Methodology for tDCS integration with fMRI

Zeinab Esmaeilpour, A Duke Shereen, Peyman Ghobadi-Azbari, Abhishek Datta, Adam J Woods, Maria Ironside, Jacinta O'Shea, Ulrich Kirk, Marom Bikson, Hamed Ekhtiari, Zeinab Esmaeilpour, A Duke Shereen, Peyman Ghobadi-Azbari, Abhishek Datta, Adam J Woods, Maria Ironside, Jacinta O'Shea, Ulrich Kirk, Marom Bikson, Hamed Ekhtiari

Abstract

Understanding and reducing variability of response to transcranial direct current stimulation (tDCS) requires measuring what factors predetermine sensitivity to tDCS and tracking individual response to tDCS. Human trials, animal models, and computational models suggest structural traits and functional states of neural systems are the major sources of this variance. There are 118 published tDCS studies (up to October 1, 2018) that used fMRI as a proxy measure of neural activation to answer mechanistic, predictive, and localization questions about how brain activity is modulated by tDCS. FMRI can potentially contribute as: a measure of cognitive state-level variance in baseline brain activation before tDCS; inform the design of stimulation montages that aim to target functional networks during specific tasks; and act as an outcome measure of functional response to tDCS. In this systematic review, we explore methodological parameter space of tDCS integration with fMRI spanning: (a) fMRI timing relative to tDCS (pre, post, concurrent); (b) study design (parallel, crossover); (c) control condition (sham, active control); (d) number of tDCS sessions; (e) number of follow up scans; (f) stimulation dose and combination with task; (g) functional imaging sequence (BOLD, ASL, resting); and (h) additional behavioral (cognitive, clinical) or quantitative (neurophysiological, biomarker) measurements. Existing tDCS-fMRI literature shows little replication across these permutations; few studies used comparable study designs. Here, we use a representative sample study with both task and resting state fMRI before and after tDCS in a crossover design to discuss methodological confounds. We further outline how computational models of current flow should be combined with imaging data to understand sources of variability. Through the representative sample study, we demonstrate how modeling and imaging methodology can be integrated for individualized analysis. Finally, we discuss the importance of conducting tDCS-fMRI with stimulation equipment certified as safe to use inside the MR scanner, and of correcting for image artifacts caused by tDCS. tDCS-fMRI can address important questions on the functional mechanisms of tDCS action (e.g., target engagement) and has the potential to support enhancement of behavioral interventions, provided studies are designed rationally.

Keywords: brain stimulation; methodology; neuroimaging; tDCS-fMRI integration.

Conflict of interest statement

CUNY has patents on brain stimulation with M. Bikson as inventor. M. Bikson has equity in Soterix Medical Inc. and serves on the scientific advisory boards of Boston Scientific and GlaxoSmithKline. The other authors have potential conflict of interest to be disclosed.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
Search strategy for inclusion, exclusion criteria. To identify relevant studies, we searched PubMed using logical combination of keywords “tDCS” OR “transcranial direct current stimulation”) AND (“functional magnetic resonance imaging” OR “fMRI” OR “functional MRI” OR “fcMRI” OR “functional connectivity MRI” OR “rsfMRI” OR “resting‐state MRI”
Figure 2
Figure 2
Permutations in trial design for integration of MRI‐based neuroimaging methods with tDCS. (a) fMRI timing can occur pre‐ and/or post‐stimulation outside scanner (sequential‐outside scanner approach), pre‐ and/or post‐stimulation inside scanner (sequential‐inside scanner approach) or concurrently during stimulation to evaluate tDCS effect on ongoing neural activities. (b) Study designs include single arm open label studies with no control condition, parallel approach where subjects are randomly assigned to either active or sham group and crossover approach, where subjects participate in both active and sham sessions with a random order. (c) Control conditions consist of sham, active control or both. (d) tDCS may be applied over multiple sessions with an expectation of cumulative (time) effect. (e) Imaging may include multiple follow up sessions to evaluate after effects longitudinally. (f) Stimulation dose (i.e., electrode montage, stimulation duration, and intensity) and combination with task will determine outcomes. (g) Essentially any functional imaging sequence can be utilized to evaluate stimulation effects depending on the study questions/hypothesis. (h) tDCS‐imaging study designs can combine a multitude of other objective or subjective assessments concurrent or combined with imaging and/or tDCS
Figure 3
Figure 3
Functional imaging sequences and analysis methods used in the literature of tDCS‐fMRI studies
Figure 4
Figure 4
An experiment design and self‐report (subjective) results in a double blind, crossover, and sham controlled study. (a) Each subject underwent a counterbalanced study design with two stimulation types (real and sham) on two separate days with a one‐week wash out period. Functional MRI (fMRI) data were acquired before and after each stimulation session. Subjects rated their immediate methamphetamine craving before and after both stimulation and imaging sessions on a visual analogue scale (VAS), with a score range from 0 to 100, where 0 and 100 indicated “no craving” and “extreme craving,” respectively. (b) Self‐report results for four different timepoints within the experiment. Subjects rated their craving level before and after each functional MR scan and stimulation session (i.e., sham, active). (b.3) tDCS significantly reduced craving compared to sham (p < .05). (b.4). Study includes 15 subjects (colored circles represent each subject)
Figure 5
Figure 5
Three major roles functional MRI can play in integration with tDCS. (1) Montage selection studies: functional imaging could contribute to montage selection to localize stimulation to target functionally activated brain areas. (2) Prediction studies: baseline fMRI could provide baseline measures of neural network activation and inform the interpretation of later behavioral/neural responses to tDCS (i.e., “Baseline fMRI as Predictor”). (3) Mechanistic studies: utilizing fMRI to investigate brain changes underlying tDCS effects and ultimately determine where, when and how stimulation affects brain function and associated behavior
Figure 6
Figure 6
Different MR‐compatible stimulator setups inside the scanner. (a) Setup comprises of two filter boxes (inside scanner room (MR‐compatible) and outside scanner room (not MR‐compatible)) and cables come from the control room through RF waveguide tube. (b) Setup includes an RF filter adapter that connects to the RF penetration panel (the device will have the same ground as the RF shield of MRI room)
Figure 7
Figure 7
Induced cortical electric field magnitude for the montages considered. From left to right: 3D surfaces of skin and brain, cross‐sectional coronal and sagittal images. OPEN: Enough gel for satisfactory impedance in the interface between electrode and skin but gel is contained in HD cups. SHORT: Excessive gel smeared between adjacent electrodes reflecting excessive gel application and/or headgear motion. This results in a highly conductive path for current to flow above the surface of the skin (“short circuit”) that reduces current penetration to the brain
Figure 8
Figure 8
Effect of current‐induced stray magnet field on Bz in watermelon. Electrodes (white arrows) are positioned on left and right side along the equator (orientation visible in proton density MRI in [b]). MGE data from +/−2 mA current injection was used to calculate effective Bz (+4 mA) for cables oriented along z (c) and ~25° from z (d). Cables immersed in agar (red arrows) provide contrast in the T1 underlays of the Bz images (c), (d). After experiments, the watermelon was sliced and photographed (a) at the level of (b), showing the structural sources of heterogeneity in (b)
Figure 9
Figure 9
Concurrent stimulation & imaging artifact. fMRI activation during hand motor task (a) (finger tapping) in a healthy subject with tDCS sponge electrodes placed over hand motor region. Clearly, the rectangular “deactivation” seen as a green vertical line on the scalp (b), and that overlaps exactly with the position of the cathode, is an artifact
Figure 10
Figure 10
Workflow of computational modeling integration with functional MRI. Given the two separate maps of standard space used in fMRI and head models used in modeling, in the first step, high resolution EF map in fine meshed geometry should be interpolated to voxel‐wise standard space. Then, both head models and functional images should be registered to standard space to enable comparison
Figure 11
Figure 11
Correlation of electric field with neural activation change (post–pre) in the study introduced in Figure 4. (a) Atlas based segmentation. Regions include: frontal pole (FP), superior frontal gyrus (SFG), medial frontal gyrus (MFG), frontal orbital cortex (FOC), and frontal medial cortex (FMC). (b) Current flow‐based segmentation. Areas are selected based on current flow pattern generated based on bilateral DLPFC montage, 5 × 7 electrodes. Regions of interest include: superior frontal gyrus (SFG), ventrolateral prefrontal cortex (vlPFC), medial orbitofrontal cortex (mOFC), and frontal pole (FP). Blue circles: sham stimulation, red circles: active stimulation

References

    1. Ammann, C. , Lindquist, M. A. , & Celnik, P. A. (2017). Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions. Brain Stimulation, 10(4), 757–763.
    1. Antal, A. , Alekseichuk, I. , Bikson, M. , Brockmöller, J. , Brunoni, A. , Chen, R. , … Flöel, A. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology, 128(9), 1774–1809.
    1. Antal, A. , Bikson, M. , Datta, A. , Lafon, B. , Dechent, P. , Parra, L. C. , & Paulus, W. (2014). Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage, 85(Pt 3), 1040–1047.
    1. Antal, A. , Polania, R. , Schmidt‐Samoa, C. , Dechent, P. , & Paulus, W. (2011). Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage, 55(2), 590–596.
    1. Arthurs, O. J. , & Boniface, S. (2002). How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosciences, 25(1), 27–31.
    1. Bachinger, M. , Zerbi, V. , Moisa, M. , Polania, R. , Liu, Q. , Mantini, D. , … Wenderoth, N. (2017). Concurrent tACS‐fMRI reveals causal influence of power synchronized neural activity on resting state fMRI connectivity. The Journal of Neuroscience, 37(18), 4766–4777.
    1. Baker, J. M. , Rorden, C. , & Fridriksson, J. (2010). Using transcranial direct‐current stimulation to treat stroke patients with aphasia. Stroke, 41(6), 1229–1236.
    1. Baudewig, J. , Nitsche, M. A. , Paulus, W. , & Frahm, J. (2001). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine, 45(2), 196–201.
    1. Bikson, M. , Grossman, P. , Thomas, C. , Zannou, A. L. , Jiang, J. , Adnan, T. , … Boggio, P. (2016). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641–661.
    1. Bikson, M. , Inoue, M. , Akiyama, H. , Deans, J. K. , Fox, J. E. , Miyakawa, H. , & Jefferys, J. G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(1), 175–190.
    1. Bikson, M. , Rahman, A. , & Datta, A. (2012). Computational models of transcranial direct current stimulation. Clinical EEG and Neuroscience, 43(3), 176–183.
    1. Bikson, M. , Truong, D. Q. , Mourdoukoutas, A. P. , Aboseria, M. , Khadka, N. , Adair, D. , & Rahman, A. (2015). Modeling sequence and quasi‐uniform assumption in computational neurostimulation. Progress in Brain Research, 222, 1–23.
    1. Boggio, P. S. , Rigonatti, S. P. , Ribeiro, R. B. , Myczkowski, M. L. , Nitsche, M. A. , Pascual‐Leone, A. , & Fregni, F. (2008). A randomized, double‐blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. The International Journal of Neuropsychopharmacology, 11(2), 249–254.
    1. Brunoni, A. R. , Nitsche, M. A. , Bolognini, N. , Bikson, M. , Wagner, T. , Merabet, L. , … Pascual‐Leone, A. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5(3), 175–195.
    1. Brunoni, A. R. , Valiengo, L. , Baccaro, A. , Zanao, T. A. , de Oliveira, J. F. , Goulart, A. , … Fregni, F. (2013). The sertraline vs. electrical current therapy for treating depression clinical study: Results from a factorial, randomized, controlled trial. JAMA Psychiatry, 70(4), 383–391.
    1. Buch, E. R. , Santarnecchi, E. , Antal, A. , Born, J. , Celnik, P. A. , Classen, J. , … Nitsche, M. A. (2017). Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 128(4), 589–603.
    1. Cavaliere, C. , Aiello, M. , Di Perri, C. , Amico, E. , Martial, C. , Thibaut, A. , … Soddu, A. (2016). Functional connectivity substrates for tDCS response in minimally conscious state patients. Frontiers in Cellular Neuroscience, 10, 257.
    1. Chew, T. , Ho, K. A. , & Loo, C. K. (2015). Inter‐ and intra‐individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimulation, 8(6), 1130–1137.
    1. Chrysikou, E. G. , Berryhill, M. E. , Bikson, M. , & Coslett, H. (2017). Revisiting the effectiveness of transcranial direct current brain stimulation for cognition: Evidence, challenges, and open questions. Frontiers in Human Neuroscience, 11, 448.
    1. Clark, V. P. , Coffman, B. A. , Mayer, A. R. , Weisend, M. P. , Lane, T. D. , Calhoun, V. D. , … Wassermann, E. M. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. NeuroImage, 59(1), 117–128.
    1. Csifcsák, G. , Boayue, N. M. , Puonti, O. , Thielscher, A. , & Mittner, M. (2018). Effects of transcranial direct current stimulation for treating depression: A modeling study. Journal of Affective Disorders, 234, 164–173.
    1. Datta, A. , Bansal, V. , Diaz, J. , Patel, J. , Reato, D. , & Bikson, M. (2009). Gyri‐precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207.e201.
    1. Datta, A. , Truong, D. , Minhas, P. , Parra, L. C. , & Bikson, M. (2012). Inter‐individual variation during transcranial direct current stimulation and normalization of dose using MRI‐derived computational models. Frontiers in Psychiatry, 3, 91.
    1. Datta, A. , Zhou, X. , Su, Y. , Parra, L. C. , & Bikson, M. (2013). Validation of finite element model of transcranial electrical stimulation using scalp potentials: Implications for clinical dose. Journal of Neural Engineering, 10(3), 036018.
    1. DosSantos, M. F. , Love, T. M. , Martikainen, I. K. , Nascimento, T. D. , Fregni, F. , Cummiford, C. , … DaSilva, A. F. (2012). Immediate effects of tDCS on the μ‐opioid system of a chronic pain patient. Frontiers in Psychiatry, 3, 93.
    1. Dyke, K. , Kim, S. , Jackson, G. M. , & Jackson, S. R. (2016). Intra‐subject consistency and reliability of response following 2 mA transcranial direct current stimulation. Brain Stimulation, 9(6), 819–825.
    1. Esmaeilpour, Z. , Marangolo, P. , Hampstead, B. M. , Bestmann, S. , Galletta, E. , Knotkova, H. , & Bikson, M. (2018). Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 11(2), 310–321.
    1. Esmaeilpour, Z. , Milosevic, M. , Azevedo, K. , Khadka, N. , Navarro, J. , Brunoni, A. , … Fonoff, E. T. (2017). Proceedings# 21. Intracranial voltage recording during transcranial direct current stimulation (tDCS) in human subjects with validation of a standard model. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(4), e72–e75.
    1. Ficek, B. N. , Wang, Z. , Zhao, Y. , Webster, K. T. , Desmond, J. E. , Hillis, A. E. , … Tsapkini, K. (2018). The effect of tDCS on functional connectivity in primary progressive aphasia. Neuroimage Clinical, 19, 703–715.
    1. Fischer, D. , Fried, P. , Ruffini, G. , Ripolles, O. , Salvador, R. , Banus, J. , … Fox, M. (2017). Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. NeuroImage, 157, 34–44.
    1. Fonteneau, C. , Mondino, M. , Arns, M. , Baeken, C. , Bikson, M. , Brunoni, A. R. , … Pascual‐Leone, A. (2019). Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimulation, 12, 668–673.
    1. Fregni, F. , Thome‐Souza, S. , Nitsche, M. A. , Freedman, S. D. , Valente, K. D. , & Pascual‐Leone, A. (2006). A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia, 47(2), 335–342.
    1. Gbadeyan, O. , Steinhauser, M. , McMahon, K. , & Meinzer, M. (2016). Safety, tolerability, blinding efficacy and behavioural effects of a novel MRI‐compatible, high‐definition tDCS set‐up. Brain Stimulation, 9(4), 545–552.
    1. Giordano, J. , Bikson, M. , Kappenman, E. S. , Clark, V. P. , Coslett, H. B. , Hamblin, M. R. , … McKinley, R. A. (2017). Mechanisms and effects of transcranial direct current stimulation. Dose‐Response, 15(1), 1559325816685467.
    1. Göksu, C. , Hanson, L. G. , Siebner, H. R. , Ehses, P. , Scheffler, K. , & Thielscher, A. (2018). Human in‐vivo brain magnetic resonance current density imaging (MRCDI). NeuroImage, 171, 26–39.
    1. Guleyupoglu, B. , Schestatsky, P. , Edwards, D. , Fregni, F. , & Bikson, M. (2013). Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. Journal of Neuroscience Methods, 219(2), 297–311.
    1. Halko, M. , Datta, A. , Plow, E. , Scaturro, J. , Bikson, M. , & Merabet, L. B. (2011). Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. NeuroImage, 57(3), 885–891.
    1. Heeger, D. J. , & Ress, D. (2002). What does fMRI tell us about neuronal activity? Nature Reviews Neuroscience, 3(2), 142–151.
    1. Horvath, J. C. , Vogrin, S. J. , Carter, O. , Cook, M. J. , & Forte, J. D. (2016). Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions. Experimental Brain Research, 234(9), 2629–2642.
    1. Hsu, T.‐Y. , Juan, C.‐H. , & Tseng, P. (2016). Individual differences and state‐dependent responses in transcranial direct current stimulation. Frontiers in Human Neuroscience, 10, 643.
    1. Hu, J. , Li, Y. , Yin, Y. , Blue, P. R. , Yu, H. , & Zhou, X. (2017). How do self‐interest and other‐need interact in the brain to determine altruistic behavior? NeuroImage, 157, 598–611.
    1. Huang, Y. , Datta, A. , Bikson, M. , & Parra, L. C. (2018). ROAST: An open‐source, fully‐automated, realistic volumetric‐approach‐based simulator for TES. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2018, 3072–3075.
    1. Huang, Y. , Liu, A. A. , Lafon, B. , Friedman, D. , Dayan, M. , Wang, X. , … Parra, L. C. (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife, 6, e18834.
    1. Ironside, M. , Browning, M. , Ansari, T. L. , Harvey, C. J. , Sekyi‐Djan, M. N. , Bishop, S. J. , … O'Shea, J. (2018). Effect of prefrontal cortex stimulation on regulation of amygdala response to threat in individuals with trait anxiety: A randomized clinical trial. JAMA Psychiatry, 76(1), 71–78.
    1. Jackson, M. P. , Rahman, A. , Lafon, B. , Kronberg, G. , Ling, D. , Parra, L. C. , & Bikson, M. (2016). Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 127(11), 3425–3454.
    1. Kasahara, K. , Tanaka, S. , Hanakawa, T. , Senoo, A. , & Honda, M. (2013). Lateralization of activity in the parietal cortex predicts the effectiveness of bilateral transcranial direct current stimulation on performance of a mental calculation task. Neuroscience Letters, 545, 86–90.
    1. Keeser, D. , Meindl, T. , Bor, J. , Palm, U. , Pogarell, O. , Mulert, C. , … Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting‐state networks during fMRI. Journal of Neuroscience, 31(43), 15284–15293.
    1. Kessler, S. K. , Minhas, P. , Woods, A. J. , Rosen, A. , Gorman, C. , & Bikson, M. (2013). Dosage considerations for transcranial direct current stimulation in children: A computational modeling study. PLoS One, 8(9), e76112.
    1. Krause, B. , & Cohen Kadosh, R. (2014). Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience, 8, 25.
    1. Kunze, T. , Hunold, A. , Haueisen, J. , Jirsa, V. , & Spiegler, A. (2016). Transcranial direct current stimulation changes resting state functional connectivity: A large‐scale brain network modeling study. NeuroImage, 140, 174–187.
    1. Laakso, I. , Tanaka, S. , Koyama, S. , De Santis, V. , & Hirata, A. (2015). Inter‐subject variability in electric fields of motor cortical tDCS. Brain Stimulation, 8(5), 906–913.
    1. Laakso, I. , Tanaka, S. , Mikkonen, M. , Koyama, S. , Sadato, N. , & Hirata, A. (2016). Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study. NeuroImage, 137, 140–151.
    1. Lefaucheur, J.‐P. , Antal, A. , Ayache, S. S. , Benninger, D. H. , Brunelin, J. , Cogiamanian, F. , … Langguth, B. (2017). Evidence‐based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology, 128(1), 56–92.
    1. Leitao, J. , Thielscher, A. , Tuennerhoff, J. , & Noppeney, U. (2017). Comparing TMS perturbations to occipital and parietal cortices in concurrent TMS‐fMRI studies‐methodological considerations. PLoS One, 12(8), e0181438.
    1. Li, L. M. , Violante, I. R. , Leech, R. , Ross, E. , Hampshire, A. , Opitz, A. , … Sharp, D. J. (2019). Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation. Human Brain Mapping, 40(3), 904–915.
    1. Logothetis, N. K. , & Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. Magnetic Resonance Imaging, 22(10), 1517–1531. 10.1016/j.mri.2004.10.018
    1. Lopez‐Alonso, V. , Fernandez‐Del‐Olmo, M. , Costantini, A. , Gonzalez‐Henriquez, J. J. , & Cheeran, B. (2015). Intra‐individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 126(12), 2342–2347.
    1. Lukasik, K. M. , Lehtonen, M. , Salmi, J. , Meinzer, M. , Joutsa, J. , & Laine, M. (2018). No effects of stimulating the left ventrolateral prefrontal cortex with tDCS on verbal working memory updating. Frontiers in Neuroscience, 11, 738.
    1. Meinzer, M. , Antonenko, D. , Lindenberg, R. , Hetzer, S. , Ulm, L. , Avirame, K. , … Floel, A. (2012). Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task‐specific activation. The Journal of Neuroscience, 32(5), 1859–1866.
    1. Meinzer, M. , Lindenberg, R. , Darkow, R. , Ulm, L. , Copland, D. , & Flöel, A. (2014). Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging. Journal of Visualized Experiments: JoVE, 86, e51730.
    1. Mikkonen, M. , & Laakso, I. (2019). Effects of posture on electric fields of non‐invasive brain stimulation. Physics in Medicine and Biology, 64(6), 065019.
    1. Minhas, P. , Bikson, M. , Woods, A. J. , Rosen, A. R. , & Kessler, S. K. (2012). Transcranial direct current stimulation in pediatric brain: A computational modeling study. Paper presented at the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
    1. Miranda, P. C. (2013). Physics of effects of transcranial brain stimulation. In Handbook of Clinical Neurology (Vol. 116, pp. 353–366): Elsevier.
    1. Mizuguchi, N. , Uehara, S. , Hirose, S. , Yamamoto, S. , & Naito, E. (2016). Neuronal substrates underlying performance variability in well‐trained skillful motor task in humans. Neural Plasticity, 2016, 1245259.
    1. Moher, D. , Liberati, A. , Tetzlaff, J. , & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta‐analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341.
    1. Moisa, M. , Polania, R. , Grueschow, M. , & Ruff, C. C. (2016). Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations. The Journal of Neuroscience, 36(47), 12053–12065.
    1. Nitsche, M. , Bikson, M. , & Bestmann, S. (2015). On the use of meta‐analysis in neuromodulatory non‐invasive brain stimulation. Brain Stimulation, 8(3), 666–667.
    1. Nitsche, M. A. , & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639.
    1. Nitsche, M. A. , & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.
    1. O'Shea, J. , & Revol, P. (2017). Induced sensorimotor cortex plasticity remediates chronic treatment‐resistant visual neglect. eLife, 6, e26602.
    1. Oh, H. , Kim, J. H. , & Yau, J. M. (2019). EPI distortion correction for concurrent human brain stimulation and imaging at 3T. Journal of Neuroscience Methods, 327, 108400.
    1. Opitz, A. , Falchier, A. , Yan, C.‐G. , Yeagle, E. M. , Linn, G. S. , Megevand, P. , … Schroeder, C. E. (2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Scientific Reports, 6, 31236.
    1. Opitz, A. , Paulus, W. , Will, S. , Antunes, A. , & Thielscher, A. (2015). Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 109, 140–150.
    1. Peña‐Gómez, C. , Sala‐Lonch, R. , Junqué, C. , Clemente, I. C. , Vidal, D. , Bargalló, N. , … Bartrés‐Faz, D. (2012). Modulation of large‐scale brain networks by transcranial direct current stimulation evidenced by resting‐state functional MRI. Brain Stimulation, 5(3), 252–263.
    1. Peterchev, A. V. , Wagner, T. A. , Miranda, P. C. , Nitsche, M. A. , Paulus, W. , Lisanby, S. H. , … Bikson, M. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimulation, 5(4), 435–453.
    1. Polanía, R. , Nitsche, M. A. , & Paulus, W. (2012). Modulation of functional connectivity with transcranial direct current stimulation In Cortical connectivity (pp. 133–144). Berlin, Heidelberg: Springer.
    1. Polania, R. , Paulus, W. , & Nitsche, M. A. (2012). Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non‐invasive cortical stimulation. PLoS One, 7(1), e30971.
    1. Radman, T. , Ramos, R. L. , Brumberg, J. C. , & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228.e213.
    1. Rahman, A. , Reato, D. , Arlotti, M. , Gasca, F. , Datta, A. , Parra, L. C. , & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. The Journal of Physiology, 591(10), 2563–2578.
    1. Rosso, C. , Valabregue, R. , Arbizu, C. , Ferrieux, S. , Vargas, P. , Humbert, F. , … Meunier, S. (2014). Connectivity between right inferior frontal gyrus and supplementary motor area predicts after‐effects of right frontal cathodal tDCS on picture naming speed. Brain Stimulation, 7(1), 122–129.
    1. Saiote, C. , Turi, Z. , Paulus, W. , & Antal, A. (2013). Combining functional magnetic resonance imaging with transcranial electrical stimulation. Frontiers in Human Neuroscience, 7, 435.
    1. Saucedo Marquez, C. M. , Zhang, X. , Swinnen, S. P. , Meesen, R. , & Wenderoth, N. (2013). Task‐specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7, 333.
    1. Shahbabaie, A. , Ebrahimpoor, M. , Hariri, A. , Nitsche, M. A. , Hatami, J. , Fatemizadeh, E. , … Ekhtiari, H. (2018). Transcranial DC stimulation modifies functional connectivity of large‐scale brain networks in abstinent methamphetamine users. Brain and Behavior, 8(3), e00922.
    1. Shahbabaie, A. , Golesorkhi, M. , Zamanian, B. , Ebrahimpoor, M. , Keshvari, F. , Nejati, V. , … Ekhtiari, H. (2014). State dependent effect of transcranial direct current stimulation (tDCS) on methamphetamine craving. The International Journal of Neuropsychopharmacology, 17(10), 1591–1598.
    1. Smith, S. M. , Jenkinson, M. , Woolrich, M. W. , Beckmann, C. F. , Behrens, T. E. , Johansen‐Berg, H. , … Flitney, D. E. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.
    1. Stagg, C. J. , Lin, R. L. , Mezue, M. , Segerdahl, A. , Kong, Y. , Xie, J. , & Tracey, I. (2013). Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. The Journal of Neuroscience, 33(28), 11425–11431.
    1. Stagg, C. J. , & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53.
    1. Steffener, J. , Tabert, M. , Reuben, A. , & Stern, Y. (2010). Investigating hemodynamic response variability at the group level using basis functions. NeuroImage, 49(3), 2113–2122. 10.1016/j.neuroimage.2009.11.014
    1. Symms, M. , Jäger, H. , Schmierer, K. , & Yousry, T. (2006). A review of structural magnetic resonance neuroimaging In Neuroscience For Neurologists (pp. 343–375). UK: World Scientific.
    1. Thair, H. , Holloway, A. L. , Newport, R. , & Smith, A. D. (2017). Transcranial direct current stimulation (tDCS): A beginner's guide for design and implementation. Frontiers in Neuroscience, 11, 641.
    1. Truong, D. Q. , Guleyupoglu, B. , Datta, A. , Minhas, P. , Magerowski, G. , Parra, L. C. , & Bikson, M. (2014). Inter‐individual variation during transcranial direct current simulation and normaliziation of dose using MRI‐derived computational models. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 7(2), e10.
    1. Turi, Z. , Paulus, W. , & Antal, A. (2012). Functional neuroimaging and transcranial electrical stimulation. Clinical EEG and Neuroscience, 43(3), 200–208.
    1. Valle, A. , Roizenblatt, S. , Botte, S. , Zaghi, S. , Riberto, M. , Tufik, S. , … Fregni, F. (2009). Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: Results of a randomized, sham‐controlled longitudinal clinical trial. Journal of Pain Management, 2(3), 353–361.
    1. Vosskuhl, J. , Huster, R. J. , & Herrmann, C. S. (2016). BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: A concurrent tACS‐fMRI study. NeuroImage, 140, 118–125.
    1. Wan, X. , Riera, J. , Iwata, K. , Takahashi, M. , Wakabayashi, T. , & Kawashima, R. (2006). The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism. NeuroImage, 32(2), 616–625.
    1. Wang, W. T. , Xu, B. , & Butman, J. A. (2017). Improved SNR for combined TMS‐fMRI: A support device for commercially available body array coil. Journal of Neuroscience Methods, 289, 1–7.
    1. Wiethoff, S. , Hamada, M. , & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475.
    1. Williams, K. A. , Cabral‐Calderin, Y. , Schmidt‐Samoa, C. , Weinrich, C. A. , Dechent, P. , & Wilke, M. (2017). Simultaneous transcranial alternating current stimulation and functional magnetic resonance imaging. Journal of Visualized Experiments: JoVE, 5, 124.
    1. Woods, A. J. , Antal, A. , Bikson, M. , Boggio, P. S. , Brunoni, A. R. , Celnik, P. , … Kappenman, E. S. (2016). A technical guide to tDCS, and related non‐invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048.
    1. Woods, A. J. , Hamilton, R. H. , Kranjec, A. , Minhaus, P. , Bikson, M. , Yu, J. , & Chatterjee, A. (2014). Space, time, and causality in the human brain. NeuroImage, 92, 285–297.
    1. Wörsching, J. , Padberg, F. , Ertl‐Wagner, B. , Kumpf, U. , Kirsch, B. , & Keeser, D. (2016). Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex—Correlation or causality in stimulation‐mediated effects? Neuroscience & Biobehavioral Reviews, 69, 333–356.
    1. Worsching, J. , Padberg, F. , Helbich, K. , Hasan, A. , Koch, L. , Goerigk, S. , … Keeser, D. (2017). Test–retest reliability of prefrontal transcranial direct current stimulation (tDCS) effects on functional MRI connectivity in healthy subjects. NeuroImage, 155, 187–201.

Source: PubMed

3
Abonner