laconte S., Linden D., Luft A., Seifritz E., Sitaram R. Real-time fMRI neurofeedback: progress and challenges. Neuroimage. 2013;76:386–399.
    1. Sun X., Veldhuizen M.G., Wray A., De Araujo I., Small D. Amygdala response to food cues in the absence of hunger predicts weight change. Appetite. 2013;60(1):168–174.
    1. Sutoh C., Nakazato M., Matsuzawa D., Tsuru K., Niitsu T., Iyo M., Shimizu E. Changes in self-regulation-related prefrontal activities in eating disorders: a near infrared spectroscopy study. PLOS One. 2013;8(3):e59324.
    1. Tanner C.M., Brandabur M., Dorsey E.R. 2008. Parkinson Disease: A Global View. available: .
    1. Tellez L.A., Medina S., Han W., Ferreira J.G., Licona-Limón P., Ren X., Lam T.T., Schwartz G.J., De Araujo I.E. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341(6147):800–802.
    1. Terney D., Chaieb L., Moliadze V., Antal A., Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 2008;28(52):14147–14155.
    1. Thomas E.L., Parkinson J.R., Frost G.S., Goldstone A.P., Doré C.J., Mccarthy J.P., Collins A.L., Fitzpatrick J.A., Durighel G., Taylor-Robinson S.D., Bell J.D. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity Silver Spring. 2012;20(1):76–87.
    1. Thomas G.N., Critchley J.A., Tomlinson B., Cockram C.S., Chan J.C. Relationships between the taqI polymorphism of the dopamine D2 receptor and blood pressure in hyperglycaemic and normoglycaemic Chinese subjects. Clin. Endocrinol. (Oxf) 2001;55(5):605–611.
    1. Thomsen G., Ziebell M., Jensen P.S., Da Cuhna-Bang S., Knudsen G.M., Pinborg L.H. No correlation between body mass index and striatal dopamine transporter availability in healthy volunteers using SPECT and [123I]PE2I. Obesity. 2013;21:1803–1806.
    1. Tobler P.N., Fiorillo C.D., Schultz W. Adaptive coding of reward value by dopamine neurons. Science. 2005;307(5715):1642–1645.
    1. Tomycz N.D., Whiting D.M., Oh M.Y. Deep brain stimulation for obesity — from theoretical foundations to designing the first human pilot study. Neurosurg. Rev. 2012;35(1):37–42.
    1. Torres N., Chabardès S., Benabid A.L. Rationale for hypothalamus-deep brain stimulation in food intake disorders and obesity. Adv. Tech. Stand. Neurosurg. 2011;36:17–30.
    1. Truong D.Q., Magerowski G., Blackburn G.L., Bikson M., Alonso-Alonso M. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines. Neuroimage Clin. 2013;2:759–766.
    1. Tuite P.J., Maxwell R.E., Ikramuddin S., Kotz C.M., Kotzd C.M., Billington C.J., Billingtond C.J., Laseski M.A., Thielen S.D. Weight and body mass index in Parkinson's disease patients after deep brain stimulation surgery. Parkinsonism Relat. Disord. 2005;11(4):247–252.
    1. Uehara T., Fukuda M., Suda M., Ito M., Suto T., Kameyama M., Yamagishi Y., Mikuni M. Cerebral blood volume changes in patients with eating disorders during word fluency: a preliminary study using multi-channel near infrared spectroscopy. Eat. Weight Disord. 2007;12(4):183–190.
    1. Uher R., Yoganathan D., Mogg A., Eranti S.V., Treasure J., Campbell I.C., Mcloughlin D.M., Schmidt U. Effect of left prefrontal repetitive transcranial magnetic stimulation on food craving. Biol. Psychiatry. 2005;58(10):840–842.
    1. Vainik U., Dagher A., Dubé L., Fellows L.K. Neurobehavioral correlates of body mass index and eating behaviours in adults: a systematic review. Neurosci. Biobehav. Rev. 2013;37(3):279–299.
    1. Val-Laillet D., Biraben A., Randuineau G., Malbert C.H. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite. 2010;55(2):245–252.
    1. Val-Laillet D., Layec S., Guérin S., Meurice P., Malbert C.H. Changes in brain activity after a diet-induced obesity. Obesity Silver Spring. 2011;19(4):749–756.
    1. Van De Giessen E., Celik F., Schweitzer D.H., Van Den Brink W., Booij J. Dopamine D2/3 receptor availability and amphetamine-induced dopamine release in obesity. J. Psychopharmacol. 2014;28(9):866–873.
    1. Van De Giessen E., Hesse S., Caan M.W., Zientek F., Dickson J.C., Tossici-Bolt L., Sera T., Asenbaum S., Guignard R., Akdemir U.O., Knudsen G.M., Nobili F., Pagani M., Vander Borght T., Van Laere K., Varrone A., Tatsch K., Booij J., Sabri O. No association between striatal dopamine transporter binding and body mass index: a multi-center European study in healthy volunteers. Neuroimage. 2013;64:61–67.
    1. Van Den Eynde F., Guillaume S., Broadbent H., Campbell I.C., Schmidt U. Repetitive transcranial magnetic stimulation in anorexia nervosa: a pilot study. Eur. Psychiatry. 2013;28(2):98–101.
    1. Van Der Plasse G., Schrama R., Van Seters S.P., Vanderschuren L.J., Westenberg H.G. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLOS One. 2012;7(3):e33455.
    1. Van Dijk S.J., Molloy P.L., Varinli H., Morrison J.L., Muhlhausler B.S., Members of EpiSCOPE Epigenetics and human obesity. Int. J. Obes. (Lond) 2014;39:85–97.
    1. Verdam F.J., Schouten R., Greve J.W., Koek G.H., Bouvy N.D. An update on less invasive and endoscopic techniques mimicking the effect of bariatric surgery. J. Obes. 2012;2012:597871.
    1. Vijgen G.H.E.J., Bouvy N.D., Leenen L., Rijkers K., Cornips E., Majoie M., Brans B., Van Marken Lichtenbelt W.D. Vagus nerve stimulation increases energy expenditure: relation to Brown adipose tissue activity. PLOS One. 2013;8(10):e77221.
    1. Volkow N.D., Wang G.J., Telang F., Fowler J.S., Thanos P.K., Logan J., Alexoff D., Ding Y.S., Wong C., Ma Y., Pradhan K. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage. 2008;42(4):1537–1543.
    1. Walker H.C., Lyerly M., Cutter G., Hagood J., Stover N.P., Guthrie S.L., Guthrie B.L., Watts R.L. Weight changes associated with unilateral STN DBS and advanced PD. Parkinsonism Relat. Disord. 2009;15(9):709–711.
    1. Wallace D.L., Aarts E., Dang L.C., Greer S.M., Jagust W.J., D'Esposito M. Dorsal striatal dopamine, food preference and health perception in humans. PLOS One. 2014;9(5):e96319.
    1. Walpoth M., Hoertnagl C., Mangweth-Matzek B., Kemmler G., Hinterhölzl J., Conca A., Hausmann A. Repetitive transcranial magnetic stimulation in bulimia nervosa: preliminary results of a single-centre, randomised, double-blind, sham-controlled trial in female outpatients. Psychother. Psychosom. 2008;77(1):57–60.
    1. Wang G.J., Tomasi D., Convit A., Logan J., Wong C.T., Shumay E., Fowler J.S., Volkow N.D. BMI modulates calorie-dependent dopamine changes in accumbens from glucose intake. PLOS One. 2014;9(7):e101585.
    1. Wang G.J., Volkow N.D., Fowler J.S. The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin. Ther. Targets. 2002;6(5):601–609.
    1. Wang G.J., Volkow N.D., Logan J., Pappas N.R., Wong C.T., Zhu W., Netusil N., Fowler J.S. Brain dopamine and obesity. Lancet. 2001;357(9253):354–357.
    1. Wang G.J., Volkow N.D., Telang F., Jayne M., Ma Y., Pradhan K., Zhu W., Wong C.T., Thanos P.K., Geliebter A., Biegon A., Fowler J.S. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc. Natl. Acad. Sci. U. S. A. 2009;106(4):1249–1254.
    1. Wang G.J., Volkow N.D., Thanos P.K., Fowler J.S. Imaging of brain dopamine pathways: implications for understanding obesity. J. Addict Med. 2009;3(1):8–18.
    1. Wassermann E., Epstein C., Ziemann U. Oxford Handbook of Transcranial Stimulation. [!(sb:name)!]; Press: 2008.
    1. Watanabe A., Kato N., Kato T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci. Res. 2002;42(4):279–285.
    1. Weiskopf N. Real-time fMRI and its application to neurofeedback. Neuroimage. 2012;62(2):682–692.
    1. Weiskopf N., Scharnowski F., Veit R., Goebel R., Birbaumer N., Mathiak K. Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI) J. Physiol. Paris. 2004;98(4–6):357–373.
    1. Weiskopf N., Sitaram R., Josephs O., Veit R., Scharnowski F., Goebel R., Birbaumer N., Deichmann R., Mathiak K. Real-time functional magnetic resonance imaging: methods and applications. Magn. Reson. Imaging. 2007;25(6):989–1003.
    1. Whiting D.M., Tomycz N.D., Bailes J., De Jonge L., Lecoultre V., Wilent B., Alcindor D., Prostko E.R., Cheng B.C., Angle C., Cantella D., Whiting B.B., Mizes J.S., Finnis K.W., Ravussin E., Oh M.Y. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J. Neurosurg. 2013;119(1):56–63.
    1. Wightman E.L., Haskell C.F., Forster J.S., Veasey R.C., Kennedy D.O. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum. Psychopharmacol. 2012;27(2):177–186.
    1. Wilcox C.E., Braskie M.N., Kluth J.T., Jagust W.J. Overeating behavior and striatal dopamine with 6-[F]-fluoro-l-m-tyrosine PET. J. Obes. 2010;2010
    1. Williams K.W., Elmquist J.K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 2012;15(10):1350–1355.
    1. Wing R.R., Phelan S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005;82(1 Suppl):222S–225S.
    1. Wu H., Van Dyck-Lippens P.J., Santegoeds R., Van Kuyck K., Gabriëls L., Lin G., Pan G., Li Y., Li D., Zhan S., Sun B., Nuttin B. Deep-brain stimulation for anorexia nervosa. World Neurosurg. 2013;80(3–4):S29.e1–S29.e10.
    1. Xiao Y., Beriault S., Pike G.B., Collins D.L. Multicontrast multiecho FLASH MRI for targeting the subthalamic nucleus. Magn. Reson. Imaging. 2012;30(5):627–640.
    1. Xue G., Aron A.R., Poldrack R.A. Common neural substrates for inhibition of spoken and manual responses. Cereb. Cortex. 2008;18(8):1923–1932.
    1. Yimit D., Hoxur P., Amat N., Uchikawa K., Yamaguchi N. Effects of soybean peptide on immune function, brain function, and neurochemistry in healthy volunteers. Nutrition. 2012;28(2):154–159.
    1. Yokum S., Gearhardt A.N., Harris J.L., Brownell K.D., Stice E. Individual differences in striatum activity to food commercials predict weight gain in adolescents. Obesity (Silver Spring) 2014;22:2544–2551.
    1. Yokum S., Ng J., Stice E. Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity Silver Spring. 2011;19(9):1775–1783.
    1. Yokum S., Stice E. Cognitive regulation of food craving: effects of three cognitive reappraisal strategies on neural response to palatable foods. Int. J. Obes. (Lond) 2013;37(12):1565–1570.
    1. Zahodne L.B., Susatia F., Bowers D., Ong T.L., Jacobson C.E.T., Okun M.S., Rodriguez R.L., Malaty I.A., Foote K.D., Fernandez H.H. Binge eating in Parkinson's disease: prevalence, correlates and the contribution of deep brain stimulation. J. Neuropsychiatry Clin. Neurosci. 2011;23(1):56–62.
    1. Zangen A., Roth Y., Voller B., Hallett M. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin. Neurophysiol. 2005;116(4):775–779.
    1. Zhang X., Cao B., Yan N., Liu J., Wang J., Tung V.O.V., Li Y. Vagus nerve stimulation modulates visceral pain-related affective memory. Behav. Brain Res. 2013;236(1):8–15.
    1. Ziauddeen H., Farooqi I.S., Fletcher P.C. Obesity and the brain: how convincing is the addiction model? Nat. Rev. Neurosci. 2012;13(4):279–286.
    1. Zotev V., Krueger F., Phillips R., Alvarez R.P., Simmons W.K., Bellgowan P., Drevets W.C., Bodurka J. Self-regulation of amygdala activation using real-time FMRI neurofeedback. PLOS One. 2011;6(9):e24522.
    1. Zotev V., Phillips R., Young K.D., Drevets W.C., Bodurka J. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. PLOS One. 2013;8(11):e79184.

Source: PubMed

3
Abonner