The Effects of Passive Simulated Jogging on Parameters of Explosive Handgrip in Nondiabetics and Type 2 Diabetics: A Single Arm Study

Jose A Adams, Jose R Lopez, Veronica Banderas, Marvin A Sackner, Jose A Adams, Jose R Lopez, Veronica Banderas, Marvin A Sackner

Abstract

Aims: Type 2 diabetes (T2D) is associated with sarcopenia and decreased muscle strength. Explosive and isometric voluntary handgrip strengths (EHGS and HGS) are frequently utilized methods to ascertain health status and a marker of overall muscle strength. We have previously shown that a portable, motorized device, which produces effortless, rapid stepping in place (passive simulated jogging device (JD)), improves glucose homeostasis. This study quantitatively evaluated the effects of JD in modifying parameters of the modified EHGS curve in T2D and nondiabetic (ND) subjects.

Methods: Twenty-one adult participants (11 ND and 10 T2D) (mean age: 41.3 ± 13.5 yr) performed a modified explosive handgrip strength (EHGS) test on study day 1 followed by daily use of JD (90 min per day) for 7 days. The EHGS was repeated after 3 and 7 days' use of JD (JD3 and JD7) and 3 days after completion of JD (Carryover). EHGS curves were analyzed for the following: maximal peak force value (MAX); rate of force development at 25%,75%, and 90% of maximum force; and maximum force (RFD25%, RFD75%, RFD90%, and RFDmax); time to 90%, 75%, and 25% of maximal force (t 90, t 75, t 25) and time to maximal force (t max); and the integrated area under the curve for force vs. time until task failure (iAUCTF); and fatigue resistance times at 50% and 25% of maximal force (FR50 and FR25) and fatigue resistance time to task failure (FRTF).

Results: At baseline, T2D had lower MAX compared to ND. There were no differences at baseline for force development time or fatigue resistance time between T2D and ND. In both T2D and ND, 7 days of JD increased FR25 and FRTF and iAUCTF compared to baseline.

Conclusion: JD for at least 7 days prior to EHGS increased time to task failure (fatigue resistance) and iAUCTF of the force-time curve. JD is a reasonable intervention to decrease sedentary behavior and improve muscle fatigue resistance under various clinical and nonclinical scenarios. This trial is registered with NCT03550105 (08-06-2018).

Conflict of interest statement

JAA performs research for Sackner Wellness Products LLC and is a US copatent holder for Gentle Jogger, the Passive Simulated Jogging Device. JRL is a research scientist consultant to Sackner Wellness Products LLC. VB is a part-time study coordinator and employee of Sackner Wellness Products LLC. MAS is the president of Sackner Wellness Products LLC and is a US copatent holder for Gentle Jogger Passive Simulated Jogging Device (deceased).

Copyright © 2022 Jose A. Adams et al.

Figures

Figure 1
Figure 1
Study protocol. Participants were asked to fast for 8 hr prior to the initial baseline modified explosive handgrip strength (EHGS) test. On the day of enrollment, participants were familiarized with the modified EHGS test by carrying out two practice sessions. During the visit, participants were instructed on the use of the jogging device (JD). Participants were asked to use JD a minimum of 3 times for 30 min per day for 7 days (JD1-7). On the evening of day 7, participants were asked to stop the use of JD and fast for 8 hrs. On day 10 (3 days after discontinuation of JD), a repeat EHGS was performed (Carryover). On each visit day, participants carried out a practice modified EHGS test, followed 1 hr later by duplicate EHGS test measurements.
Figure 2
Figure 2
Maximum force (MAX) and integrated area under the force vs. time curve until task failure (iAUCTF) in type 2 diabetics (T2D) and nondiabetics (ND) at baseline (BL) after 3 and 7 days of jogging device (JD3 and JD7) and 3 days after discontinuation of JD (Carryover). (a) Maximum force (MAX) at baseline in type 2 diabetics (T2D) and nondiabetics (ND). (b) Integrated area under the force vs. time curve until task failure (iAUCTF) for all participants (T2D and ND). (c) iAUCTF for T2D individual participants. (d) iAUCTF for ND individual participants. Group means with 95% confidence intervals; ∗∗p < 0.01.

References

    1. Zheng Y., Ley S. H., Hu F. B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews. Endocrinology . 2018;14(2):88–98. doi: 10.1038/nrendo.2017.151.
    1. Seshasai S. R. K., Kaptoge S., Thompson A. Diabetes mellitus, fasting glucose, and risk of cause-specific death. The New England Journal of Medicine . 2011;364(9):829–841. doi: 10.1056/NEJMoa1008862.
    1. Yu M., Zhan X., Yang Z. Measuring the global, regional, and national burden of type 2 diabetes and the attributable risk factors in all 194 countries. Journal of Diabetes . 2021;13(8):613–639. doi: 10.1111/1753-0407.13159.
    1. D'Souza D. M., Al-Sajee D., Hawke T. J. Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Frontiers in Physiology . 2013;4:p. 379. doi: 10.3389/fphys.2013.00379.
    1. Park S. W., Goodpaster B. H., Strotmeyer E. S., et al. Decreased muscle strength and quality in older adults with type 2 Diabetes. Diabetes . 2006;55(6):1813–1818. doi: 10.2337/db05-1183.
    1. Bauer J., Morley J. E., Schols A., et al. Sarcopenia: a time for action. An SCWD position paper. Journal of Cachexia, Sarcopenia and Muscle . 2019;10(5):956–961. doi: 10.1002/jcsm.12483.
    1. Cruz-Jentoft A. J., Bahat G., Bauer J., et al. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing . 2019;48(4):p. 601. doi: 10.1093/ageing/afz046.
    1. Tsekoura M., Kastrinis A., Katsoulaki M. Sarcopenia and its impact on quality of life. Advances in Experimental Medicine and Biology . 2017;987:213–218. doi: 10.1007/978-3-319-57379-3_19.
    1. Bischoff-Ferrari H. A., Orav J. E., Kanis J. A. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporosis International . 2015;26(12):2793–2802. doi: 10.1007/s00198-015-3194-y.
    1. Schaap L. A., van Schoor N. M., Lips P., Visser M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the Longitudinal Aging Study Amsterdam. The journals of gerontology Series A, Biological sciences and medical sciences . 2018;73(9):1199–1204. doi: 10.1093/gerona/glx245.
    1. Malmstrom T. K., Miller D. K., Simonsick E. M. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. Journal of Cachexia, Sarcopenia and Muscle . 2016;7(1):28–36. doi: 10.1002/jcsm.12048.
    1. Mesinovic J., Zengin A., De Courten B., Ebeling P. R., Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes, metabolic syndrome and obesity : targets and therapy . 2019;12:1057–1072. doi: 10.2147/DMSO.S186600.
    1. Anagnostis P., Gkekas N. K., Achilla C. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: a systematic review and meta-analysis. Calcified Tissue International . 2020;107(5):453–463. doi: 10.1007/s00223-020-00742-y.
    1. Izzo A., Massimino E., Riccardi G., Della Pepa G. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients . 2021;13(1):p. 183. doi: 10.3390/nu13010183.
    1. Adams J. A., Banderas V., Lopez J. R., Sackner M. A. Portable gentle jogger improves glycemic indices in type 2 diabetic and healthy subjects living at home: a pilot study. Journal of Diabetes Research . 2020;2020:9. doi: 10.1155/2020/8317973.8317973
    1. Adams J. A., Lopez J. R., Banderas V., Sackner M. A. A single arm trial using passive simulated jogging for blunting acute hyperglycemia. Scientific Reports . 2021;11(1) doi: 10.1038/s41598-021-85579-7.
    1. Bohannon R. W. Grip strength: an indispensable biomarker for older Adults. Clinical Interventions in Aging . 2019;14:1681–1691. doi: 10.2147/CIA.S194543.
    1. Massy-Westropp N. M., Gill T. K., Taylor A. W., Bohannon R. W., Hill C. L. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Research Notes . 2011;4(1):p. 127. doi: 10.1186/1756-0500-4-127.
    1. Carson R. G. Get a grip: individual variations in grip strength are a marker of brain health. Neurobiology of Aging . 2018;71:189–222. doi: 10.1016/j.neurobiolaging.2018.07.023.
    1. Bohannon R. W. Muscle strength. Current Opinion in Clinical Nutrition and Metabolic Care . 2015;18(5):465–470. doi: 10.1097/MCO.0000000000000202.
    1. Morikawa Y., Kawakami R., Horii M. Handgrip strength is an independent predictor of cardiovascular outcomes in diabetes mellitus. International Heart Journal . 2021;62(1):50–56.
    1. Kunutsor S. K., Isiozor N. M., Khan H., Laukkanen J. A. Handgrip strength-a risk indicator for type 2 diabetes: systematic review and meta-analysis of observational cohort studies. Diabetes/Metabolism Research and Reviews . 2021;37(2, article e3365) doi: 10.1002/dmrr.3365.
    1. Ikemoto Y., Demura S., Yamaji S. Relations between the inflection point on the force-time curve and force-time parameters during static explosive grip. Perceptual and Motor Skills . 2004;98:507–518. doi: 10.2466/pms.98.2.507-518.
    1. Maffiuletti N. A., Aagaard P., Blazevich A. J. Rate of force development: physiological and methodological considerations. European Journal of Applied Physiology . 2016;116(6):1091–1116. doi: 10.1007/s00421-016-3346-6.
    1. Borges L., Coqueiro M. H., Pereira R. Handgrip explosive force is correlated with mobility in the elderly women. Acta of Bioengineering and Biomechanics . 2015;17(3):145–149.
    1. Schettino L., Luz C. P., de Oliveira L. E., et al. Comparison of explosive force between young and elderly women: evidence of an earlier decline from explosive force. Age (Dordrecht, Netherlands) . 2014;36(2):893–898. doi: 10.1007/s11357-013-9612-1.
    1. Adams J. A., Patel S., Lopez J. R., Sackner M. A. The effects of passive simulated jogging on short-term heart rate variability in a heterogeneous group of human subjects. Journal of Sports Medicine . 2018;2018:9. doi: 10.1155/2018/4340925.4340925
    1. Sackner M. A., Patel S., Adams J. A. Changes of blood pressure following initiation of physical inactivity and after external addition of pulses to circulation. European Journal of Applied Physiology . 2019;119(1):201–211. doi: 10.1007/s00421-018-4016-7.
    1. Sackner M. A., Lopez J. R., Banderas V., Adams J. A. Can physical activity while sedentary produce health benefits? A single-arm randomized trial. Sports Med Open . 2020;6(1):p. 47. doi: 10.1186/s40798-020-00278-3.
    1. Craig C. L. International physical activity questionnaire: 12-country reliability and validity. Medicine and science in sports and exercise . 2003;35(8):1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Roberts H. C., Denison H. J., Martin H. J. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age and Ageing . 2011;40(4):423–429. doi: 10.1093/ageing/afr051.
    1. De Dobbeleer L., Beyer I., Njemini R. Force-time characteristics during sustained maximal handgrip effort according to age and clinical condition. Experimental Gerontology . 2017;98:192–198. doi: 10.1016/j.exger.2017.08.033.
    1. Watanabe K., Tsubota S., Chin G., Aoki M. Differences in parameters of the explosive grip force test between young and older women. The journals of gerontology Series A, Biological sciences and medical sciences . 2011;66A(5):554–558. doi: 10.1093/gerona/glr005.
    1. Demura S., Yamaji S., Nagasawa Y. Reliability and gender differences of static explosive grip parameters based on force-time curves. The Journal of Sports Medicine and Physical Fitness . 2003;43(1):28–35.
    1. Ikemoto Y., Demura S., Yamaji S., Minami M., Nakada M., Uchiyama M. Force-time parameters during explosive isometric grip correlate with muscle power. Sport Sciences for Health . 2007;2(2):64–70. doi: 10.1007/s11332-007-0041-3.
    1. Demura S., Yamaji S., Nagasawa Y. Force developmental phase and reliability in explosive and voluntary grip exertions. Perceptual and Motor Skills . 2001;92(3_supplement):1009–1021. doi: 10.2466/pms.2001.92.3c.1009.
    1. Brooks M. E., Dalal D. K., Nolan K. P. Are common language effect sizes easier to understand than traditional effect sizes? The Journal of Applied Psychology . 2014;99(2):332–340. doi: 10.1037/a0034745.
    1. Wang Y. C., Bohannon R. W., Li X. Hand-grip strength: normative reference values and equations for individuals 18 to 85 years of age residing in the United States. The Journal of Orthopaedic and Sports Physical Therapy . 2018;48(9):685–693. doi: 10.2519/jospt.2018.7851.
    1. Lindle R. S., Metter E. J., Lynch N. A. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. Journal of Applied Physiology . 1985;83(5):1581–1587. doi: 10.1152/jappl.1997.83.5.1581.
    1. Narici M. V., Bordini M., Cerretelli P. Effect of aging on human adductor pollicis muscle function. Journal of Applied Physiology . 1985;71(4):1277–1281. doi: 10.1152/jappl.1991.71.4.1277.
    1. Cetinus E., Buyukbese M. A., Uzel M. Hand grip strength in patients with type 2 diabetes mellitus. Diabetes Research and Clinical Practice . 2005;70(3):278–286. doi: 10.1016/j.diabres.2005.03.028.
    1. Wang Y., Lee D. C., Brellenthin A. G. Association of muscular strength and incidence of type 2 diabetes. Mayo Clinic Proceedings . 2019;94(4):643–651. doi: 10.1016/j.mayocp.2018.08.037.
    1. Karvonen-Gutierrez C. A., Peng Q., Peterson M. Low grip strength predicts incident diabetes among mid-life women: the Michigan Study of Women's Health Across the Nation. Age and Ageing . 2018;47(5):685–691. doi: 10.1093/ageing/afy067.
    1. Leong D. P., Teo K. K., Rangarajan S. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet . 2015;386(9990):266–273. doi: 10.1016/S0140-6736(14)62000-6.
    1. Giglio B. M., Mota J. F., Wall B. T., Pimentel G. D. Low handgrip strength is not associated with type 2 diabetes mellitus and hyperglycemia: a population-based study. Clin Nutrition Research . 2018;7(2):112–116. doi: 10.7762/cnr.2018.7.2.112.
    1. Orlando G., Balducci S., Bazzucchi I., Pugliese G., Sacchetti M. Muscle fatigability in type 2 diabetes. Diabetes/Metabolism Research and Reviews . 2017;33(1) doi: 10.1002/dmrr.2821.
    1. Kallman D. A., Plato C. C., Tobin J. D. The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. Journal of Gerontology . 1990;45(3):M82–M88. doi: 10.1093/geronj/45.3.m82.
    1. Gandevia S. C. Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews . 2001;81(4):1725–1789. doi: 10.1152/physrev.2001.81.4.1725.
    1. Allen D. G., Lamb G. D., Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiological Reviews . 2008;88(1):287–332. doi: 10.1152/physrev.00015.2007.
    1. Ament W., Verkerke G. J. Exercise and fatigue. Sports Medicine . 2009;39(5):389–422. doi: 10.2165/00007256-200939050-00005.
    1. Enoka R. M., Duchateau J. Muscle fatigue: what, why and how it influences muscle function. The Journal of Physiology . 2008;586(1):11–23. doi: 10.1113/jphysiol.2007.139477.
    1. Barbosa T. C., Machado A. C., Braz I. D., et al. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian journal of medicine & science in sports . 2015;25(3):356–364. doi: 10.1111/sms.12229.
    1. Angulo J., El Assar M., Alvarez-Bustos A. Physical activity and exercise: strategies to manage frailty. Redox Biology . 2020;35, article 101513 doi: 10.1016/j.redox.2020.101513.
    1. Tyagi O., Zhu Y., Johnson C. Neural signatures of handgrip fatigue in type 1 diabetic men and women. Frontiers in Human Neuroscience . 2020;14, article 564969 doi: 10.3389/fnhum.2020.564969.
    1. Orlando G., Sacchetti M., D'Errico V., et al. Muscle fatigability in patients with type 2 diabetes: relation with long-term complications. Diabetes/Metabolism Research and Reviews . 2020;36(2, article e3231) doi: 10.1002/dmrr.3231.
    1. Adams J. A., Moore J. E., Jr., Moreno M. R. Effects of periodic body acceleration on the in vivo vasoactive response to N-w-nitro–L-arginine and the in vitro nitric oxide production. Annals of Biomedical Engineering . 2003;31(11):1337–1346. doi: 10.1114/1.1623486.
    1. Adams J. A., Bassuk J., Wu D. Periodic acceleration: effects on vasoactive, fibrinolytic, and coagulation factors. Journal of Applied Physiology . 2005;98(3):1083–1090. doi: 10.1152/japplphysiol.00662.2004.
    1. Sackner M. A., Gummels E., Adams J. A. Effect of moderate-intensity exercise, whole-body periodic acceleration, and passive cycling on nitric oxide release into circulation. Chest . 2005;128(4):2794–2803. doi: 10.1378/chest.128.4.2794.
    1. Uryash A., Wu H., Bassuk J., Kurlansky P., Sackner M. A., Adams J. A. Low-amplitude pulses to the circulation through periodic acceleration induces endothelial-dependent vasodilatation. Journal of Applied Physiology . 2009;106(6):1840–1847. doi: 10.1152/japplphysiol.91612.2008.
    1. Adams J. A., Uryash A., Lopez J. R., Sackner M. A. The endothelium as a therapeutic target in Diabetes: A Narrative Review and Perspective. Frontiers in physiology . 2021;12, article 638491 doi: 10.3389/fphys.2021.638491.
    1. Wu H., Jin Y., Arias J. In vivo upregulation of nitric oxide synthases in healthy rats. Nitric Oxide . 2009;21(1):63–68. doi: 10.1016/j.niox.2009.05.004.
    1. Wu H., Uryash A., Bassuk J., et al. Mechanisms of periodic acceleration induced endothelial nitric oxide synthase (eNOS) expression and upregulation using an in vitro human aortic endothelial cell model. Cardiovascular Engineering and Technology . 2012;3(3):292–301. doi: 10.1007/s13239-012-0096-4.
    1. Lopez J. R. Whole body periodic acceleration improves muscle recovery after eccentric exercise. Medicine and science in sports and exercise . 2016;48(8):1485–1494. doi: 10.1249/MSS.0000000000000932.
    1. Uryash A., Bassuk J., Kurlansky P., Altamirano F., Lopez J. R., Adams J. A. Antioxidant properties of whole body periodic acceleration (pGz) PLoS One . 2015;10(7, article e0131392) doi: 10.1371/journal.pone.0131392.
    1. Reid M. B. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiologica Scandinavica . 1998;162(3):401–409.
    1. Powers S. K., Jackson M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews . 2008;88(4):1243–1276.
    1. Moon Y., Cao Y., Zhu J., et al. GSNOR deficiency enhances in situ skeletal muscle strength, fatigue resistance, and RyR1 S-nitrosylation without impacting mitochondrial content and activity. Antioxidants & Redox Signaling . 2017;26(4):165–181.
    1. Sheffield-Moore M., Wiktorowicz J. E., Soman K. V. Sildenafil increases muscle protein synthesis and reduces muscle fatigue. Clinical and Translational Science . 2013;6(6):463–468. doi: 10.1111/cts.12121.
    1. Kent-Braun J. A., Fitts R. H., Christie A. Skeletal muscle fatigue. Comprehensive Physiology . 2012;2(2):997–1044. doi: 10.1002/cphy.c110029.
    1. Powers S. K., Deminice R., Ozdemir M. Exercise-induced oxidative stress: friend or foe? Journal of Sport and Health Science . 2020;9(5):415–425. doi: 10.1016/j.jshs.2020.04.001.
    1. Reid M. B., Haack K. E., Franchek K. M., Valberg P. A., Kobzik L., West M. S. Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. Journal of Applied Physiology . 1992;73(5):1797–1804. doi: 10.1152/jappl.1992.73.5.1797.
    1. Kobzik L., Reid M. B., Bredt D. S. Nitric oxide in skeletal muscle. Nature . 1994;372(6506):546–548. doi: 10.1038/372546a0.
    1. Altamirano F., Perez C. F., Liu M., et al. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice. PLoS One . 2014;9(9, article e106590) doi: 10.1371/journal.pone.0106590.
    1. Serravite D. H., Perry A., Jacobs K. A., Adams J. A., Harriell K., Signorile J. F. Effect of whole-body periodic acceleration on exercise-induced muscle damage after eccentric exercise. International journal of sports physiology and performance . 2014;9(6):985–992. doi: 10.1123/ijspp.2013-0512.
    1. Uryash A., Wu H., Bassuk J. Preconditioning with periodic acceleration (pGz) provides second window of cardioprotection. Life Sciences . 2012;91(5-6):178–185. doi: 10.1016/j.lfs.2012.06.031.
    1. Pedrinolla A., Magliozzi R., Colosio A. L., et al. Repeated passive mobilization to stimulate vascular function in individuals of advanced age who are chronically bedridden. A randomized controlled trial. The journals of gerontology Series A, Biological sciences and medical sciences . 2021 doi: 10.1093/gerona/glab148.
    1. Trinity J. D., Richardson R. S. Physiological impact and clinical relevance of passive exercise/movement. Sports Medicine . 2019;49(9):1365–1381. doi: 10.1007/s40279-019-01146-1.
    1. Burns K. J., Pollock B. S., Stavres J. Passive limb movement intervals results in repeated hyperemic responses in those with paraplegia. Spinal Cord . 2018;56(10):940–948. doi: 10.1038/s41393-018-0099-6.
    1. Boone-Heinonen J., Evenson K. R., Taber D. R. Walking for prevention of cardiovascular disease in men and women: a systematic review of observational studies. Obesity Reviews . 2009;10(2):204–217. doi: 10.1111/j.1467-789X.2008.00533.x.
    1. Murtagh E. M., Nichols L., Mohammed M. A. The effect of walking on risk factors for cardiovascular disease: an updated systematic review and meta-analysis of randomised control trials. Preventive Medicine . 2015;72:34–43. doi: 10.1016/j.ypmed.2014.12.041.
    1. Omura J. D., Ussery E. N., Loustalot F., Fulton J. E., Carlson S. A. Walking as an opportunity for cardiovascular disease prevention. Preventing Chronic Disease . 2019;16:p. E66. doi: 10.5888/pcd16.180690.
    1. Takashi A. Walking past barriers to physical activity. Journal of Trainology . 2020;9(1):9–10. doi: 10.17338/trainology.9.1_9.
    1. Lee L. L., Mulvaney C. A., Wong Y. K. Y. Walking for hypertension. Cochrane Database of Systematic Reviews . 2021;2021(3) doi: 10.1002/14651858.CD008823.pub2.
    1. Saint-Maurice P. F., Troiano R. P., Bassett D. R., Jr. Association of daily step count and step intensity with mortality among US adults. JAMA . 2020;323(12):1151–1160. doi: 10.1001/jama.2020.1382.
    1. Burtin C., Clerckx B., Robbeets C. Early exercise in critically ill patients enhances short-term functional recovery. Critical Care Medicine . 2009;37(9):2499–2505. doi: 10.1097/CCM.0b013e3181a38937.
    1. Kayambu G., Boots R., Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Medicine . 2015;41(5):865–874. doi: 10.1007/s00134-015-3763-8.
    1. Cortes O. L., Delgado S., Esparza M. Systematic review and meta-analysis of experimental studies: in-hospital mobilization for patients admitted for medical treatment. Journal of Advanced Nursing . 2019;75(9):1823–1837. doi: 10.1111/jan.13958.
    1. Ikeda T., Inoue S., Konta T., et al. Can daily walking alone reduce pneumonia-related mortality among older people? Scientific Reports . 2020;10(1) doi: 10.1038/s41598-020-65440-z.
    1. Adaikina A., Hofman P. L., O'Grady G. L. Exercise training as part of musculoskeletal management for congenital myopathy: where are we now? Pediatric Neurology . 2020;104:13–18. doi: 10.1016/j.pediatrneurol.2019.10.008.
    1. Lopez J. R., Kolster J., Zhang R., Adams J. Increased constitutive nitric oxide production by whole body periodic acceleration ameliorates alterations in cardiomyocytes associated with utrophin/dystrophin deficiency. Journal of Molecular and Cellular Cardiology . 2017;108:149–157.
    1. Warburton D. E. R., Bredin S. S. D. Health benefits of physical activity. Current Opinion in Cardiology . 2017;32(5):541–556. doi: 10.1097/HCO.0000000000000437.
    1. Hall K. S., Hyde E. T., Bassett D. R., et al. Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia. International Journal of Behavioral Nutrition and Physical Activity . 2020;17(1):p. 78. doi: 10.1186/s12966-020-00978-9.

Source: PubMed

3
Abonner