Harnessing the power of neuroplasticity for intervention

Bryan Kolb, Arif Muhammad, Bryan Kolb, Arif Muhammad

Abstract

A fundamental property of the brain is its capacity to change with a wide variety of experiences, including injury. Although there are spontaneous reparative changes following injury, these changes are rarely sufficient to support significant functional recovery. Research on the basic principles of brain plasticity is leading to new approaches to treating the injured brain. We review factors that affect synaptic organization in the normal brain, evidence of spontaneous neuroplasticity after injury, and the evidence that factors including postinjury experience, pharmacotherapy, and cell-based therapies, can form the basis of rehabilitation strategies after brain injuries early in life and in adulthood.

Keywords: brain plasticity; neurorehabilitation; recovery of function.

Figures

Figure 1
Figure 1
Camera lucida drawings of representative segments from medium spiny neurons in the core (top) and shell (bottom) subregions of the nucleus of saline- or amphetamine-treated rats. The drawings to the right of the segments illustrate multiple heading spines, which show a very large drug-induced increase (After Robinson and Kolb, 1997). *p < 0.01.
Figure 2
Figure 2
Top: Illustration of location of, and cell morphology, for the analysis of the effects of amphetamine on neuronal structure. Bottom: Summary of the contrasting effects of amphetamine on the medial frontal and orbital frontal cortex. Abbreviations: UNTR, untrained; SUC, trained to bar press for sucrose; AMPH, trained to bar press for amphetamine (After Crombag et al., 2005). *Differs from control, p < 0.05; †differs from sucrose, p < 0.05.
Figure 3
Figure 3
Effect of tactile stimulation (stroking with a fine brush) on spine density in control, day 3 frontal injury, and day 3 parietal injury in rats (After Kolb and Gibb, 2010).
Figure 4
Figure 4
(A) Extent of ischemic injury across 8 planes of measurement. (C) Illustrate representative camera lucida drawings of layer V pyramidal neurons in anterior cingulate cortex (Cg3) ipsilateral to the lesion (B), or forelimb area (FL) in the contralesional hemisphere (C) from animals treated either with saline or nicotine. Increased dendritic length in the nicotine-treated animals was correlated with improved functional outcome (After Gonzalez et al., 2006).
Figure 5
Figure 5
Both dendritic length and spine density (shown here) in the contralateral forelimb cortex is enhanced by antibodies to NoGo-A (After Papadopoulos et al., 2006).
Figure 6
Figure 6
Inosine combined with NoGo-A receptor blocker (NEP1-40) restores performance with the impaired paw to preoperative levels. Similar results were found with a combination of inosine and complex housing (after Zai et al., 2011). * and ** different from saline-treated controls significant at p < 0.05 and p < 0.01 respectively. † and †† different from rats treated animals with NEP1-40 at p < 0.05 and p < 0.01 respectively.

References

    1. Abraham W. C. (2009). Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387–398 10.1038/nrn2356
    1. Adkins D. L., Hsu J. E., Jones T. A. (2008). Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Exp. Neurol. 212, 14–28 10.1016/j.expneurol.2008.01.031
    1. Alaverdashvili M., Lim D. H., Whishaw I. Q. (2007). No improvement by amphetamine on learned non-use, attempts, success or movement in skilled reaching by the rat after motor cortex stroke. Eur. J. Neurosci. 25, 3442–3452 10.1111/j.1460-9568.2007.05594.x
    1. Alaverdashvili M., Whishaw I. Q. (2013). A behavioral method for identifying recovery and compensation: hand use in a preclinical stroke model using the single pellet reaching task. Neurosci. Biobehav. Rev. 37, 950–967 10.1016/j.neubiorev.2013.03.026
    1. Altman J. (1962). Are new neurons formed in the brains of adult mammals? Science 135, 1127–1128 10.1126/science.135.3509.1127
    1. Amengual J. L., Rojo N., Vecina de las Heras M., Marco-Pallarés J., Grau-Sánchez J., Schneider S., et al. (2013). Sensorimotorplasticity after music-supported therapy in chronic stroke patients revealed by transcranial magnetic stimulation. PLoS ONE 8:e61883 10.1371/journal.pone.0061883
    1. Ardiel E. L., Rankin C. H. (2010). An elegant mind: learning and memory in Caenorbavditis elegans. Learn.Mem. 17, 191–201 10.1101/lm.960510
    1. Arvidsson A., Collin T., Kirik D., Kokaia Z., Lindvall O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 10.1038/nm747
    1. Baranauskas G. (2001). Pain-induced plasticity in the spinal cord, in Toward a Theory of Neuroplasticity, eds Shaw C. A., McEachern J. (Philadelphia, PA: Psychology Press; ), 373–386
    1. Barker D. (1998). In utero programming of chronic disease. Clin. Sci. 95, 115–128 10.1042/CS19980019
    1. Barulli D., Stern Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cog. Sci. 17, 502–509 10.1016/j.tics.2013.08.012
    1. Bell H. C., Pellis S. M., Kolb B. (2010). Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortex. Behav. Brain Res. 207, 7–13 10.1016/j.bbr.2009.09.029
    1. Biernaskie J., Corbett D. (2001). Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 21, 5272–5280
    1. Candia V., Wienbruch C., Elbert T., Rockstroh B., Ray W. (2003). Effective behavioral treatment of focal hand dystonia in musicians alters somatosensory cortical organization. Proc. Nat. Acad. Sci. U.S.A. 100, 7942–7946 10.1073/pnas.1231193100
    1. Chen P., Goldberg D., Kolb B., Lanser M., Benowitz L. (2002). Axonal rewiring and improved function induced by inosine after stroke. Proc. Natl. Acad. Sci. U.S.A. 99, 9031–9036 10.1073/pnas.132076299
    1. Comeau W. L., McDonald R., Kolb B. (2010). Learning-induced alterations in prefrontal cortical circuitry. Behav. Brain Res. 214, 91–101 10.1016/j.bbr.2010.04.033
    1. Cramer S. C., Sur M., Dobkin B. H., O'Brien C., Sanger T. D., Trojanowski J. Q., et al. (2011). Harnessing neuroplasticity for clinical applications. Brain 34, 1591–1609 10.1093/brain/awr039
    1. Crombag H. S., Gorny G., Li Y., Kolb B., Robinson T. E. (2005). Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb. Cortex 15, 341–348 10.1093/cercor/bhh136
    1. Dallison A., Kolb B. (2003). Recovery from infant frontal cortical lesions in rats can be reversed by cortical lesions in adulthood. Behav. Brain Res. 146, 57–63 10.1016/j.bbr.2003.09.026
    1. Diaz Heijtz, R, Kolb B., Forssberg H. (2003). Can a therapeutic dose of amphetamine during pre-adolescence modify the pattern of synaptic organization in the brain? Eur. J. Neurosci. 18, 3394–3399 10.1046/j.0953-816X.2003.03067.x
    1. Dibajnia P., Morshead C. M. (2013). Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol. Sin. 34, 78–90 10.1038/aps.2012.107
    1. Dobkin B. H., Apple D., Barbeau H., Basso M., Behrman A., Deforge D., et al. (2006). Weight-supported treadmill vs. over-ground training for walking after acute incomplete SCI. Neurology 66, 484–493 10.1212/01.wnl.0000202600.72018.39
    1. Duncan P. W., Sullivan K. J., Behrman A. L., Azen S. P., Wu S. S., Nadeau S. E., et al. (2007). Protocol for the Locomotor Experience Applied Post-stroke (LEAPS) trial: a randomized controlled trial. BMC Neurol. 7:39 10.1186/1471-2377-7-39
    1. Feeney D. M., Sutton R. L. (1987). Pharmacotherapy for recovery of function after brain injury. Crit. Rev. Neurobiol. 3, 135–197
    1. Fiorino D., Kolb B. (2003). Sexual experience leads to long-lasting morphological changes in male rat prefrontal cortex, parietal cortex, and nucleus accumbens neurons. Soc. Neurosci. Abs. 29, 4023.
    1. Gibb R., Gonzalez C. L. R., Wegenast W., Kolb B. (2010). Tactile stimulation facilitates recovery following cortical injury in adult rats. Behav. Brain Res. 214, 102–107 10.1016/j.bbr.2010.04.008
    1. Goldstein L. B. (2003). Amphetamines and related drugs in motor recovery after stroke. Phys. Med. Rehabil. Clin. N. Am. 14, S125–S134 10.1016/S1047-9651(02)00060-8
    1. Gonzalez C. L. R., Gharbawie O. A., Kolb B. (2006). Chronic low-dose administration of nicotine facilitates recovery and synaptic change after focal ischemia in rats. Neuropharmacology 50, 777–787 10.1016/j.neuropharm.2005.11.018
    1. Gonzalez C. R., Kolb B. (2003). A comparison of different models of stroke on behavior and brain. Eur. J. Neurosci. 18, 1950–1962 10.1046/j.1460-9568.2003.02928.x
    1. Grau-Sanchez J., Amengual J. L., Fojo N., Veciana de Las Heras M., Montero J., Rubio F, et al. (2013). Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study. Front. Hum. Neurosci. 7:00494 10.3389/fnhum.2013.00494
    1. Greenough W. T., Chang F. F. (1989). Plasticity of synapse structure and pattern in the cerebral cortex, in Cerebral Cortex, Vol. 7, eds Peters A., Jones E. G. (New York, NY: Plenum Press; ), 391–440
    1. Hainsworth A. H., Marjus H. S. (2008). Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J. Cereb. Blood Flow Metab. 28, 1877–1891 10.1038/jcbfm.2008.91
    1. Hamadjida A., Wyss A. F., Mir A., Schwab M. E., Belhaj-Saif A., Rouiller E. M. (2012). Influence of anti-Nogo-A antibody treatment on the reorganization of callosal connectivity of the premotor cortical areas following unilateral lesion of primary motor cortex (M1) in adult macaque monkeys. Exp. Brain Res. 223, 321–340 10.1007/s00221-012-3262-x
    1. Hamilton D., Kolb B. (2005). Nicotine, experience, and brain plasticity. Behav. Neurosci. 119, 355–365 10.1037/0735-7044.119.2.355
    1. Henry D. J., White F. J. (1995). The persistence of behavioral sensitization to cocaine parallels enhanced inhibition of nucleus accumbens neurons. J. Neurosci. 15, 6287–6299
    1. Hidler J., Nichols D., Pelliccio M., Brady K., Campbell D. D., Kahn J. H., et al. (2009). Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil. Neural Repair 23, 5–13 10.1177/1545968308326632
    1. Horn G. (2004). Pathways of the past: the imprint of memory. Nat. Rev. Neurosci. 5, 108–120 10.1038/nrn1324
    1. Jin K., Sun Y., Xie L., Peel A., Mao X. O., Batteur S., et al. (2003). Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol. Cell. Neurosci. 24, 171–189 10.1016/S1044-7431(03)00159-3
    1. Johansson B. B. (1996). Functional outcome in rats transferred to an enriched environment 15 days after focal brain ischemia. Stroke 27, 324–326 10.1161/01.STR.27.2.324
    1. Johansson B. B. (2000). Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke 31, 223–230 10.1161/01.STR.31.1.223
    1. Jones T. A., Schallert T. (1992). Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 581, 156–160 10.1016/0006-8993(92)90356-E
    1. Jonsdottir J., Cattaneo D., Recalcati M., Regola A., Rabuffetti M., Ferrarin M., et al. (2010). Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Neurorehabil. Neural Repair 24, 478–485 10.1177/1545968309355986
    1. Kaati G, Bygren L. O, Edvinsson S. (2002). Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet. 10, 682–688 10.1038/sj.ejhg.5200859
    1. Kadota H., Nakajima Y., Miyazaki M., Sekiguchi H., Kohno Y., Amako M., et al. (2010). An fMRI study of musicians with focal dystonia during tapping tasks. J. Neurol. 257, 1092–1098 10.1007/s00415-010-5468-9
    1. Kempf A., Schwab M. E. (2013). Nogo-a represses anatomical and synaptic plasticity in the central nervous system. Physiology 28, 151–163 10.1152/physiol.00052.2012
    1. Kolb B., Cioe J., Comeau W. (2008). Contrasting effects of motor and visual learning tasks on dendritic arborization and spine density in rats. Neurobiol. Learn. Mem. 90, 295–300 10.1016/j.nlm.2008.04.012
    1. Kolb B., Elliott W. (1987). Effects of experience on anatomy and behavior following frontal lesions at 1 or 5 days of age. Behav. Brain Res. 26, 47–56 10.1016/0166-4328(87)90015-5
    1. Kolb B., Gibb R. (2010). Tactile stimulation facilitates functional recovery and dendritic change after neonatal medial frontal or posterior parietal lesions in rats. Behav. Brain Res. 214, 115–120 10.1016/j.bbr.2010.04.024
    1. Kolb B., Gibb R., Gorny G. (2003c). Experience-dependent changes in dendritic arbor and spine density in neocortex vary with age and sex. Neurobiol. Learn. Mem. 79, 1–10 10.1016/S1074-7427(02)00021-7
    1. Kolb B., Gibb R., Gorny G., Whishaw I. Q. (1998). Possible brain regrowth after cortical lesions in rats. Behav. Brain Res. 91, 127–141 10.1016/S0166-4328(97)00112-5
    1. Kolb B., Gorny G., Li Y., Samaha A. N., Robinson T. E. (2003a). Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. 100, 10523–10528 10.1073/pnas.1834271100
    1. Kolb B., Gorny G., Sonderpalm A., Robinson T. E. (2003b). Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 48, 149–153 10.1002/syn.10196
    1. Kolb B., Morshead, C, Gonzalez C., Kim N., Shingo T., Weiss S. (2007). Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J. Cereb. Blood Flow Metab. 27, 983–997 10.1038/sj.jcbfm.9600402
    1. Kolb B., Mychasiuk R., Muhammad A., Li Y., Frost D. O., Gibb R. (2012a). Experience and the developing prefrontal cortex. Proc. Natl. Acad Sci. U.S.A. 109(Suppl. 2), 17186–17193 10.1073/pnas.1121251109
    1. Kolb B., Pedersen B., Gibb R. (2012b). Embryonic pretreatment with bromodeoxyuridine blocks neurogenesis and functional recovery from perinatal frontal lesions in rats. Dev. Neurosci. 34, 228–239 10.1159/000336645
    1. Kolb B., Whishaw I. Q. (1998). Brain plasticity and behavior. Annu. Rev. Psychol. 49, 43–64 10.1146/annurev.psych.49.1.43
    1. Kollen B., Kwakkel G., Lindeman E. (2006). Functional recovery after stroke: a review of current developments in stroke rehabilitation research. Rev. Recent Clin. Trials 1, 75–80 10.2174/157488706775246111
    1. Kovalchuk A., Lowings M., Rodriguez-Juarez R., Muhammad A., Ilnytskyy S., Kolb B., et al. (2012). Distal epigenetic bystander-like effects of stroke in somatic organs of rats. Aging 4, 224–234
    1. Kramer A. F., Bherer L., Colcombe S. J., Dong W., Greenough W. T. (2004). Environmental influences on cognitive and brain plasticity during aging. J. Gerontol. A Biol. Sci. Med. Sci. 59, M940–M957 10.1093/gerona/59.9.M940
    1. Lim D. H., Alaverdashvili M., Whishaw I. Q. (2009). Nicotine does not improve recovery from learned nonuse nor enhance constraint-induced therapy after motor cortex stroke in the rat. Behav. Brain Res. 1978, 411–419 10.1016/j.bbr.2008.11.038
    1. Lin K. C., Chen Y. A., Chen C. L., Wu C. Y., Chang Y. F. (2010). The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study. Neurorehabil. Neural Repair 24, 42–51 10.1177/1545968309345268
    1. Liston C., Miller M. M., Goldwater D. S., Radley J. J., Rocher A. B., Hof P. R., et al. (2006). Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 10.1523/JNEUROSCI.1184-06.2006
    1. Livingston-Thomas J., Hume A. H., Doucette T. A., Tasker R. A. (2013). A novel approach to induction and rehabilitation of deficits in forelimb function a rat model of ischemic stroke. Acta. Pharmacol. Sin. 34, 104–112 10.1038/aps.2012.106
    1. Livingston-Thomas J. M., McGuire E. P., Doucette T. A., Tasker R. A. (2014). Voluntary forced use of the impaired limb following stroke facilitates functional recovery in the rat. Behav. Brain Res. 261, 210–219 10.1016/j.bbr.2013.12.032
    1. Losito A., Pittavini L., Ferri C., De Angelis L. (2012). Reduced kidney function and outcome in acute ischaemic stroke: relationship to arterial hypertension and diabetes. Nephrol. Dial. Transplant. 27, 1054–1058 10.1093/ndt/gfr378
    1. Mattson M. P., Duan W., Chan S. L., Guo Z. (2001). Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior, in Toward a Theory of Neuroplasticity, eds Shaw C. A., McEachern J. (Philadelphia, PA: Psychology Press; ), 402–426
    1. McEwen B. S. (2005). Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54 (Suppl. 1), 20–23 10.1016/j.metabol.2005.01.008
    1. Meck W. H., Williams C. L. (2003). Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neurosci. Biobehav. Rev. 27, 385–399 10.1016/S0149-7634(03)00069-1
    1. Monfils H-H., Driscoll I., Melvin N., Kolb B. (2006). Differential expression of basic fibroblast growth factor in developing rat brain. Neuroscience 141, 213–221 10.1016/j.neuroscience.2006.03.047
    1. Monfils M.-H., Driscoll I., Vavrek R., Kolb B., Fouad K. (2008). FGF-2 induced functional improvement from neonatal motor cortex injury via corticospinal projections. Exp. Brain Res. 185, 453–460 10.1007/s00221-007-1172-0
    1. Monfils M. H., Teskey G. C. (2004). Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse 53, 114–121 10.1002/syn.20039
    1. Monfils M. H., VandenBerg P. M., Kleim J. A., Teskey G. C. (2004). Longterm potentiation induces expanded movement representations and dendritic hypertrophy in layer V of rat sensorimotor neocortex. Cereb. Cortex 14, 586–593 10.1093/cercor/bhh020
    1. Moroz I. A., Kolb B. (2005). Amphetamine facilitates recovery of skilled reaching following cortical devascularization in the rat. Soc. Neurosci. Abst. 669.6
    1. Moussawi K., Zhou W., Shen H., Reichel C. M., See R. E., Carr D. B., et al. (2011). Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc. Nat. Acad. Sc. U.S.A. 108, 385–390 10.1073/pnas.1011265108
    1. Muhammad A., Carroll C., Kolb B. (2012). Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex. Neuroscience 216, 103–109 10.1016/j.neuroscience.2012.04.041
    1. Muhammad A., Hossain S., Pellis S. M., Kolb B. (2011). Tactile stimulation during development attenuates amphetamine sensitization and structurally reorganizes prefrontal cortex and striatum in a sex-dependent manner. Behav. Neurosci. 125, 161–174 10.1037/a0022628
    1. Mychasiuk R., Gibb R., Kolb B. (2012). Prenatal stress produces sexually dimorphic and regionally-specific changes in gene expression in hippocampus and frontal cortex of developing rat offspring. Dev. Neurosci. 33, 531–538 10.1159/000335524
    1. Mychasiuk R., Ilnytskyy S., Kovalchuk O., Kolb B., Gibb R. (2011a). Intensity matters: brain, behaviour and the epigenome of prenatally stressed rats. Neuroscience 180, 105–110 10.1016/j.neuroscience.2011.02.026
    1. Mychasiuk R., Muhammad A., Carroll C., Kolb B. (2013). Does prenatal nicotine exposure alter the brain's response to nicotine in adolescence? A Neuroanatomical Analysis. Eur. J. Neurosci. 38, 2491–2503 10.1111/ejn12245
    1. Mychasiuk R., Muhammad A., Kolb B. (2014). Environmental enrichment alters structural plasticity of the adolescent brain but does not remediate the effects of prenatal nicotine exposure. Synapse 68, 293–305 10.1002/syn.21737
    1. Mychasiuk R., Schmold N., Ilnytskyy S., Kovalchuk O., Kolb B., Gibb R. (2011b). Prenatal bystander stress alters brain, behavior, recovery from injury, and the epigenome of developing rat offspring. Dev. Neurosci. 33, 159–169 10.1159/000330034
    1. Nudo R. J., Wise B. M., SiFuentes F., Milliken G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794 10.1126/science.272.5269.1791
    1. Papadopoulos C., Tsai S.-Y., Cheatwood J. L., Bollnow M. R., Kolb B., Schwab M., et al. (2006). Dendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-A neutralization. Cereb. Cortex 16, 529–536 10.1093/cercor/bhi132
    1. Parent J. M., Vexler Z. S., Gong C., Derugin N., Ferriero D. M. (2002). Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–811 10.1002/ana.10393
    1. Pembrey M. (2004). The avon longitudinal study of parents and children (ALSPAC): a resource for genetic epidemiology. Eur. J. Endocrinol. 151(Suppl 3), U125–U129
    1. Rampon C., Jiang C. H., Dong H., Tang Y. P., Lockart D. J., Schultz P. G., et al. (2000). Effects of environmental enrichment on gene expression in the brain. Proc. Natl. Acad. Sci. U.S.A. 97, 12880–12884 10.1073/pnas.97.23.12880
    1. Reynolds B. A., Weiss S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1613–1808 10.1126/science.1553558
    1. Richards S., Mychasiuk R., Kolb B., Gibb R. (2012). Tactile stimulation during development alters behaviour and neuroanatomical organization of normal rats. Behav. Brain Res. 231, 86–91 10.1016/j.bbr.2012.02.043
    1. Roberts A. C., Glanzman D. L. (2003). Learning in Aplysia: looking at synaptic plasticity from both sides. Trends Neurosci. 26, 662–670 10.1016/j.tins.2003.09.014
    1. Robinson T. E., Kolb B. (1997). Persistent structural adaptations in nucleus accumbens and prefrontal cortex neurons produced by prior experience with amphetamine. J. Neurosci. 17, 8491–8498
    1. Robinson T. E., Kolb B. (1999). Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598–1604 10.1046/j.1460-9568.1999.00576.x
    1. Robinson T. E., Kolb B. (2004). Structural plasticity associated with drugs of abuse. Neuropharmacology 47(Suppl. 1), 33–46 10.1016/j.neuropharm.2004.06.025
    1. Sarkamo T., Soto D. (2012). Musci listening after stroke: beneficial effects and potential neural mechanisms. Ann. N.Y. Acad. Sci. 1252, 266–281 10.1111/j.1749-6632.2011.06405.x
    1. Schneider S., Schonle P., Altenmuller E., Munte T. (2007). Using musical instruments to improve motor skill recovery following a stroke. J. Neurol. 254, 1339–1346 10.1007/s00415-006-0523-2
    1. Shaw C. A., McEachern J. C. (eds.). (2001). Toward a Theory of Neuroplasticity. New York, NY: Elsevier
    1. Silasi G., Kolb B. (2007). Chronic inhibition of cyclooxygenase-2 induces dendritic hypertrophy and limited functional improvement following motor cortex stroke. Neuroscience 144, 1160–1168 10.1016/j.neuroscience.2006.10.030
    1. Smith J. M., Lunga P., Story D., Harris N., Le Belle J., James M. F., et al. (2007). Inosine promotes recovery of skilled motor function in a model of focal brain injury. Brain 130, 915–935 10.1093/brain/awl393
    1. Sozmen E. G., Hinman J. D., Carmichael S. T. (2012). Models that matter: white matter stroke models. Neurotherapeutics 9, 349–358 10.1007/s13311-012-0106-0
    1. Teasell R., Bayona N., Salter K., Hellings C., Bitensky J. (2006). Progress in clinical neurosciences: stroke recovery and rehabilitation. Can. J. Neurol. Sci. 33, 357–364
    1. Teskey G. C. (2001). Using kindling to model the neuroplastic changes associated with learning and memory, neuropsychiatric disorders, and epilepsy, in Toward a Theory of Neuroplasticity, eds Shaw C. A., McEachern J., (Philadelphia, PA: Psychology Press; ), 347–358
    1. Teskey G. C., Monfils M. H., Silasi G., Kolb B. (2006). Neocortical kindling is associated with opposing alterations in dendritic morphology in neocortical layer V and striatum from neocortical layer III. Synapse 59, 1–9 10.1002/syn.20215
    1. Verghese J., Lipton R. B., Katz M. J., Hall C. B., Derby C. A., Kuslansky G., et al. (2003). Leisure activities and the risk of dementia in the elderly. N. Engl. J. Med. 348, 2508–2516 10.1056/NEJMoa022252
    1. Will B., Kelche C. (1992). Environmental approaches to recovery of function from brain damage: a review of animal studies (1981 to 1991), in Recovery from Brain Damage: Reflections and Directions, eds Rose F. D., Johnson D. A. (New York, NY: Plenum; ), 79–104
    1. Withers G. G., Greenough W. T. (1989). Reach training selectively alters dendritic branching in subpopulations of layer II-III pyramids in rat motor-somatosensory forelimb cortex. Neuropsychologia 27, 61–69 10.1016/0028-3932(89)90090-0
    1. Wolf S., Blanton S., Baer H., Breshears J., Butler A. (2002). Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist 8, 325–338 10.1097/00127893-200211000-00001
    1. Zai L., Ferrari C., Dice C., Subbaiah S., Havton L. A., Coppola G., et al. (2011). Inosine augments the effects of a nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke. J. Neurosci. 31, 5977–5988 10.1523/JNEUROSCI.4498-10.2011
    1. Zai L., Ferrari C., Subbaiah S., Havton L. A., Coppola G., Strittmater S., et al. (2009). Inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb. J. Neurosci. 29, 8187–8197 10.1523/JNEUROSCI.0414-09.2009
    1. Zhang K., Sejnowski T. J. (2000). A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 97, 5621–5626 10.1073/pnas.090504197
    1. Zhang R., Zhang Z., Wang L., Wang Y., Gousev A., Zhang L., et al. (2004). Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J. Cereb. Blood Flow Metab. 24, 441–448 10.1097/00004647-200404000-00009
    1. Zhao S., Zhao M., Xiao T., Jolkkonen J., Zhao C. (2013). Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats. Stroke 44, 1698–1705 10.1161/STROKEAHA111.000361

Source: PubMed

3
Abonner