Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation

Hayley Thair, Amy L Holloway, Roger Newport, Alastair D Smith, Hayley Thair, Amy L Holloway, Roger Newport, Alastair D Smith

Abstract

Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields.

Keywords: anodal; brain stimulation; cathodal; cortical modulation; protocol; transcranial direct current stimulation.

Figures

Figure 1
Figure 1
tDCS equipment for the HDC Kit. (A) Neoprene swimming caps for securing electrodes, (B) straps for securing electrodes, (C) programmer/stimulator connector cable, (D) power supply, (E) tDCS stimulator (batteries inside), (F) tDCS stimulator parameter programmer, (G) sponge holding bags, (H) electrode cables (red—anodal; black—cathodal), (I) rubber electrodes, (J) cable connector, (K) conductive EEG gel, (L) measuring equipment (washable pen and measuring tape), (M) saline (20 ml pouches for easy application). Not all tDCS kits come with a separate stimulator and parameter programmer.
Figure 2
Figure 2
Diagram illustrating experimental protocols. Offline stimulation involves a period of pre-stimulation in which a task may be completed, followed by a period of stimulation and then a post-stimulation task (A) or a post-stimulation task only (B). Online stimulation involves participants receiving stimulation during the task (C). For sham stimulation, the task can be undertaken according to either online or offline protocols. Sham stimulation involves the current ramping up (RU), followed by a brief stimulatory (BS) period which is usually 3–5% of the active session duration, followed by a ramping down of the current. The current then remains off for the rest of the session. The task can be applied at any point during the session (D), depending on whether an online or offline protocol is undertaken.

References

    1. Accornero N., Li Voti P., La Riccia M., Gregori B. (2007). Visual evoked potentials modulation during direct current cortical polarization. Exp. Brain Res. 178, 261–266. 10.1007/s00221-006-0733-y
    1. Agarwal S. M., Shivakumar V., Bose A., Subramaniam A., Nawani H., Chhabra H., et al. . (2013). Transcranial direct current stimulation in schizophrenia. Clin. Psychopharmacol. Neurosci. 11, 118–125. 10.9758/cpn.2013.11.3.118
    1. Alonzo A., Brassil J., Taylor J. L., Martin D., Loo C. K. (2012). Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimul. 5, 208–213. 10.1016/j.brs.2011.04.006
    1. Ambrus G. G., Al-Moyed H., Chaieb L., Sarp L., Antal A., Paulus W. (2012). The fade-in - Short stimulation - Fade out approach to sham tDCS - Reliable at 1 mA for naïve and experienced subjects, but not investigators. Brain Stimul. 5, 499–504. 10.1016/j.brs.2011.12.001
    1. Ambrus G. G., Paulus W., Antal A. (2010). Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS. Clin. Neurophysiol. 121, 1908–1914. 10.1016/j.clinph.2010.04.020
    1. Antal A., Kincses T. Z., Nitsche M. A., Paulus W. (2003). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 41, 1802–1807. 10.1016/S0028-3932(03)00181-7
    1. Antal A., Nitsche M. A., Paulus W. (2001). External modulation of visual perception in humans. Neuroreport 12, 3553–3555. 10.1097/00001756-200111160-00036
    1. Antal A., Terney D., Poreisz C., Paulus W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur. J. Neurosci. 26, 2687–2691. 10.1111/j.1460-9568.2007.05896.x
    1. Arul-Anandam A. P., Loo C., Sachdev P. (2009). Transcranial direct current stimulation - What is the evidence for its efficacy and safety? F1000 Med. Rep. 1, 2–5. 10.3410/M1-58
    1. Axelrod V., Rees G., Lavidor M., Bar M. (2015). Increasing propensity to mind-wander with transcranial direct current stimulation. Proc. Natl. Acad. Sci. U.S.A. 112, 3314–3319. 10.1073/pnas.1421435112
    1. Bastani A., Jaberzadeh S. (2013). Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation. PLoS ONE 8:e0072254. 10.1371/journal.pone.0072254
    1. Batsikadze G., Moliadze V., Paulus W., Kuo M. F., Nitsche M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 591, 1987–2000. 10.1113/jphysiol.2012.249730
    1. Benwell C. S. Y., Learmonth G., Miniussi C., Harvey M., Thut G. (2015). Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: evidence from biparietal tDCS influence on lateralized attention bias. Cortex 69, 152–165. 10.1016/j.cortex.2015.05.007
    1. Berryhill M. E., Jones K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neurosci. Lett. 521, 148–151. 10.1016/j.neulet.2012.05.074
    1. Berryhill M. E., Peterson D. J., Jones K. T., Stephens J. A. (2014). Hits and misses: leveraging tDCS to advance cognitive research. Front. Psychol. 5:800. 10.3389/fpsyg.2014.00800
    1. Bikson M., Datta A., Elwassif M. (2009). Establishing safety limits for transcranial direct current stimulation. Clin. Neurophysiol. 120, 1033–1034. 10.1016/j.clinph.2009.03.018
    1. Bikson M., Datta A., Rahman A., Scaturro J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “return” electrode's position and size. Clin. Neurophysiol. 121, 1976–1978. 10.1016/j.clinph.2010.05.020
    1. Bikson M., Rahman A., Datta A. (2012). Computational models of transcranial direct current stimulation. Clin. EEG Neurosci. 43, 176–183. 10.1177/1550059412445138
    1. Boggio P. S., Nunes A., Rigonatti S. P., Nitsche M. A., Pascual-Leone A., Fregni F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neurosci., 25, 123–129.
    1. Boggio P. S., Rigonatti S. P., Ribeiro R. B., Myczkowski M. L., Nitsche M. A., Pascual-Leone A., et al. . (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int. J. Neuropsychopharmacol. 11, 249–254. 10.3389/fnagi.2014.00275
    1. Brunoni A. R., Amadera J., Berbel B., Volz M. S., Rizzerio B. G., Fregni F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 14, 1133–1145. 10.1017/S1461145710001690
    1. Brunoni A. R., Nitsche M. A., Bolognini N., Bikson M., Wagner T., Merabet L., et al. . (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 5, 175–195. 10.1016/j.brs.2011.03.002
    1. Brunoni A., Vanderhasselt M. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral pre-frontal cortex: a systematic review and meta-analysis. Brain Cognit. 86, 1–9. 10.1016/j.bandc.2014.01.008
    1. Chaieb L., Antal A., Paulus W. (2008). Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Vis. Neurosci. 25, 77–81. 10.1017/S0952523808080097
    1. Chhatbar P. Y., Chen R., Deardorff R., Dellenbach B., Kautz S. A., George M. S., et al. (2017). Safety and tolerability of transcranial direct current stimulation to stroke patients e A phase I current escalation study. Brain Stimul. 10, 553–559. 10.1016/j.brs.2017.02.007
    1. Coffman B. A., Clark V. P., Parasuraman R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage 85(Pt 3), 895–908. 10.1016/j.neuroimage.2013.07.083
    1. Coffman B. A., Trumbo M. C., Flores R. A., Garcia C. M., van der Merwe A. J., Wassermann E. M., et al. . (2012). Impact of tDCS on performance and learning of target detection: interaction with stimulus characteristics and experimental design. Neuropsychologia 50, 1594–1602. 10.1016/j.neuropsychologia.2012.03.012
    1. Cohen Kadosh R., Soskic S., Iuculano T., Kanai R., Walsh V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr. Biol. 20, 2016–2020. 10.1016/j.cub.2010.10.007
    1. Dambacher F., Schuhmann T., Lobbestael J., Arntz A., Brugman S., Sack A. T. (2015). Reducing proactive aggression through non-invasive brain stimulation. Soc. Cogn. Affect. Neurosci. 10, 1303–1309. 10.1093/scan/nsv018
    1. DaSilva A. F., Truong D. Q., DosSantos M. F., Toback R. L., Datta A., Bikson M. (2015). State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control. Front. Neuroanat. 9, 1–12. 10.3389/fnana.2015.00089
    1. DaSilva A. F., Volz M. S., Bikson M., Fregni F. (2011). Electrode positioning and montage in transcranial direct current stimulation. J. Visual. Exp. e2744. 10.3791/2744
    1. Datta A., Baker J. M., Bikson M., Fridriksson J. (2011). Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 4, 169–174. 10.1016/j.brs.2010.11.001
    1. Datta A., Bansal V., Diaz J., Patel J., Reato D., Bikson M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207. 10.1016/j.brs.2009.03.005
    1. Datta A., Bikson M., Fregni F. (2010). Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow. Neuroimage 52, 1268–1278. 10.1016/j.neuroimage.2010.04.252
    1. Datta A., Truong D., Minhas P., Parra L. C., Bikson M. (2012). Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front. Psychiatry 3:91. 10.3389/fpsyt.2012.00091
    1. Dieckhöfer A., Waberski T. D., Nitsche M., Paulus W., Buchner H., Gobbelé R. (2006). Transcranial direct current stimulation applied over the somatosensory cortex - Differential effect on low and high frequency SEPs. Clin. Neurophysiol. 117, 2221–2227. 10.1016/j.clinph.2006.07.136
    1. Dundas J. E., Thickbroom G. W., Mastaglia F. L. (2007). Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes. Clin. Neurophysiol. 118, 1166–1170. 10.1016/j.clinph.2007.01.010
    1. Dyke K., Kim S., Jackson G. M., Jackson S. R. (2017). Intra-subject consistency and reliability of response following 2 mA transcranial direct current stimulation. Brain Stimul. 9, 819–825. 10.1016/j.brs.2016.06.052
    1. Fertonani A., Ferrari C., Miniussi C. (2015). What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin. Neurophysiol. 126, 2181–2188. 10.1016/j.clinph.2015.03.015
    1. Filmer H. L., Dux P. E., Mattingley J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 37, 742–753. 10.1016/j.tins.2014.08.003
    1. Fregni F., Boggio P. S., Nitsche M. A., Marcolin M. A., Rigonatti S. P., Pascual-Leone A. (2006). Treatment of major depression with transcranial direct current stimulation. Bipolar Disord. 8, 203–204. 10.1111/j.1399-5618.2006.00291.x
    1. Fregni F., Boggio P. S., Nitsche M., Bermpohl F., Antal A., Feredoes E., et al. . (2004). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30. 10.1007/s00221-005-2334-6
    1. Fujiyama H., Hyde J., Hinder M. R., Kim S. J., McCormack G. H., Vickers J. C., et al. . (2014). Delayed plastic responses to anodal tDCS in older adults. Front. Aging Neurosci. 6:115. 10.3389/fnagi.2014.00115
    1. Galvez V., Alonzo A., Martin D., Loo C. K. (2013). Transcranial direct current stimulation treatment protocols: should stimulus intensity be constant or incremental over multiple sessions? Int. J. Neuropsychopharmacol. 16, 13–21. 10.1017/S1461145712000041
    1. Gandiga P. C., Hummel F. C., Cohen L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845–850. 10.1016/j.clinph.2005.12.003
    1. Gladwin T. E., den Uyl T. E., Fregni F. F., Wiers R. W. (2012). Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci. Lett. 512, 33–37. 10.1016/j.neulet.2012.01.056
    1. Grundey J., Thirugnanasambandam N., Kaminsky K., Drees A., Skwirba A. C., Lang N., et al. . (2012). Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. J. Neurosci. 32, 4156–4162. 10.1523/JNEUROSCI.3660-11.2012
    1. Hampstead B. M., Brown G. S., Hartley J. F. (2014). Transcranial direct current stimulation modulates activation and effective connectivity during spatial navigation. Brain Stimul. 7, 314–324. 10.1016/j.brs.2013.12.006
    1. Hasan A., Misewitsch K., Nitsche M. A., Gruber O., Padberg F., Falkai P., et al. . (2013). Impaired motor cortex responses in non-psychotic first-degree relatives of schizophrenia patients: a cathodal tDCS pilot study. Brain Stimul., 6, 821–829. 10.1016/j.brs.2013.03.001
    1. Ho K.-A., Taylor J. L., Chew T., Gálvez V., Alonzo A., Bai S., et al. . (2015). The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions. Brain Stimul. 9, 1–7. 10.1016/j.brs.2015.08.003
    1. Hortensius R., Schutter D. J. L. G., Harmon-Jones E. (2012). When anger leads to aggression: Induction of relative left frontal cortical activity with transcranial direct current stimulation increases the anger-aggression relationship. Soc. Cogn. Affect. Neurosci. 7, 342–347. 10.1093/scan/nsr012
    1. Horvath J. C., Carter O., Forte J. D. (2014). Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be). Front. Syst. Neurosci. 8:2. 10.3389/fnsys.2014.00002
    1. Horvath J. C., Forte J. D., Carter O. (2015). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66, 213–236. 10.1016/j.neuropsychologia.2014.11.021
    1. Horvath J. C., Vogrin S. J., Carter O., Cook M. J., Forte J. D. (2016). Effects of transcranial direct current stimulation on motor evoked potential amplitude are neither reliable nor significant within individuals over 9 separate testing sessions. Brain Stimul. 8:318 10.1016/j.brs.2015.01.033
    1. Im C.-H., Park J.-H., Shim M., Chang W. H., Kim Y.-H. (2012). Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling. Phys. Med. Biol. 57, 2137–2150. 10.1088/0031-9155/57/8/2137
    1. Inghilleri M., Conte A., Currà A., Frasca V., Lorenzano C., Berardelli A. (2004). Ovarian hormones and cortical excitability: an rTMS study in humans. Clin. Neurophysiol. 115, 1063–1068. 10.1016/j.clinph.2003.12.003
    1. Iyer M. B., Mattu U., Grafman J., Lomarev M., Sato S., Wassermann E. M. (2005). Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64, 872–875. 10.1212/01.WNL.0000152986.07469.E9
    1. Jacobson L., Koslowsky M., Lavidor M. (2012). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp. Brain Res. 216, 1–10. 10.1007/s00221-011-2891-9
    1. Jung Y.-J., Kim J.-H., Im C.-H. (2013). COMETS: A MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS). Biomed. Eng. Lett. 3, 39–46. 10.1007/s13534-013-0087-x
    1. Kay G. G. (2000). The effects of antihistamines on cognition and performance. J. Allergy Clin. Immunol. 105, S622–S627. 10.1067/mai.2000.106153
    1. Klem G. H., Lüders H. O., Jasper H. H., Elger C. (1999). The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6.
    1. Knoch D., Nitsche M. A., Fischbacher U., Eisenegger C., Pascual-Leone A., Fehr E. (2008). Studying the neurobiology of social interaction with transcranial direct current stimulation - The example of punishing unfairness. Cereb. Cortex 18, 1987–1990. 10.1093/cercor/bhm237
    1. Krause B., Cohen Kadosh R. (2014). Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front. Syst. Neurosci. 8:25. 10.3389/fnsys.2014.00025
    1. Lagopoulos J., Degabriele R. (2008). Feeling the heat: the electrode-skin interface during DCS. Acta Neuropsychiatr. 20, 98–100. 10.1111/j.1601-5215.2008.00274.x
    1. Lapenta O. M., Fregni F., Oberman L. M., Boggio P. S. (2012). Bilateral temporal cortex transcranial direct current stimulation worsens male performance in a multisensory integration task. Neurosci. Lett. 527, 105–109. 10.1016/j.neulet.2012.08.076
    1. Li L. M., Uehara K., Hanakawa T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front. Cell. Neurosci. 12:181 10.3389/fncel.2015.00181
    1. Lindenberg R., Renga V., Zhu L. L., Nair D., Schlaug G. M. D. P. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology, 75, 2176–2184. 10.1212/WNL.0b013e318202013a
    1. Lippold O. C. J., Redfearn J. W. T. (1964). Mental changes resulting from the passage of small direct currents through the human brain. Br. J. Psychiatry 110, 768–772. 10.1192/bjp.110.469.768
    1. Loo C. K., Martin D. M., Alonzo A., Gandevia S., Mitchell P. B., Sachdev P. (2011). Avoiding skin burns with transcranial direct current stimulation: Preliminary considerations. Int. J. Neuropsychopharmacol. 14, 425–426. 10.1017/S1461145710001197
    1. Manenti R., Brambilla M., Petesi M., Ferrari C., Cotelli M. (2013). Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front. Aging Neurosci. 5:49. 10.3389/fnagi.2013.00049
    1. Manuel A. L., David A. W., Bikson M., Schnider A. (2014). Frontal tDCS modulates orbitofrontal reality filtering. Neuroscience 265, 21–27. 10.1016/j.neuroscience.2014.01.052
    1. Martin D. M., Alonzo A., Mitchell P. B., Sachdev P., Gálvez V., Loo C. K. (2011). Fronto-extracephalic transcranial direct current stimulation as a treatment for major depression: an open-label pilot study. J. Affect. Disord. 134, 459–463. 10.1016/j.jad.2011.05.018
    1. McFadden J. L., Borckardt J. J., George M. S., Beam W. (2011). Reducing procedural pain and discomfort associated with transcranial direct current stimulation. Brain Stimul. 4, 38–42. 10.1016/j.brs.2010.05.002.Reducing
    1. Meinzer M., Lindenberg R., Darkow R., Ulm L., Copland D., Flöel A. (2014). Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging. J. Visual. Exp. e51730. 10.3791/51730
    1. Miranda P. C., Faria P., Hallett M. (2009). What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? Clin. Neurophysiol. 120, 1183–1187. 10.1016/j.clinph.2009.03.023
    1. Miranda P. C., Lomarev M., Hallett M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629. 10.1016/j.clinph.2006.04.009
    1. Moliadze V., Antal A., Paulus W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin. Neurophysiol. 121, 2165–2171. 10.1016/j.clinph.2010.04.033
    1. Møller A. P., Jennions M. D. (2001). Testing and adjusting for publication bias. Trends Ecol. Evol. 16, 580–586. 10.1016/S0169-5347(01)02235-2
    1. Monte-Silva K., Kuo M. F., Hessenthaler S., Fresnoza S., Liebetanz D., Paulus W., et al. . (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 6, 424–432. 10.1016/j.brs.2012.04.011
    1. Monte-Silva K., Kuo M.-F., Liebetanz D., Paulus W., Nitsche M. A. (2010). Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J. Neurophysiol. 103, 1735–1740. 10.1152/jn.00924.2009
    1. Nasseri P., Nitsche M. A., Ekhtiari H. (2015). A framework for categorizing electrode montages in transcranial direct current stimulation. Front. Hum. Neurosci. 9:54. 10.3389/fnhum.2015.00054
    1. Nitsche M. A., Boggio P. S., Fregni F., Pascual-Leone A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp. Neurol. 219, 14–19. 10.1016/j.expneurol.2009.03.038
    1. Nitsche M. A., Cohen L., Wassermann E. M., Priori A., Lang N., Antal A., et al. . (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 1, 206–223. 10.1016/j.brs.2008.06.004
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527(Pt 3), 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901. 10.1212/WNL.57.10.1899
    1. Nitsche M. A., Paulus W. (2011). Transcranial direct current stimulation – update 2011. Restor. Neurol. Neurosci. 29, 463–492. 10.3233/RNN-2011-0618
    1. Nozari N., Woodard K., Thompson-Schill S. L. (2014). Consequences of cathodal stimulation for behavior: when does it help and when does it hurt performance? PLoS ONE 9:e0084338. 10.1371/journal.pone.0084338
    1. Opitz A., Paulus W., Will S., Antunes A., Thielscher A. (2015). Determinants of the electric field during transcranial direct current stimulation. Neuroimage 109, 140–150. 10.1016/j.neuroimage.2015.01.033
    1. Parasuraman R., McKinley R. A. (2014). Using noninvasive brain stimulation to accelerate learning and enhance human performance. Hum. Factors 56, 816–824. 10.1177/0018720814538815
    1. Parazzini M., Rossi E., Ferrucci R., Liorni I., Priori A., Ravazzani P. (2014). Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin. Neurophysiol. 125, 577–584. 10.1016/j.clinph.2013.09.039
    1. Parazzini M., Rossi E., Rossi L., Priori A., Ravazzani P., Vila-Nova C., et al. . (2013). Numerical estimation of the current density in the heart during transcranial direct current stimulation. Brain Stimul. 6, 457–459. 10.1016/j.brs.2012.05.007
    1. Peña-Gómez C., Vidal-Piñeiro D., Clemente I. C., Pascual-Leone Á., Bartrés-Faz D. (2011). Down-regulation of negative emotional processing by transcranial direct current stimulation: effects of personality characteristics. PLoS ONE 6:e22812. 10.1371/journal.pone.0022812
    1. Pisani F., Oteri G., Costa C., Di Raimondo G., Di Perri R. (2002). Effects of psychotropic drugs on seizure threshold. Drug Safety 25, 91–110. 10.2165/00002018-200225020-00004
    1. Poreisz C., Boros K., Antal A., Paulus W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 72, 208–214.
    1. Priori A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin. Neurophysiol. 114, 589–595. 10.1016/S1388-2457(02)00437-6
    1. Quartarone A., Morgante F., Bagnato S., Rizzo V., Sant'Angelo A., Aiello E., et al. . (2004). Long lasting effects of transcranial direct current stimulation on motor imagery. Neuroreport 15, 1287–1291. 10.1097/01.wnr.0000127637
    1. Raimundo R. J. S., Uribe C. E., Brasil-Neto J. P. (2012). Lack of clinically detectable acute changes on autonomic or thermoregulatory functions in healthy subjects after transcranial direct current stimulation (tDCS). Brain Stimul. 5, 196–200. 10.1016/j.brs.2011.03.009
    1. Redfearn J. W. T., Lippold O. C. J., Costain R. (1964). Preliminary account of the clinical effects of polarizing the brain in certain psychiatric disorders. Br. J. Psychiatry 110, 773–785. 10.1192/bjp.110.469.773
    1. Riva P., Romero Lauro L. J., DeWall C. N., Chester D. S., Bushman B. J. (2015). Reducing aggressive responses to social exclusion using transcranial direct current stimulation. Soc. Cogn. Affect. Neurosci. 10, 352–356. 10.1093/scan/nsu053
    1. Rostami M., Golesorkhi M., Ekhtiari H. (2013). Methodological dimensions of transcranial brain stimulation with the electrical current in human. Basic Clin. Neurosci. 4:190.
    1. Rush S., Driscoll D. A. (1968). Current distribution in the brain from surface electrodes. Anes. Analges. 47, 717–723.
    1. Russo R., Wallace D., Fitzgerald P. B., Cooper N. R. (2013). Perception of comfort during active and sham transcranial direct current stimulation: a double blind study. Brain Stimul. 6, 946–951. 10.1016/j.brs.2013.05.009
    1. Schestatsky P., Morales-Quezada L., Fregni F. (2013). Simultaneous EEG monitoring during transcranial direct current stimulation. J. Visual. Exp. e50426. 10.3791/50426
    1. Schneider H. D., Hopp J. P. (2011). The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin. Linguist. Phonet. 25, 640–654. 10.3109/02699206.2011.570852
    1. Shiozawa P., da Silva M. E., Raza R., Uchida R. R., Cordeiro Q., Fregni F., et al. . (2013). Safety of repeated transcranial direct current stimulation in impaired skin: a case report. J. ECT 29, 147–148. 10.1097/YCT.0b013e318279c1a1
    1. Shiozawa P., Fregni F., Benseñor I. M., Lotufo P. A., Berlim M. T., Daskalakis J. Z., et al. . (2014). Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. Int. J. Neuropsychopharmacol. 17, 1443–1452. 10.1017/S1461145714000418
    1. Silvanto J., Muggleton N., Walsh V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454. 10.1016/j.tics.2008.09.004
    1. Stagg C. J., Nitsche M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist 17, 37–53. 10.1177/1073858410386614
    1. Turi Z., Ambrus G. G., Ho K. A., Sengupta T., Paulus W., Antal A. (2014). When size matters: large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density. Brain Stimul. 7, 460–467. 10.1016/j.brs.2014.01.059
    1. Utz K. S., Dimova V., Oppenländer K., Kerkhoff G. (2010). Electrified minds: transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—A review of current data and future implications. Neuropsychologia 48, 2789–2810. 10.1016/j.neuropsychologia.2010.06.002
    1. Vandermeeren Y., Jamart J., Ossemann M. (2010). Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neurosci. 11:38. 10.1186/1471-2202-11-38
    1. Vigod S., Cl D., Daskalakis Z., Murphy K., Ray J., Oberlander T., et al. . (2014). Transcranial Direct Current Stimulation (tDCS) for treatment of major depression during pregnancy: study protocol for a pilot randomized controlled trial. Trials 15, 1–11. 10.1186/1745-6215-15-366
    1. Villamar M. F., Volz M. S., Bikson M., Datta A., Dasilva A. F., Fregni F. (2013). Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). J. Visual. Exp. e50309. 10.3791/50309
    1. Wagner T., Fregni F., Fecteau S., Grodzinsky A., Zahn M., Pascual-Leone A. (2007). Transcranial direct current stimulation: a computer-based human model study. NeuroImage 35, 1113–1124. 10.1016/j.neuroimage.2007.01.027
    1. Willis M. L., Murphy J. M., Ridley N. J., Vercammen A. (2015). Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition. Soc. Cogn. Affect. Neurosci. 10, 1677–1683. 10.1093/scan/nsv057
    1. Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. . (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127, 1031–1048. 10.1016/j.clinph.2015.11.012
    1. Woods A. J., Bryant V., Sacchetti D., Gervits F., Hamilton R. (2015). Effects of electrode drift in transcranial direct current stimulation. Brain Stimul. 8, 515–519. 10.1016/j.brs.2014.12.007
    1. Zhu F. F., Yeung A. Y., Poolton J. M., Lee T. M., Leung G. K., Masters R. S. (2015). Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task. Brain Stimul. 8, 784–786. 10.1016/j.brs.2015.02.005
    1. Zimerman M., Nitsch M., Giraux P., Gerloff C., Cohen L. G., Hummel F. C. (2013). Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73, 10–15. 10.1002/ana.23761

Source: PubMed

3
Abonner