Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder

Manuel T Munz, Alexander Prehn-Kristensen, Frederieke Thielking, Matthias Mölle, Robert Göder, Lioba Baving, Manuel T Munz, Alexander Prehn-Kristensen, Frederieke Thielking, Matthias Mölle, Robert Göder, Lioba Baving

Abstract

Background: Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD.

Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD.

Methods: Fourteen boys (10-14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task.

Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS.

Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

Keywords: attention deficit/hyperactivity disorder; behavioral inhibition; prefrontal cortex; slow oscillations; transcranial direct-current stimulation.

Figures

Figure 1
Figure 1
Mean reaction times and standard deviation of reaction times in the go/no-go task. Sham, sham stimulation (black bars); Stim, stimulation (white bars); M, mean; SEM, standard error of the mean.

References

    1. Achenbach T. M. (1991). Manual for the Child Behavior Checklist/4–18 and 1991 Profile. Burlington, VT: Department of Psychiatry, University of Vermont.
    1. Adams Z. W., Derefinko K. J., Milich R., Fillmore M. T. (2008). Inhibitory functioning across ADHD subtypes: recent findings, clinical implications, and future directions. Dev. Disabil. Res. Rev. 14, 268–275. 10.1002/ddrr.37
    1. American Academy of Sleep Medicine (2007). The AASM Manual for the Scoring of Sleep and Associated Events. Westchester, IL: American Academy of Sleep Medicine.
    1. American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th Edn, (Text revision): DSM IV-TR. Washington, DC: American Psychiatric Association.
    1. Arnsten A. F. (2009). Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl. 1), 33–41. 10.2165/00023210-200923000-00005
    1. Arnsten A. F., Pliszka S. R. (2011). Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacol. Biochem. Behav. 99, 211–216. 10.1016/j.pbb.2011.01.020
    1. Barbas H., Zikopoulos B. (2007). The prefrontal cortex and flexible behavior. Neuroscientist 13, 532–545. 10.1177/1073858407301369
    1. Barkley R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 121, 65–94. 10.1037/0033-2909.121.1.65
    1. Bellesi M., Riedner B. A., Garcia-Molina G. N., Cirelli C., Tononi G. (2014). Enhancement of sleep slow waves: underlying mechanisms and practical consequences. Front. Syst. Neurosci. 8:208. 10.3389/fnsys.2014.00208
    1. Buchmann A., Ringli M., Kurth S., Schaerer M., Geiger A., Jenni O. G., et al. . (2011). EEG sleep slow-wave activity as a mirror of cortical maturation. Cereb. Cortex 21, 607–615. 10.1093/cercor/bhq129
    1. Cortese S., Faraone S. V., Konofal E., Lecendreux M. (2009). Sleep in children with attention-deficit/hyperactivity disorder: meta-analysis of subjective and objective studies. J. Am. Acad. Child Adolesc. Psychiatry 48, 894–908. 10.1097/chi.0b013e3181ae09c9
    1. Cortese S., Konofal E., Yateman N., Mouren M.-C., Lecendreux M. (2006). Sleep and alertness in children with attention-deficit/hyperactivity disorder: a systematic review of the literature. Sleep 29, 504–511.
    1. Delmo C., Weiffenbach O., Gabriel M., Bölte S., Marchio E., Poustka F. (2000). Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), 3rd Edn. Frankfurt: Clinic of Child and Adolescent Psychiatry.
    1. Durmer J. S., Dinges D. F. (2005). Neurocognitive consequences of sleep deprivation. Semin. Neurol. 25, 117–129. 10.1055/s-2005-867080
    1. Dworak M., Wiater A., Alfer D., Stephan E., Hollmann W., Strüder H. K. (2008). Increased slow wave sleep and reduced stage 2 sleep in children depending on exercise intensity. Sleep Med. 9, 266–272. 10.1016/j.sleep.2007.04.017
    1. Gamo N. J., Wang M., Arnsten A. F. (2010). Methylphenidate and atomoxetine enhance prefrontal function through alpha2-adrenergic and dopamine D1 receptors. J. Am. Acad. Child Adolesc. Psychiatry 49, 1011–1023. 10.1016/j.jaac.2010.06.015
    1. Gau S. S., Kessler R. C., Tseng W. L., Wu Y. Y., Chiu Y. N., Yeh C. B., et al. . (2007). Association between sleep problems and symptoms of attention-deficit/hyperactivity disorder in young adults. Sleep 30, 195–201.
    1. Göder R., Baier P. C., Beith B., Baecker C., Seeck-Hirschner M., Junghanns K., et al. . (2013). Effects of transcranial direct current stimulation during sleep on memory performance in patients with schizophrenia. Schizophr. Res. 144, 153–154. 10.1016/j.schres.2012.12.014
    1. Gruber R., Grizenko N., Schwartz G., Bellingham J., Guzman R., Joober R. (2007). Performance on the continuous performance test in children with ADHD is associated with sleep efficiency. Sleep 30, 1003–1009.
    1. Gruber R., Sadeh A. (2004). Sleep and neurobehavioral functioning in boys with attention-deficit/hyperactivity disorder and no reported breathing problems. Sleep 27, 267–273.
    1. Gruber R., Wiebe S., Montecalvo L., Brunetti B., Amsel R., Carrier J. (2011). Impact of sleep restriction on neurobehavioral functioning of children with attention deficit hyperactivity disorder. Sleep 34, 315–323.
    1. Heller H. C. (2013). The function of sleep. in Encyclopedia of Sleep. The Function of Sleep - Basic Sleep Concepts, Science, Deprivation, and Mechanisms. 1, ed Clete K. (Waltham: Academic Pres; ), 354–358.
    1. Huber R., Esser S. K., Ferrarelli F., Massimini M., Peterson M. J., Tononi G. (2007). TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep. PLoS ONE 2:e276. 10.1371/journal.pone.0000276
    1. Huber R., Ghilardi M. F., Massimini M., Ferrarelli F., Riedner B. A., Peterson M. J., et al. . (2006). Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat. Neurosci. 9, 1169–1176. 10.1038/nn1758
    1. Huber R., Ghilardi M. F., Massimini M., Tononi G. (2004). Local sleep and learning. Nature 430, 78–81. 10.1038/nature02663
    1. Killgore W. D. (2010). Effects of sleep deprivation on cognition. Prog. Brain Res. 185, 105–129. 10.1016/B978-0-444-53702-7.00007-5
    1. Konofal E., Lecendreux M., Cortese S. (2010). Sleep and ADHD. Sleep Med. 11, 652–658. 10.1016/j.sleep.2010.02.012
    1. Kurth S., Jenni O. G., Riedner B. A., Tononi G., Carskadon M. A., Huber R. (2010). Characteristics of sleep slow waves in children and adolescents. Sleep 33, 475–480.
    1. Landsness E. C., Crupi D., Hulse B. K., Peterson M. J., Huber R., Ansari H., et al. . (2009). Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep 32, 1273–1284.
    1. Marshall L., Helgadóttir H., Mölle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613. 10.1038/nature05278
    1. Marshall L., Kirov R., Brade J., Molle M., Born J. (2011). Transcranial electrical currents to probe, EEG brain rhythms and memory consolidation during sleep in humans. PLoS ONE 6:e16905. 10.1371/journal.pone.0016905
    1. Massimini M., Huber R., Ferrarelli F., Hill S., Tononi G. (2004). The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870. 10.1523/JNEUROSCI.1318-04.2004
    1. Middleton F. A., Strick P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Brain Res. Rev. 31, 236–250. 10.1016/S0165-0173(99)00040-5
    1. Murphy M., Riedner B. A., Huber R., Massimini M., Ferrarelli F., Tononi G. (2009). Source modeling sleep slow waves. Proc. Natl. Acad. Sci. U.S.A. 106, 1608–1613. 10.1073/pnas.0807933106
    1. Ngo H. V., Claussen J. C., Born J., Molle M. (2013a). Induction of slow oscillations by rhythmic acoustic stimulation. J. Sleep Res. 22, 22–31. 10.1111/j.1365-2869.2012.01039.x
    1. Ngo H. V., Martinetz T., Born J., Molle M. (2013b). Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78, 545–553. 10.1016/j.neuron.2013.03.006
    1. Pennington B. F., Ozonoff S. (1996). Executive functions and developmental psychopathology. J. Child Psychol. Psychiatry All. Discip. 37, 51–87. 10.1111/j.1469-7610.1996.tb01380.x
    1. Polanczyk G., de Lima M. S., Horta B. L., Biederman J., Rohde L. A. (2007). The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am. J. Psychiatry 164, 942–948. 10.1176/appi.ajp.164.6.942
    1. Prehn-Kristensen A., Goder R., Fischer J., Wilhelm I., Seeck-Hirschner M., Aldenhoff J., et al. . (2011a). Reduced sleep-associated consolidation of declarative memory in attention-deficit/hyperactivity disorder. Sleep Med. 12, 672–679. 10.1016/j.sleep.2010.10.010
    1. Prehn-Kristensen A., Molzow I., Munz M., Wilhelm I., Muller K., Freytag D., et al. . (2011b). Sleep restores daytime deficits in procedural memory in children with attention-deficit/hyperactivity disorder. Res. Dev. Disabil. 32, 2480–2488. 10.1016/j.ridd.2011.06.021
    1. Prehn-Kristensen A., Munz M., Goder R., Wilhelm I., Korr K., Vahl W., et al. . (2014). Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls. Brain Stimul. 7, 793–799. 10.1016/j.brs.2014.07.036
    1. Prehn-Kristensen A., Munz M., Molzow I., Wilhelm I., Wiesner C. D., Baving L., et al. . (2013). Sleep promotes consolidation of emotional memory in healthy children but not in children with attention-deficit hyperactivity disorder. PLoS ONE 8:e65098. 10.1371/journal.pone.0065098
    1. Raz A. (2004). Anatomy of attentional networks. Anat. Rec. B New Anat. 281, 21–36. 10.1002/ar.b.20035
    1. Raz A., Buhle J. (2006). Typologies of attentional networks. Nat. Rev. Neurosci. 7, 367–379. 10.1038/nrn1903
    1. Rechtschaffen A., Kales A. (1968). A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages in Human Subject. Washington, DC: US Government Printing Office, National Institute of Health Publication.
    1. Ringli M., Kurth S., Huber R., Jenni O. G. (2013b). The sleep EEG topography in children and adolescents shows sex differences in language areas. Int. J. Psychophysiol. 89, 241–245. 10.1016/j.ijpsycho.2013.04.008
    1. Ringli M., Souissi S., Kurth S., Brandeis D., Jenni O. G., Huber R. (2013a). Topography of sleep slow wave activity in children with attention-deficit/hyperactivity disorder. Cortex 49, 340–347. 10.1016/j.cortex.2012.07.007
    1. Rubia K. (2007). Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proc. Natl. Acad. Sci. U.S.A. 104, 19663–19664. 10.1073/pnas.0710329105
    1. Sadeh A., Gruber R., Raviv A. (2003). The effects of sleep restriction and extension on school-age children: what a difference an hour makes. Child Dev. 74, 444–455. 10.1111/1467-8624.7402008
    1. Sadeh A., Pergamin L., Bar-Haim Y. (2006). Sleep in children with attention-deficit hyperactivity disorder: a meta-analysis of polysomnographic studies. Sleep Med. Rev. 10, 381–398. 10.1016/j.smrv.2006.03.004
    1. Sangal R. B., Owens J. A., Allen A. J., Sutton V., Schuh K., Kelsey D. (2006). Effects of atomoxetine and methylphenidate on sleep in children with ADHD. Sleep 29, 1573–1585.
    1. Schwerdtle B., Roeser K., Kübler A., Schlarb A. A. (2010). Validierung und psychometrische eigenschaften der deutschen version des sleep self report (SSR-DE). Somnologie 14, 267–274. 10.1007/s11818-010-0496-3
    1. Shaw P., Eckstrand K., Sharp W., Blumenthal J., Lerch J. P., Greenstein D., et al. . (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl. Acad. Sci. U.S.A. 104, 19649–19654. 10.1073/pnas.0707741104
    1. Shaw P., Kabani N. J., Lerch J. P., Eckstrand K., Lenroot R., Gogtay N., et al. . (2008). Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28, 3586–3594. 10.1523/JNEUROSCI.5309-07.2008
    1. Shaw P., Lerch J., Greenstein D., Sharp W., Clasen L., Evans A., et al. . (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 63, 540–549. 10.1001/archpsyc.63.5.540
    1. Shaw P., Rabin C. (2009). New insights into attention-deficit/hyperactivity disorder using structural neuroimaging. Curr. Psychiatry Rep. 11, 393–398. 10.1007/s11920-009-0059-0
    1. Steenari M.-R., Vountela V., Paavonen E. J., Carlson S., Fjällberg M., Aronen E. T. (2003). Working memory and sleep in 6- to 13-year-old schoolchildren. J. Am. Acad. Child Adolesc. Psychiatry 42, 85–92. 10.1097/00004583-200301000-00014
    1. Tononi G., Cirelli C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150. 10.1016/j.brainresbull.2003.09.004
    1. Tononi G., Cirelli C. (2006). Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62. 10.1016/j.smrv.2005.05.002
    1. Turnbull K., Reid G. J., Morton J. B. (2013). Behavioral sleep problems and their potential impact on developing executive function in children. Sleep 36, 1077–1084. 10.5665/sleep.2814
    1. Walker M. P., Brakefield T., Hobson J. A., Stickgold R. (2003b). Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620. 10.1038/nature01930
    1. Walker M. P., Brakefield T., Seidman J., Morgan A., Hobson J. A., Stickgold R. (2003a). Sleep and the time course of motor skill learning. Learn. Mem. 10, 275–284. 10.1101/lm.58503
    1. Weiß R. H. (2006). Grundintelligenztest Skala 2, CFT 20-R [Basic Intelligence Test, Scale 2, CFT 20 (Revised)]. Göttingen: Hogrefe.
    1. Wilhelm I., Diekelmann S., Born J. (2008). Sleep in children improves memory performance on declarative but not procedural tasks. Learn. Mem. 15, 373–377. 10.1101/lm.803708
    1. Willcutt E. G., Doyle A. E., Nigg J. T., Faraone S. V., Pennington B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol. Psychiatry 57, 1336–1346. 10.1016/j.biopsych.2005.02.006
    1. Yoon S. Y., Jain U., Shapiro C. (2012). Sleep in attention-deficit/hyperactivity disorder in children and adults: past, present, and future. Sleep Med. Rev. 16, 371–388. 10.1016/j.smrv.2011.07.001
    1. Zimmermann P., Gondan M., Fimm B. (2005). Testbatterie zur Aufmerksamkeitsprüfung für Kinder (KITAP): Würselen: Psychtest.

Source: PubMed

3
Abonner