Postprandial lipoproteins and cardiovascular disease risk in diabetes mellitus

Byambaa Enkhmaa, Zeynep Ozturk, Erdembileg Anuurad, Lars Berglund, Byambaa Enkhmaa, Zeynep Ozturk, Erdembileg Anuurad, Lars Berglund

Abstract

Diabetes mellitus is associated with increased risk for atherosclerotic cardiovascular disease (CVD). Recent prospective studies in healthy individuals suggest that the postprandial triglyceride (TG) level is a better independent predictor for assessing future CVD events than fasting TG levels. In contrast, results have been more controversial among diabetic patients, as some studies report a positive association between postprandial TG and CVD. This raises the issue of to what extent postprandial TG levels may be of predictive value in the diabetic population. One possibility impacting on the predictive power of postprandial TG in identifying CVD risk may be the presence of other risk factors, including alterations in lipid and lipoprotein metabolism, which could make it more difficult to identify the impact of postprandial lipemia on cardiovascular risk. The findings provide a challenge to develop a better approach to assess the impact of postprandial lipemia on CVD risk under diabetic conditions.

Figures

Fig. 1
Fig. 1
Postprandial lipoprotein metabolism in diabetes. Insulin resistance plays a central role in the development of diabetic dyslipidemia. Under normal physiologic conditions, insulin suppresses lipolysis from adipose tissue and hepatic very low density lipoprotein (VLDL) production. However, hyperinsulinemia in the postprandial state and insulin resistance in type 2 diabetes initiates a dyslipidemic triad of high triglyceride, low high-density lipoprotein (HDL) cholesterol and high small, dense low-density lipoprotein (LDL) levels. Prolonged residence of triglyceride-rich lipoproteins (TRLs) in the circulation promotes the transfer of HDL or LDL cholesteryl esters for triglyceride, mediated by cholesteryl ester transfer protein (CETP). LDL can undergo hydrolysis by hepatic lipase (HL) or lipoprotein lipase (LPL), which hydrolyzes triglycerides from the core of LDL, resulting in production of smaller, denser particles. Moreover, triglyceride-enriched HDL particles become smaller, denser (HDL 3b and 3c) and are more rapidly catabolized, contributing to low plasma HDL in insulin resistance and type 2 diabetes. apo apolipoprotein; CM chylomicron; FFA free fatty acid; RLP remnant lipoprotein

References

    1. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–1431. doi: 10.2337/diacare.21.9.1414.
    1. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–234. doi: 10.1056/NEJM199807233390404.
    1. Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–1146.
    1. Rivellese AA, De Natale C, Di Marino L, et al. Exogenous and endogenous postprandial lipid abnormalities in type 2 diabetic patients with optimal blood glucose control and optimal fasting triglyceride levels. J Clin Endocrinol Metab. 2004;89:2153–2159. doi: 10.1210/jc.2003-031764.
    1. Syvanne M, Hilden H, Taskinen MR. Abnormal metabolism of postprandial lipoproteins in patients with non-insulin-dependent diabetes mellitus is not related to coronary artery disease. J Lipid Res. 1994;35:15–26.
    1. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–219. doi: 10.1097/00043798-199604000-00014.
    1. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10, 158 incident cases among 262, 525 participants in 29 Western prospective studies. Circulation. 2007;115:450–458. doi: 10.1161/CIRCULATIONAHA.106.637793.
    1. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118:2047–2056. doi: 10.1161/CIRCULATIONAHA.108.804146.
    1. Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, et al. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA. 2008;300:2142–2152. doi: 10.1001/jama.2008.621.
    1. Delawi D, Meijssen S, Castro Cabezas M. Intra-individual variations of fasting plasma lipids, apolipoproteins and postprandial lipemia in familial combined hyperlipidemia compared to controls. Clin Chim Acta. 2003;328:139–145. doi: 10.1016/S0009-8981(02)00420-5.
    1. Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298:309–316. doi: 10.1001/jama.298.3.309.
    1. Nordestgaard BG, Benn M, Schnohr P, et al. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298:299–308. doi: 10.1001/jama.298.3.299.
    1. Nakajima K, Nakano T, Moon HD, et al. The correlation between TG vs remnant lipoproteins in the fasting and postprandial plasma of 23 volunteers. Clin Chim Acta. 2009;404:124–127. doi: 10.1016/j.cca.2009.03.051.
    1. Williams CM, Moore F, Morgan L, et al. Effects of n-3 fatty acids on postprandial triacylglycerol and hormone concentrations in normal subjects. Br J Nutr. 1992;68:655–666. doi: 10.1079/BJN19920123.
    1. Schaefer EJ, Audelin MC, McNamara JR, et al. Comparison of fasting and postprandial plasma lipoproteins in subjects with and without coronary heart disease. Am J Cardiol. 2001;88:1129–1133. doi: 10.1016/S0002-9149(01)02047-1.
    1. Cohn JS, McNamara JR, Cohn SD, et al. Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res. 1988;29:469–479.
    1. Cohen JC, Noakes TD, Benade AJ. Serum triglyceride responses to fatty meals: effects of meal fat content. Am J Clin Nutr. 1988;47:825–827.
    1. Dubois C, Armand M, Azais-Braesco V, et al. Effects of moderate amounts of emulsified dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr. 1994;60:374–382.
    1. Murphy MC, Isherwood SG, Sethi S, et al. Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase? Eur J Clin Nutr. 1995;49:578–588.
    1. Dubois C, Beaumier G, Juhel C, et al. Effects of graded amounts (0–50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr. 1998;67:31–38.
    1. Mortensen LS, Hartvigsen ML, Brader LJ, et al. Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein. Am J Clin Nutr. 2009;90:41–48. doi: 10.3945/ajcn.2008.27281.
    1. Tinker LF, Parks EJ, Behr SR, et al. (n-3) fatty acid supplementation in moderately hypertriglyceridemic adults changes postprandial lipid and apolipoprotein B responses to a standardized test meal. J Nutr. 1999;129:1126–1134.
    1. Cohen JC, Berger GM. Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res. 1990;31:597–602.
    1. van Tol A, van der Gaag MS, Scheek LM, et al. Changes in postprandial lipoproteins of low and high density caused by moderate alcohol consumption with dinner. Atherosclerosis. 1998;141(Suppl 1):S101–S103.
    1. van Wijk JP, Cabezas MC, Halkes CJ, et al. Effects of different nutrient intakes on daytime triacylglycerolemia in healthy, normolipemic, free-living men. Am J Clin Nutr. 2001;74:171–178.
    1. van Oostrom AJ. Castro Cabezas M, Ribalta J, et al.: Diurnal triglyceride profiles in healthy normolipidemic male subjects are associated to insulin sensitivity, body composition and diet. Eur J Clin Invest. 2000;30:964–971. doi: 10.1046/j.1365-2362.2000.00732.x.
    1. Castro Cabezas M, Halkes CJ, Meijssen S, et al. Diurnal triglyceride profiles: a novel approach to study triglyceride changes. Atherosclerosis. 2001;155:219–228. doi: 10.1016/S0021-9150(00)00554-2.
    1. van Oostrom AJ, Alipour A, Sijmonsma TP, et al. Comparison of different methods to investigate postprandial lipaemia. Neth J Med. 2009;67:13–20.
    1. Mora S, Rifai N, Buring JE, et al. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation. 2008;118:993–1001. doi: 10.1161/CIRCULATIONAHA.108.777334.
    1. Karpe F, Steiner G, Uffelman K, et al. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis. 1994;106:83–97. doi: 10.1016/0021-9150(94)90085-X.
    1. McNamara JR, Shah PK, Nakajima K, et al. Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: results from the Framingham Heart Study. Atherosclerosis. 2001;154:229–236. doi: 10.1016/S0021-9150(00)00484-6.
    1. Mero N, Malmstrom R, Steiner G, et al. Postprandial metabolism of apolipoprotein B-48– and B-100–containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease. Atherosclerosis. 2000;150:167–177. doi: 10.1016/S0021-9150(99)00364-0.
    1. Proctor SD, Vine DF, Mamo JC. Arterial retention of apolipoprotein B(48)- and B(100)-containing lipoproteins in atherogenesis. Curr Opin Lipidol. 2002;13:461–470. doi: 10.1097/00041433-200210000-00001.
    1. Vine DF, Takechi R, Russell JC, et al. Impaired postprandial apolipoprotein-B48 metabolism in the obese, insulin-resistant JCR:LA-cp rat: increased atherogenicity for the metabolic syndrome. Atherosclerosis. 2007;190:282–290. doi: 10.1016/j.atherosclerosis.2006.03.013.
    1. Battula SB, Fitzsimons O, Moreno S, et al. Postprandial apolipoprotein B48-and B100-containing lipoproteins in type 2 diabetes: do statins have a specific effect on triglyceride metabolism? Metabolism. 2000;49:1049–1054. doi: 10.1053/meta.2000.7744.
    1. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care. 2004;27:1496–1504. doi: 10.2337/diacare.27.6.1496.
    1. Pastromas S, Terzi AB, Tousoulis D, et al. Postprandial lipemia: an under-recognized atherogenic factor in patients with diabetes mellitus. Int J Cardiol. 2008;126:3–12. doi: 10.1016/j.ijcard.2007.04.172.
    1. Adiels M, Olofsson SO, Taskinen MR, et al. Diabetic dyslipidaemia. Curr Opin Lipidol. 2006;17:238–246. doi: 10.1097/01.mol.0000226115.97436.c0.
    1. Gray RS, Robbins DC, Wang W, et al. Relation of LDL size to the insulin resistance syndrome and coronary heart disease in American Indians. The Strong Heart Study. Arterioscler Thromb Vasc Biol. 1997;17:2713–2720.
    1. Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res. 1999;40:1–16.
    1. Teno S, Uto Y, Nagashima H, et al. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diabetes Care. 2000;23:1401–1406. doi: 10.2337/diacare.23.9.1401.
    1. Carstensen M, Thomsen C, Gotzsche O, et al. Differential postprandial lipoprotein responses in type 2 diabetic men with and without clinical evidence of a former myocardial infarction. Rev Diabet Stud. 2004;1:175–184. doi: 10.1900/RDS.2004.1.175.
    1. Reyes-Soffer G, Holleran S, Karmally W, et al. Measures of postprandial lipoproteins are not associated with coronary artery disease in patients with type 2 diabetes mellitus. J Lipid Res. 2009;50:1901–1909. doi: 10.1194/jlr.M900092-JLR200.
    1. Syvanne M, Talmud PJ, Humphries SE, et al. Determinants of postprandial lipemia in men with coronary artery disease and low levels of HDL cholesterol. J Lipid Res. 1997;38:1463–1472.
    1. Lopes-Virella MF, Klein RL, Virella G. Modification of lipoproteins in diabetes. Diabetes Metab Rev. 1996;12:69–90. doi: 10.1002/(SICI)1099-0895(199603)12:1<69::AID-DMR156>;2-B.
    1. Bucala R, Makita Z, Koschinsky T, et al. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci U S A. 1993;90:6434–6438. doi: 10.1073/pnas.90.14.6434.
    1. Hunt JV, Smith CC, Wolff SP. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes. 1990;39:1420–1424. doi: 10.2337/diabetes.39.11.1420.
    1. Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990;173:932–939. doi: 10.1016/S0006-291X(05)80875-7.
    1. Tentolouris N, Stylianou A, Lourida E, et al. High postprandial triglyceridemia in patients with type 2 diabetes and microalbuminuria. J Lipid Res. 2007;48:218–225. doi: 10.1194/jlr.M600367-JLR200.
    1. Hirano T, Oi K, Sakai S, et al. High prevalence of small dense LDL in diabetic nephropathy is not directly associated with kidney damage: a possible role of postprandial lipemia. Atherosclerosis. 1998;141:77–85. doi: 10.1016/S0021-9150(98)00150-6.
    1. Hayashi T, Hirano T, Taira T, et al. Remarkable increase of apolipoprotein B48 level in diabetic patients with end-stage renal disease. Atherosclerosis. 2008;197:154–158. doi: 10.1016/j.atherosclerosis.2007.03.015.
    1. Yamamoto T, Hirano T, Mori Y, et al. Significant increase of apolipoprotein B48 levels by a standard test meal in type 2 diabetic patients with nephropathy. J Atheroscler Thromb. 2008;15:199–205.
    1. Turner RC, Millns H, Holman RR. Coronary heart disease and risk factors in NIDDM—experience from the United Kingdom Prospective Diabetes Study. Diabetologia. 1997;40(Suppl 2):S121–S122. doi: 10.1007/s001250051424.

Source: PubMed

3
Abonner