Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury - randomized prospective trial

Rahav Boussi-Gross, Haim Golan, Gregori Fishlev, Yair Bechor, Olga Volkov, Jacob Bergan, Mony Friedman, Dan Hoofien, Nathan Shlamkovitch, Eshel Ben-Jacob, Shai Efrati, Rahav Boussi-Gross, Haim Golan, Gregori Fishlev, Yair Bechor, Olga Volkov, Jacob Bergan, Mony Friedman, Dan Hoofien, Nathan Shlamkovitch, Eshel Ben-Jacob, Shai Efrati

Abstract

Background: Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments.

Methods and findings: The trial population included 56 mTBI patients 1-5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week), 60 minutes each, with 100% oxygen at 1.5 ATA. "Mindstreams" was used for cognitive evaluations, quality of life (QOL) was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements.

Conclusions: HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage.

Trial registration: ClinicalTrials.gov NCT00715052.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow chart of the patients…
Figure 1. Flow chart of the patients in the study.
Figure 2. Assessment of the cognitive indices.
Figure 2. Assessment of the cognitive indices.
Each patient in each group was assigned a score at baseline, after the control period (for patients in the crossover group) and after HBOT. The figures show the mean scores and standard errors for the two groups at each stage for the four cognitive indices - Information Processing Speed (A), Attention (B), Memory (C) and Executive Functions (D), as defined in the method section.
Figure 3. Assessments of the general cognitive…
Figure 3. Assessments of the general cognitive score.
The figure shows the level of the general cognitive score (defined in the text) for the crossover group at baseline, after the control period and after HBOT, and for the treated group at baseline and after HBOT.
Figure 4. Assessment of the relative changes.
Figure 4. Assessment of the relative changes.
A) The relative changes (as defined in the text) for the four cognitive indices. The changes are shown for the crossover group following the control period (green bars) and HBOT (blue bars), and for the treated group following HBOT (red bars). B) Relative changes in the general cognitive score for the same three cases as in (A).
Figure 5. Scatter plot analysis of the…
Figure 5. Scatter plot analysis of the changes in cognitive indices.
The scatter plots show the normalized relative changes (NRC) as defined in the methods section and explained in the text above. A) Scatter plot for the changes in IPS as function of changes in EF. B) Scatter plot for changes in Attention as function of Memory. The changes in the Attention and in the IPS as function of the General cognitive score are shown in (C) and (D), respectively. Circles are for the treated group and diamonds are for the crossover group. The color code is: Red for changes during HBOT and blue for changes during control.
Figure 6. Assessments of the mean relative…
Figure 6. Assessments of the mean relative changes and standard errors in quality of life measurements.
The changes are shown for the crossover group following control period (green bars) and following HBOT (blue bars), and for the treated group following HBOT (red bars). Note that, according to the questionnaire structure, in the EQ-5D measurement improvement is reflected as score decrease, hence the negative values of change.
Figure 7. Distribution of the Brodmann areas…
Figure 7. Distribution of the Brodmann areas relative SPECT CBF changes.
The change for each BA represents and averaging of the relative changes of all the patients as explained in the text. The results show a clear difference between the control and the HBOT periods. We note that the higher variations for the control period are associated with the fact that the averaging in this case is over 24 patients (the crossover group), while for the HBOT period the averaging is over all 55 patients.
Figure 8. Volume rendered Brain SPECT perfusion…
Figure 8. Volume rendered Brain SPECT perfusion maps of Example 1, a 51-year-old woman from the treated group suffering mTBI that had occurred 2 years prior to inclusion in the study.
Comparison of the baseline activity (upper row) with the post HBOT activity (middle row) and the CBF changes (bottom row) demonstrated significant improvements after HBOT in bilateral orbito-frontal and lateral-parietal regions and left ventro-lateral-frontal region correlating to BAs 45, 47, and 11.
Figure 9. Volume rendered Brain SPECT perfusion…
Figure 9. Volume rendered Brain SPECT perfusion maps of Example 2.
The results are of a patient in the treated group, suffering mTBI that had occurred 1 year prior to inclusion in the study. Comparison of the baseline activity (upper row) with the post-HBOT activity (middle row) and the CBF changes (bottom row) demonstrated significant improvements after HBOT in bilateral orbito-frontal regions, the medial aspect of the temporal lobes and the temporal poles that correspond to BAs 11, 25, 27, 28 and 38.
Figure 10. Volume rendered Brain SPECT images…
Figure 10. Volume rendered Brain SPECT images representing the percentage of CBF change post control period and post HBOT of the cross group patient described in example 3.
As can be clearly seen, the improvement in perfusion following HBOT was significantly high in most areas of the brain as opposed to insignificant change following the control period. The most significant improvements were in both frontal and temporal lobes and right parietal lobe.
Figure 11. Volume rendered Brain SPECT images…
Figure 11. Volume rendered Brain SPECT images representing the CBF change (in percentage) post control period and post HBOT of the cross group patient described in example 4.
The overall changes after the control period and the HBOT show normal variations of brain perfusion in the -10% to +10% range (from green to orange colors). However, close inspection reveals localized significant changes (white circles) in the in the right temporal pole and in the right dorso-lateral area. These changes in perfusion are in good agreement with the improvements in the cognitive indices as the SPECT detected changes correspond to Brodmann areas 45–46, 11, 38 and 39.

References

    1. Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, et al. (2011) Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. Morbidity and mortality weekly report Surveillance summaries 60: 1–32.
    1. Faul M XL, Wald MM, Coronado VG (2010) Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.
    1. Efrati S, Fishlev G, Bechor Y, Volkov O, Bergan J, et al. (2013) Hyperbaric oxygen induces late neuroplasticity in post stroke patients - randomized, prospective trial. PloS one 8: e53716.
    1. Cao H, Ju K, Zhong L, Meng T (2013) Efficacy of hyperbaric oxygen treatment for depression in the convalescent stage following cerebral hemorrhage. Experimental and therapeutic medicine 5: 1609–1612.
    1. Bazarian JJ, Wong T, Harris M, Leahey N, Mookerjee S, et al. (1999) Epidemiology and predictors of post-concussive syndrome after minor head injury in an emergency population. Brain injury: [BI] 13: 173–189.
    1. McCauley SR, Boake C, Pedroza C, Brown SA, Levin HS, et al. (2005) Postconcussional disorder: Are the DSM-IV criteria an improvement over the ICD-10? The Journal of nervous and mental disease 193: 540–550.
    1. Kashluba S, Paniak C, Blake T, Reynolds S, Toller-Lobe G, et al. (2004) A longitudinal, controlled study of patient complaints following treated mild traumatic brain injury. Archives of clinical neuropsychology: the official journal of the National Academy of Neuropsychologists 19: 805–816.
    1. Iverson GL (2005) Outcome from mild traumatic brain injury. Current opinion in psychiatry 18: 301–317.
    1. Bohnen N, Jolles J, Twijnstra A (1992) Neuropsychological deficits in patients with persistent symptoms six months after mild head injury. Neurosurgery 30: : 692–695; discussion 695–696.
    1. Binder LM (1997) A review of mild head trauma. Part II: Clinical implications. Journal of clinical and experimental neuropsychology 19: 432–457.
    1. Bazarian JJ, McClung J, Shah MN, Cheng YT, Flesher W, et al. (2005) Mild traumatic brain injury in the United States, 1998—2000. Brain injury: [BI] 19: 85–91.
    1. Kushner D (1998) Mild traumatic brain injury: toward understanding manifestations and treatment. Archives of internal medicine 158: 1617–1624.
    1. Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain: a journal of neurology 126: 515–530.
    1. Kochanek PM, Clark R.S.B., & Jenkins L.W. (2007) TBI:Pathobiology. In: Zasler ND, Katz, D.I, Zafonte, R.D., editor. Brain injury medicine. NY: Demos medical publishing. pp. 81–92.
    1. Levin HS, Mattis S, Ruff RM, Eisenberg HM, Marshall LF, et al. (1987) Neurobehavioral outcome following minor head injury: a three-center study. Journal of neurosurgery 66: 234–243.
    1. Sohlberg MM, Mateer CA (2001) Cognitive Rehabilitation: An Integrative Neuropsychological Approach. NY: The Guilford Press.
    1. Niklas A, Brock D, Schober R, Schulz A, Schneider D (2004) Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation—HBO effects on brain edema and necrosis after severe brain trauma in rabbits. J Neurol Sci 219: 77–82.
    1. Reinert M, Barth A, Rothen HU, Schaller B, Takala J, et al.. (2003) Effects of cerebral perfusion pressure and increased fraction of inspired oxygen on brain tissue oxygen, lactate and glucose in patients with severe head injury. Acta Neurochir (Wien) 145: : 341–349; discussion 349–35.
    1. Calvert JW, Cahill J, Zhang JH (2007) Hyperbaric oxygen and cerebral physiology. Neurol Res 29: 132–141.
    1. Neubauer RA, James P (1998) Cerebral oxygenation and the recoverable brain. Neurol Res 20 Suppl 1S33–36.
    1. Golden ZL, Neubauer R, Golden CJ, Greene L, Marsh J, et al. (2002) Improvement in cerebral metabolism in chronic brain injury after hyperbaric oxygen therapy. Int J Neurosci 112: 119–131.
    1. Zhang JH, Lo T, Mychaskiw G, Colohan A (2005) Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology 12: 63–77.
    1. Gunther A, Kuppers-Tiedt L, Schneider PM, Kunert I, Berrouschot J, et al. (2005) Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischaemia. Eur J Neurosci 21: 3189–3194.
    1. Yang YJ, Wang XL, Yu XH, Wang X, Xie M, et al. (2008) Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemic brain damage in neonatal rats. Undersea Hyperb Med 35: 113–129.
    1. Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, et al. (2010) A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. Journal of neurosurgery 112: 1080–1094.
    1. Palzur E, Vlodavsky E, Mulla H, Arieli R, Feinsod M, et al. (2004) Hyperbaric oxygen therapy for reduction of secondary brain damage in head injury: an animal model of brain contusion. Journal of neurotrauma 21: 41–48.
    1. Harch PG, Kriedt C, Van Meter KW, Sutherland RJ (2007) Hyperbaric oxygen therapy improves spatial learning and memory in a rat model of chronic traumatic brain injury. Brain research 1174: 120–129.
    1. Vlodavsky E, Palzur E, Soustiel JF (2006) Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathology and applied neurobiology 32: 40–50.
    1. Palzur E, Zaaroor M, Vlodavsky E, Milman F, Soustiel JF (2008) Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain research 1221: 126–133.
    1. Daugherty WP, Levasseur JE, Sun D, Rockswold GL, Bullock MR (2004) Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. Journal of neurosurgery 101: 499–504.
    1. Lin JW, Tsai JT, Lee LM, Lin CM, Hung CC, et al... (2008) Effect of hyperbaric oxygen on patients with traumatic brain injury. Acta neurochirurgica Supplement 101: 145–149.
    1. Golden Z, Golden CJ, Neubauer RA (2006) Improving neuropsychological function after chronic brain injury with hyperbaric oxygen. Disability and rehabilitation 28: 1379–1386.
    1. Rockswold GL, Ford SE, Anderson DC, Bergman TA, Sherman RE (1992) Results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. Journal of neurosurgery 76: 929–934.
    1. Harch PG, Andrews SR, Fogarty EF, Amen D, Pezzullo JC, et al. (2012) A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder. Journal of neurotrauma 29: 168–185.
    1. Cifu DX, Hart BB, West SL, Walker W, Carne W (2013) The Effect of Hyperbaric Oxygen on Persistent Postconcussion Symptoms. The Journal of head trauma rehabilitation.
    1. Wolf G, Cifu D, Baugh L, Carne W, Profenna L (2012) The effect of hyperbaric oxygen on symptoms after mild traumatic brain injury. Journal of neurotrauma 29: 2606–2612.
    1. Collet JP, Vanasse M, Marois P, Amar M, Goldberg J, et al. (2001) Hyperbaric oxygen for children with cerebral palsy: a randomised multicentre trial. HBO-CP Research Group. Lancet 357: 582–586.
    1. James PB (2001) Hyperbaric oxygenation for cerebral palsy. Lancet 357: 2052–2053.
    1. Doniger GM (2007) Mindstreams Computerized Cognitive Tests: Test Descriptions. Available: . Accessed 05 July 2013.
    1. Doniger GM (2012) Guide to MindStreams Normative Data. Available: . Accessed 05 July 2013.
    1. Doniger GM, Simon ES (2007) Construct Validity of Mindstreams: Comparison with Paper-Based Tests. Available: . Accessed 05 July 2013.
    1. Doniger GM (2007) Mindstreams Validity & Reliability. Available: . Accessed 05 July 2013.
    1. Rabin R, de Charro F (2001) EQ-5D: a measure of health status from the EuroQol Group. Annals of medicine 33: 337–343.
    1. Jaszczak RJ, Chang LT, Stein NA, Moore FE (1979) Whole-body single-photon emission computed tomography using dual, large-field-of-view scintillation cameras. Physics in medicine and biology 24: 1123–1143.
    1. Cohen J (1988) Statistical power analysis for the behavioral sciences Mahwah, NJ: Lawrence Erlbaum.
    1. Lin AP, Liao HJ, Merugumala SK, Prabhu SP, Meehan WP 3rd, et al. (2012) Metabolic imaging of mild traumatic brain injury. Brain imaging and behavior 6: 208–223.
    1. Hattori N, Swan M, Stobbe GA, Uomoto JM, Minoshima S, et al. (2009) Differential SPECT activation patterns associated with PASAT performance may indicate frontocerebellar functional dissociation in chronic mild traumatic brain injury. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 50: 1054–1061.
    1. Belanger HG, Vanderploeg RD, Curtiss G, Warden DL (2007) Recent neuroimaging techniques in mild traumatic brain injury. The Journal of neuropsychiatry and clinical neurosciences 19: 5–20.
    1. Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiology of learning and memory 82: 171–177.
    1. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253: 1380–1386.
    1. Scoville WB, Correll RE (1973) Memory and the temporal lobe. A review for clinicians. Acta neurochirurgica 28: 251–258.
    1. Stuss DT, Alexander MP (2000) Executive functions and the frontal lobes: a conceptual view. Psychological research 63: 289–298.
    1. Stuss DT (2011) Functions of the frontal lobes: relation to executive functions. Journal of the International Neuropsychological Society: JINS 17: 759–765.
    1. Insel TR (2010) Faulty circuits. Scientific American 302: 44–51.
    1. Posner MI, Rothbart MK, Sheese BE, Tang Y (2007) The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, affective & behavioral neuroscience 7: 391–395.
    1. Catafau AM, Parellada E, Lomena F, Bernardo M, Setoain J, et al. (1998) Role of the cingulate gyrus during the Wisconsin Card Sorting Test: a single photon emission computed tomography study in normal volunteers. Psychiatry research 83: 67–74.
    1. Kan EM, Ling EA, Lu J (2012) Microenvironment changes in mild traumatic brain injury. Brain research bulletin 87: 359–372.
    1. Neubauer RA, James P (1998) Cerebral oxygenation and the recoverable brain. Neurological research 20 Suppl 1S33–36.
    1. Golden ZL, Neubauer R, Golden CJ, Greene L, Marsh J, et al. (2002) Improvement in cerebral metabolism in chronic brain injury after hyperbaric oxygen therapy. The International journal of neuroscience 112: 119–131.
    1. Zhang JH, Lo T, Mychaskiw G, Colohan A (2005) Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology: the official journal of the International Society for Pathophysiology/ISP 12: 63–77.
    1. Chang CC, Lee YC, Chang WN, Chen SS, Lui CC, et al. (2009) Damage of white matter tract correlated with neuropsychological deficits in carbon monoxide intoxication after hyperbaric oxygen therapy. Journal of neurotrauma 26: 1263–1270.
    1. Lo C, Shifteh K, Gold T, Bello JA, Lipton ML (2009) Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. Journal of computer assisted tomography 33: 293–297.
    1. Lo CP, Chen SY, Chou MC, Wang CY, Lee KW, et al. (2007) Diffusion-tensor MR imaging for evaluation of the efficacy of hyperbaric oxygen therapy in patients with delayed neuropsychiatric syndrome caused by carbon monoxide inhalation. European journal of neurology: the official journal of the European Federation of Neurological Societies 14: 777–782.
    1. Chen Z, Ni P, Xiao H, Chen J, Qian G, et al. (2008) Changes in brain function and anatomical structure following treatment of hyperbaric oxygen for visual pathway abnormalities in 16 cases. Neural Regeneration Research 3: 117–123.
    1. Vilela DS, Lazarini PR, Da Silva CF (2008) Effects of hyperbaric oxygen therapy on facial nerve regeneration. Acta oto-laryngologica 128: 1048–1052.
    1. Neubauer RA, Walker M (2000) Hyperbaric Oxygen Therapy. Garden City Park, NY: Avery Publishing Group.
    1. Kuffler DP (2011) The role of hyperbaric oxygen therapy in enhancing the rate of wound healing with a focus on axon regeneration. Puerto Rico health sciences journal 30: 35–42.
    1. Rockswold SB, Rockswold GL, Defillo A (2007) Hyperbaric oxygen in traumatic brain injury. Neurological research 29: 162–172.
    1. Zhou Z, Daugherty WP, Sun D, Levasseur JE, Altememi N, et al. (2007) Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. Journal of neurosurgery 106: 687–694.
    1. Calvert JW, Cahill J, Zhang JH (2007) Hyperbaric oxygen and cerebral physiology. Neurological research 29: 132–141.
    1. Anderson DC, Bottini AG, Jagiella WM, Westphal B, Ford S, et al. (1991) A pilot study of hyperbaric oxygen in the treatment of human stroke. Stroke; a journal of cerebral circulation 22: 1137–1142.
    1. Nighoghossian N, Trouillas P, Adeleine P, Salord F (1995) Hyperbaric oxygen in the treatment of acute ischemic stroke. A double-blind pilot study. Stroke; a journal of cerebral circulation 26: 1369–1372.
    1. Rusyniak DE, Kirk MA, May JD, Kao LW, Brizendine EJ, et al. (2003) Hyperbaric oxygen therapy in acute ischemic stroke: results of the Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study. Stroke; a journal of cerebral circulation 34: 571–574.
    1. Vila JF, Balcarce PE, Abiusi GR, Dominguez RO, Pisarello JB (2005) Improvement in motor and cognitive impairment after hyperbaric oxygen therapy in a selected group of patients with cerebrovascular disease: a prospective single-blind controlled trial. Undersea & hyperbaric medicine: journal of the Undersea and Hyperbaric Medical Society, Inc 32: 341–349.
    1. Imai K, Mori T, Izumoto H, Takabatake N, Kunieda T, et al.. (2006) Hyperbaric oxygen combined with intravenous edaravone for treatment of acute embolic stroke: a pilot clinical trial. Neurologia medico-chirurgica 46: : 373–378; discussion 378.
    1. Glisky EL (2004) Disorders of memory. In: Ponsford J, editor. Cognitive and Behavioral Reabilitation: From Neurobiology to Clinical Practice. New York: The Guilford Press. pp. 100–129.
    1. de Frias CM, Dixon RA, Backman L (2003) Use of Memory Compensation Strategies Is Related to Psychosocial and Health Indicators. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 58: P12–P22.
    1. Golding FC, Griffiths P, Hempleman HV, Paton WD, Walder DN (1960) Decompression sickness during construction of the Dartford Tunnel. British journal of industrial medicine 17: 167–180.
    1. Austin D (1998) Gammow bag for acute mountain sickness. Lancet 351: 1815.
    1. Mychaskiw G, 2nd, Stephens PL (2013) Hyperbaric Oxygen, Mild Traumatic Brain Injury and Study Design: An Elusive Target. Journal of neurotrauma.
    1. Goldbart AD, Cohen AD, Weitzman D, Tal A (2007) Effects of rehabilitation winter camps at the Dead Sea on European cystic fibrosis patients. The Israel Medical Association journal: IMAJ 9: 806–809.
    1. Kramer MR, Springer C, Berkman N, Glazer M, Bublil M, et al. (1998) Rehabilitation of hypoxemic patients with COPD at low altitude at the Dead Sea, the lowest place on earth. Chest 113: 571–575.
    1. Falk B, Nini A, Zigel L, Yahav Y, Aviram M, et al. (2006) Effect of low altitude at the Dead Sea on exercise capacity and cardiopulmonary response to exercise in cystic fibrosis patients with moderate to severe lung disease. Pediatric pulmonology 41: 234–241.
    1. Abinader EG, Sharif D, Rauchfleich S, Pinzur S, Tanchilevitz A (1999) Effect of low altitude (Dead Sea location) on exercise performance and wall motion in patients with coronary artery disease. The American journal of cardiology 83: : 250–251, A255.
    1. Gabizon I, Shiyovich A, Novack V, Khalameizer V, Yosefy C, et al. (2011) Impact of descent and stay at a Dead Sea resort (low altitude) on patients with systolic congestive heart failure and an implantable cardioverter defibrillator. The Israel Medical Association journal: IMAJ 13: 402–407.
    1. Mychaskiw Ii G, Stephens P (2012) Hyperbaric oxygen, mild traumatic brain injury and study design: an elusive target. Journal of neurotrauma.
    1. Potter S, Leigh E, Wade D, Fleminger S (2006) The Rivermead Post Concussion Symptoms Questionnaire: a confirmatory factor analysis. Journal of neurology 253: 1603–1614.

Source: PubMed

3
Abonner