Durable Long-Term Bacterial Engraftment following Encapsulated Fecal Microbiota Transplantation To Treat Clostridium difficile Infection

Christopher Staley, Thomas Kaiser, Byron P Vaughn, Carolyn Graiziger, Matthew J Hamilton, Amanda J Kabage, Alexander Khoruts, Michael J Sadowsky, Christopher Staley, Thomas Kaiser, Byron P Vaughn, Carolyn Graiziger, Matthew J Hamilton, Amanda J Kabage, Alexander Khoruts, Michael J Sadowsky

Abstract

Fecal microbiota transplantation (FMT) has become a common rescue therapy for recurrent Clostridium difficile infection, and encapsulated delivery (cFMT) of healthy donor microbiota shows similar clinical efficacy as more traditional routes of administration. In this study, we characterized long-term patterns of bacterial engraftment in a cohort of 18 patients, who received capsules from one of three donors, up to 409 days post-FMT. Bacterial communities were characterized using Illumina sequencing of the V5-V6 hypervariable regions of the 16S rRNA gene, and engraftment was determined by using the Bayesian algorithm SourceTracker. All patients recovered clinically and were free of C. difficile infection following cFMT. The majority of patients (61%) showed high levels of engraftment after the first week following FMT, which were sustained throughout the year. A small subset, 22%, experienced a decline in donor engraftment after approximately 1 month, and a few patients (17%), two of whom were taking metformin, showed delayed and low levels of donor engraftment. Members of the genera Bacteroides, Parabacteroides, and Faecalibacterium were significantly and positively correlated with donor similarity (ρ = 0.237 to 0.373, P ≤ 0.017). Furthermore, throughout the year, patient fecal communities showed significant separation based on the donor fecal microbiota that they received (P < 0.001). Results of this study, which characterize long-term engraftment following cFMT, suggest that numerical donor similarity is not strictly related to clinical outcome and identify a persistent donor-specific effect on patient fecal microbial communities. Furthermore, results suggest that members of the Bacteroidetes may be important targets to improve engraftment via cFMT.IMPORTANCE Recurrent Clostridium difficile infection (rCDI) is the most common cause of hospital- and community-acquired diarrheal infection associated with antibiotic use. Fecal microbiota transplantation (FMT), a treatment that involves administration of fecal bacteria from a healthy donor to a recipient patient, is a highly effective rescue therapy for rCDI that is increasingly being incorporated into standard clinical practice. Encapsulated, freeze-dried preparations of fecal microbiota, administered orally, offer the simplest and most convenient route of FMT delivery for patients (cFMT). In this study, we evaluated the extent of bacterial engraftment following cFMT and the duration of donor bacterial persistence. All patients studied recovered clinically but showed differing patterns in long-term microbial community similarity to the donor that were associated with members of the bacterial group Bacteroidetes, previously shown to be prominent contributors to rCDI resistance. Results highlight long-lasting, donor-specific effects on recipient patient microbiota and reveal potential bacterial targets to improve cFMT engraftment.

Keywords: Bacteroides; capsule FMT; donor; engraftment; fecal transplant; stable.

Copyright © 2019 Staley et al.

Figures

FIG 1
FIG 1
Microbial community diversity and composition in patient and donor samples. (A) Shannon indices in samples grouped by time point. Error bars reflect standard error, letters denote statistical differences (Tukey’s post hoc P < 0.05), and bars that share the same letter did not differ significantly. (B) Distribution of abundant genera in samples grouped by time point (mean ± standard error). (C) Principal-coordinate analysis of Bray-Curtis distances among all patient and donor samples (r2 = 0.40). Samples are grouped by days post-FMT, pre-FMT, or donor. Abundant genera that were significantly correlated with axis positions are shown.
FIG 2
FIG 2
Evaluation of donor engraftment in patient samples. (A) Mean similarity to all three donor lots (combined donor), the donor lot received (individual donor), or the patient’s pre-FMT sample, as determined by SourceTracker. (B) Patients showing sustained engraftment through the year-long follow-up. (C) Patients in whom a decline in donor similarity (approximately 20% or greater from maximum) was observed. (D) Patients in whom slow and/or poor engraftment was observed. For panels B to D, all data points were normalized to donor similarity in the patient’s pre-FMT sample and only the donor lot received was used as a source. Missing time points indicate that a sample was not collected during that period. Patients who were taking metformin are shown by triangles. Error bars reflect standard error.
FIG 3
FIG 3
Similarity to donor samples using shared OTUs. Solid lines reflect the relative abundances of empirically shared OTUs. Dashed lines reflect SourceTracker (ST) predictions of donor similarity. Error bars reflect SEM.
FIG 4
FIG 4
Principal-coordinate analysis of Bray-Curtis distances among patient samples collected: 28 to 45 days (r2 = 0.38) (A), 86 to 134 (r2 = 0.21) (B), and 346 to 409 days (r2 = 0.35) (C) post-FMT. Samples are grouped by the donor lot received.
FIG 5
FIG 5
Bacterial community composition and diversity grouped by engraftment patterns. (A to C) Mean relative abundances of the five predominant genera are shown for samples from patients with sustained engraftment (A), declining engraftment (B), or slow/poor engraftment (C). (D) Mean Shannon indices for each engraftment pattern. Error bars reflect SEM.

References

    1. Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS. 2013. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498. doi:10.1038/ajg.2013.4.
    1. Kelly CP, Lamont JT. 2008. Clostridium difficile—more difficult than ever. N Engl J Med 359:1932–1940. doi:10.1056/NEJMra0707500.
    1. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC. 2015. Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834. doi:10.1056/NEJMoa1408913.
    1. Ma GK, Brensinger CM, Wu Q, Lewis JD. 2017. Increasing incidence of multiply recurrent Clostridium difficile infection in the United States. Ann Intern Med 167:152. doi:10.7326/M16-2733.
    1. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, Loo V, Shaklee Sammons J, Sandora TJ, Wilcox MH. 2018. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66:987–994. doi:10.1093/cid/ciy149.
    1. Drekonja D, Reich J, Gezahegn S, Greer N, Shaukat A, MacDonald R, Rutks I, Wilt TJ. 2015. Fecal microbiota transplantation for Clostridium difficile infection: a systematic review. Ann Intern Med 162:630–638. doi:10.7326/M14-2693.
    1. Kelly C, Khoruts A, Staley C, Sadowsky M, Abd M, Alani M, Bakow B, Curran P, McKenney J, Tisch A, Reinert S, Machan J, Brandt L. 2016. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med 165:609–616. doi:10.7326/M16-0271.
    1. Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. 2012. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol 107:761–767. doi:10.1038/ajg.2011.482.
    1. Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. 2013. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 4:125–135. doi:10.4161/gmic.23571.
    1. Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. 2014. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312:1772–1778. doi:10.1001/jama.2014.13875.
    1. Staley C, Hamilton MJ, Vaughn BP, Graiziger CT, Newman KM, Kabage AJ, Sadowsky MJ, Khoruts A. 2017. Successful resolution of recurrent Clostridium difficile infection using freeze-dried, encapsulated microbiota; pragmatic cohort study. Am J Gastroenterol 112:940–947. doi:10.1038/ajg.2017.6.
    1. Kao D, Roach B, Silva M, Beck P, Rioux K, Kaplan GG, Chang H-J, Coward S, Goodman KJ, Xu H, Madsen K, Mason A, Wong G-S, Jovel J, Patterson J, Louie T. 2017. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 318:1985–1993. doi:10.1001/jama.2017.17077.
    1. Weingarden A, González A, Vázquez-Baeza Y, Weiss S, Humphry G, Berg-Lyons D, Knights D, Unno T, Bobr A, Kang J, Khoruts A, Knight R, Sadowsky MJ. 2015. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3:10. doi:10.1186/s40168-015-0070-0.
    1. Staley C, Vaughn BP, Graiziger CT, Singroy S, Hamilton MJ, Yao D, Chen C, Khoruts A, Sadowsky MJ. 2017. Community dynamics drive punctuated engraftment of the fecal microbiome following transplantation using freeze-dried, encapsulated fecal microbiota. Gut Microbes 8:276–288. doi:10.1080/19490976.2017.1299310.
    1. Broecker F, Kube M, Klumpp J, Schuppler M, Biedermann L, Hecht J, Hombach M, Keller PM, Rogler G, Moelling K. 2013. Analysis of the intestinal microbiome of a recovered Clostridium difficile patient after fecal transplantation. Digestion 88:243–251. doi:10.1159/000355955.
    1. Broecker F, Klumpp J, Schuppler M, Russo G, Biedermann L, Hombach M, Rogler G, Moelling K. 2016. Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation. Cold Spring Harb Mol Case Stud 2:a000448. doi:10.1101/mcs.a000448.
    1. Jalanka J, Mattila E, Jouhten H, Hartman J, de Vos WM, Arkkila P, Satokari R. 2016. Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in faecal microbiota transplantation for recurrent Clostridium difficile infection. BMC Med 14:155. doi:10.1186/s12916-016-0698-z.
    1. Staley C, Kaiser T, Vaugh BP, Graiziger CT, Hamilton MJ, Khoruts A, Sadowsky MJ, Vaughn BP, Graiziger CT, Hamilton MJ, Khoruts A, Sadowsky MJ. 2018. Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome 6:166. doi:10.1186/s40168-018-0549-6.
    1. Brandt LJ, Aroniadis OC, Mellow M, Kanatzar A, Kelly C, Park T, Stollman N, Rohlke F, Surawicz C. 2012. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol 107:1079–1087. doi:10.1038/ajg.2012.60.
    1. Allegretti JR, Kao D, Phelps E, Roach B, Smith J, Ganapini VC, Kassam Z, Xu H, Fischer M. 2019. Risk of Clostridium difficile infection with systemic antimicrobial therapy following successful fecal microbiota transplant: should we recommend anti-Clostridium difficile antibiotic prophylaxis? Dig Dis Sci 64:1668–1671. doi:10.1007/s10620-018-5450-4.
    1. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML. 2013. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4:1111–1119. doi:10.1111/2041-210X.12114.
    1. Seekatz AM, Rao K, Santhosh K, Young VB. 2016. Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection. Genome Med 8:47. doi:10.1186/s13073-016-0298-8.
    1. Khoruts A, Sadowsky MJ. 2016. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 13:508–516. doi:10.1038/nrgastro.2016.98.
    1. Weingarden AR, Dosa PI, DeWinter E, Steer CJ, Shaughnessy MK, Johnson JR, Khoruts A, Sadowsky MJ. 2016. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth. PLoS One 11:e0147210. doi:10.1371/journal.pone.0147210.
    1. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MRM, Jenq RR, Taur Y, Sander C, Cross J, Toussaint NC, Xavier JB, Pamer EG. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–208. doi:10.1038/nature13828.
    1. Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, Young VB. 2014. Recovery of the gut microbiome following fecal microbiota. mBio 5:e00893-14. doi:10.1128/mBio.00893-14.
    1. Staley C, Kelly CR, Brandt LJ, Khoruts A, Sadowsky MJ. 2016. Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation. mBio 7:e01965-16. doi:10.1128/mBio.01965-16.
    1. Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad R, Schreiber F, Brandt C, Deakin LJ, Pickard DJ, Duncan SH, Flint HJ, Clark TG, Parkhill J, Dougan G. 2012. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8:e1002995. doi:10.1371/journal.ppat.1002995.
    1. Donaldson GP, Lee SM, Mazmanian SK. 2016. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32. doi:10.1038/nrmicro3552.
    1. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C. 2012. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8:e1002606. doi:10.1371/journal.pcbi.1002606.
    1. Roemhild R, Gokhale CS, Dirksen P, Blake C, Rosenstiel P, Traulsen A, Andersson DI, Schulenburg H. 2018. Cellular hysteresis as a principle to maximize the efficacy of antibiotic therapy. Proc Natl Acad Sci U S A 115:9767–9772. doi:10.1073/pnas.1810004115.
    1. Tvede M, Rask-Madsen J. 1989. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet i:1156–1160. doi:10.1016/s0140-6736(89)92749-9.
    1. Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, Gorbach S, Sears P, Shue Y-K. 2011. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431. doi:10.1056/NEJMoa0910812.
    1. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST. 2011. Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761. doi:10.1038/nmeth.1650.
    1. Staley C, Kaiser T, Lobos A, Ahmed W, Harwood VJ, Brown CM, Sadowsky MJ. 2018. Application of SourceTracker for accurate identification of fecal pollution in recreational freshwater: a double-blinded study. Environ Sci Technol 52:4207–4217. doi:10.1021/acs.est.7b05401.
    1. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J, MetaHIT Consortium, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O. 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266. doi:10.1038/nature15766.
    1. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. 2017. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858. doi:10.1038/nm.4345.
    1. Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, Zhang F, Tang W, Ching JYL, Wu JCY, Chan PKS, Sung JJY, Yu J, Chan FKL, Ng SC. 2018. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun 9:3663. doi:10.1038/s41467-018-06103-6.
    1. Zuo T, Wong SH, Lam K, Lui R, Cheung K, Tang W, Ching JYL, Chan PKS, Chan MCW, Wu JCY, Chan FKL, Yu J, Sung JJY, Ng SC. 2018. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67:634–643. doi:10.1136/gutjnl-2017-313952.
    1. Claesson MJ, Wang QO, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38:e200. doi:10.1093/nar/gkq873.
    1. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Gould TJ, Clayton JB, Johnson TJ, Hunter R, Knights D, Beckman KB. 2016. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34:942–949. doi:10.1038/nbt.3601.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09.
    1. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar/gkm864.
    1. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. doi:10.1093/nar/gkn879.
    1. Gihring TM, Green SJ, Schadt CW. 2012. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol 14:285–290. doi:10.1111/j.1462-2920.2011.02550.x.
    1. Shannon CE, Weaver W. 1949. The mathematical theory of communication. The University of Illinois Press, Urbana, IL.
    1. Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349. doi:10.2307/1942268.
    1. Clarke KR. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x.
    1. Anderson MJ, Willis TJ. 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525.

Source: PubMed

3
Abonner