At-Home Transcranial Direct Current Stimulation (tDCS) With Telehealth Support for Symptom Control in Chronically-Ill Patients With Multiple Symptoms

Alexa Riggs, Vaishali Patel, Bhaskar Paneri, Russell K Portenoy, Marom Bikson, Helena Knotkova, Alexa Riggs, Vaishali Patel, Bhaskar Paneri, Russell K Portenoy, Marom Bikson, Helena Knotkova

Abstract

Transcranial direct current stimulation (tDCS) delivered in multiple sessions can reduce symptom burden, but access of chronically ill patients to tDCS studies is constrained by the burden of office-based tDCS administration. Expanded access to this therapy can be accomplished through the development of interventions that allow at-home tDCS applications. Objective: We describe the development and initial feasibility assessment of a novel intervention for the chronically ill that combines at-home tDCS with telehealth support. Methods: In the developmental phase, the tDCS procedure was adjusted for easy application by patients or their informal caregivers at home, and a tDCS protocol with specific elements for enhanced safety and remote adherence monitoring was created. Lay language instructional materials were written and revised based on expert feedback. The materials were loaded onto a tablet allowing for secure video-conferencing. The telehealth tablet was paired with an at-home tDCS device that allowed for remote dose control via electronic codes dispensed to patients prior to each session. tDCS was delivered in two phases: once daily on 10 consecutive days, followed by an as needed regimen for 20 days. Initial feasibility of this tDCS-telehealth system was evaluated in four patients with advanced chronic illness and multiple symptoms. Change in symptom burden and patient satisfaction were assessed with the Condensed Memorial Symptom Assessment Scale (CMSAS) and a tDCS user survey. Results: The telehealth-tDCS protocol includes one home visit and has seven patient-tailored elements and six elements enhancing safety monitoring. Replicable electrode placement at home without 10-20 EEG measurement is achieved via a headband that holds electrodes in a pre-determined position. There were no difficulties with patients' training, protocol adherence, or tolerability. A total of 60 tDCS sessions were applied. No session required discontinuation, and there were no adverse events. Data collection was feasible and there were no missing data. Satisfaction with the tDCS-telehealth procedure was high and the patients were comfortable using the system. Conclusion: At-home tDCS with telehealth support appears to be a feasible approach for the management of symptom burden in patients with chronic illness. Further studies to evaluate and optimize the protocol effectiveness for symptom-control outcomes are warranted.

Keywords: at-home tDCS; chronic illness; home settings; non-invasive brain stimulation; patient-tailored protocol; symptom management; transcranial direct current stimulation.

Figures

FIGURE 1
FIGURE 1
tDCS headgear for the electrode M1-SO montage with the anode over the area of the motor cortex and the cathode over the contralateral supraorbital region. The headgear (A,B) does not require neuronavigational measurements. The center point (blue arrow) supports accurate self-placement by user. The headgear accommodates either conventional saline-soaked electrodes (C) or snap-on pre-moisturized ones (D). Panel AB is courtesy of HK. The person shown has given permission to publish this picture.
FIGURE 2
FIGURE 2
A step-by-step training plan to build patients’ and caregivers’ competency for tDCS applications.
FIGURE 3
FIGURE 3
A snapshot of the tDCS instructional brochure for patients.
FIGURE 4
FIGURE 4
Protocol for tDCS application by chronically ill patients at home. The protocol includes 1 at-home visit and has specific elements that allow for tailoring to the needs and preferences of the patient (T1–T7), as well as elements that support safety and adherence monitoring (C1–C6).
FIGURE 5
FIGURE 5
Results of the tDCS satisfaction survey by the four patients and two co-participating caregivers.

References

    1. Antal A., Paulus W., Nitsche M. A. (2010). “Principle and mechanisms of transcranial direct current stimulation (tDCS),” in , eds Knotkova H., Cruciani R., Merrick J. (New York, NY: Nova; ), 129–142.
    1. Apkarian A. V., Baliki M. N., Farmer M. A. (2013). Predicting transition to chronic pain. 26 360–367. 10.1097/WCO.0b013e32836336ad
    1. Boggio P. S., Rigonatti S. P., Ribeiro R. B., Myczkowski M. L., Nitsche M. A., Pascual-Leone A., et al. (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. 11 249–254. 10.1017/S1461145707007833
    1. Borckardt J. J., Reeves S. T., Robinson S. M., May J. T., Epperson T. I., Gunselman R. J., et al. (2013). Transcranial direct current stimulation (tDCS) reduces postsurgical opioid consumption in total knee arthroplasty (TKA). 29 925–928. 10.1097/AJP.0b013e31827e32be
    1. Borckardt J. J., Romagnuolo J., Reeves S. T., Madan A., Frohman H., Beam W., et al. (2011). Feasibility, safety, and effectiveness of transcranial direct current stimulation for decreasing post-ERCP pain: a randomized, sham-controlled, pilot study. 73 1158–1164. 10.1016/j.gie.2011.01.050
    1. Brunoni A. R., Boggio P. S., De Raedt R., Benseñor I. M., Lotufo P. A., Namur V., et al. (2014). Cognitive control therapy and transcranial direct current stimulation for depression: a randomized, double-blinded, controlled trial. 162 43–49. 10.1016/j.jad.2014.03.026
    1. Brunoni A. R., Valiengo L., Baccaro A., Zanão T. A., de Oliveira J. F., Goulart A., et al. (2013). The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. 70 383–391. 10.1001/2013.jamapsychiatry.32
    1. Centers for Medicare and Medicaid Services (2012). Baltimore, MD: Centers for Medicare and Medicaid Services, 1–30.
    1. Chang V. T., Hwang S. S., Kasimis B., Thaler H. T. (2004). Shorter symptom assessment instruments: the condensed memorial symptom assessment scale (CMSAS). 22 526–536. 10.1081/CNV-200026487
    1. Charvet L. E., Kasschau M., Datta A., Knotkova H., Stevens M. C., Alonzo A., et al. (2015). Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. 17:26. 10.3389/fnsys.2015.00026
    1. Davis K., Yount S., Del Ciello K., Whalen M., Khan S., Bass M., et al. (2007). An innovative symptom monitoring tool for people with advanced lung cancer: a pilot demonstration. 5 381–387.
    1. Fagerlund A. J., Hansen O. A., Aslaksen P. M. (2015). Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial. 156 62–71. 10.1016/j.pain.0000000000000006
    1. Ferrucci R., Vergari M., Cogiamanian F., Bocci T., Ciocca M., Tomasini E., et al. (2014). Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. 34 121–127. 10.3233/NRE-131019
    1. Fregni F., Boggio P. S., Lima M. C., Ferreira M. J., Wagner T., Rigonatti S. P., et al. (2006a). A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. 122 197–209.
    1. Fregni F., Gimenes R., Valle A. C., Ferreira M. J., Rocha R. R., Natalle L., et al. (2006b). A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. 54 3988–3998.
    1. Glaser J., Reeves S. T., Stoll W. D., Epperson T. I., Hilbert M., Madan A., et al. (2016). Motor/Prefrontal transcranial direct current stimulation (tDCS) following lumbar surgery reduces postoperative analgesia use. 41 835–839. 10.1097/BRS.0000000000001525
    1. Grubaugh A. L., Cain G. D., Elhai J. D., Patrick S. L., Frueh B. C. (2008). Attitudes toward medical and mental health care delivered via telehealth applications among rural and urban primary care patients. 196 166–170. 10.1097/NMD.0b013e318162aa2d
    1. Hagenacker T., Bude V., Naegel S., Holle D., Katsarava Z., Diener H. C., et al. (2014). Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. 15:78. 10.1186/1129-2377-15-78
    1. Hasselman D. Center for Health Care Strategies (2013). 1–32. Available at:
    1. Head B. A., Keeney C., Studts J. L., Khayat M., Bumpous J., Pfeifer M. (2011). Feasibility and acceptance of a telehealth intervention to promote symptom management during treatment for head and neck cancer. 9 1–11. 10.1016/j.suponc.2010.12.006
    1. Hemington K. S., Wu Q., Kucyi A., Inman R. D., Davis K. D. (2016). Abnormal cross-network functional connectivity in chronic pain and its association with clinical symptoms. 221 4203–4219. 10.1007/s00429-015-1161-1
    1. Johnston B., Kidd L., Wengstrom Y., Kearney N. (2012). An evaluation of the use of telehealth within palliative care settings across Scotland. 26 152–161. 10.1177/0269216311398698
    1. Kearney N., McCann L., Norrie J., Taylor L., Gray P., McGee-Lennon M., et al. (2009). Evaluation of a mobile phone-based, advanced symptom management system (ASyMS) in the management of chemotherapy-related toxicity. 17 437–444. 10.1007/s00520-008-0515-0
    1. Kim Y. J., Ku J., Kim H. J., Im D. J., Lee H. S., Han K. A., et al. (2013). Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy. 37 766–776. 10.5535/arm.2013.37.6.766
    1. Knotkova H., Leuschner Z., Soto E., Davoudzadeh E., Greenberg A., Cruciani R. (2014a). Evaluating outcomes of transcranial direct current stimulation (tDCS) in patients with chronic neuropathic pain. 15:S69 10.1016/j.jpain.2014.01.284
    1. Knotkova H., Malamud S. C., Cruciani R. A. (2014b). Transcranial direct current stimulation (TDCS) improved cognitive outcomes in a cancer survivor with chemotherapy-induced cognitive difficulties. 7 767–768. 10.1016/j.brs.2014.05.007
    1. Knotkova H., Riggs A., Patel V., Truong D., Arce D., Bernstein H., et al. (2017). A novel approach to determining M1 tDCS montage without neuronavigational measurements, suitable for patients in home settings. 10 78–80. 10.1016/j.brs.2017.04.117
    1. Kroenke K., Theobald D., Wu J., Norton K., Morrison G., Carpenter J., et al. (2010). Effect of telecare management on pain and depression in patients with cancer: a randomized trial. 304 163–171. 10.1001/jama.2010.944
    1. Lefaucheur J. P. (2016). A comprehensive database of published tDCS clinical trials (2005-2016). 46 319–398. 10.1016/j.neucli.2016.10.002
    1. Loo C. K., Alonzo A., Martin D., Mitchell P. B., Galvez V., Sachdev P. (2012). Transcranial direct current stimulation for depression: 3-week, randomized, sham-controlled trial. 200 52–59. 10.1192/bjp.bp.111.097634
    1. Maihöfner C., Handwerker H. O., Neundorfer B., Birklein F. (2003). Patterns of cortical reorganization in complex regional pain syndrome. 61 1715–1717. 10.1212/01.WNL.0000098939.02752.8E
    1. Maihöfner C., Handwerker H. O., Neundorfer B., Birklein F. (2004). Cortical reorganization during recovery from complex regional pain syndrome. 63 693–701. 10.1212/01.WNL.0000134661.46658.B0
    1. Manenti R., Sandrini M., Gobbi E., Cobelli C., Brambilla M., Binetti G., et al. (2017). Strengthening of existing episodic memories through non-invasive stimulation of prefrontal cortex in older adults with subjective memory complaints. 5:401. 10.3389/fnagi.2017.00401
    1. Monte-Silva K., Kuo M. F., Hessenthaler S., Fresnoza S., Liebetanz D., Paulus W., et al. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. 6 424–432. 10.1016/j.brs.2012.04.011
    1. Mori F., Codecà C., Kusayanagi H., Monteleone F., Buttari F., Fiore S., et al. (2010). Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. 11 436–442. 10.1016/j.jpain.2009.08.011
    1. Napadow V., Maeda Y., Audette J., Kettner N. (2012). “Chapter IX Neuroplasticity in carpal tunnel syndrome,” in , eds Knotkova H., Cruciani R., Merrick J. (New York, NY: Nova Science Publishers Inc.), 153–184.
    1. Nitsche M. A., Grundey J., Liebetanz D., Lang N., Tergau F., Paulus W. (2004a). Catecholaminergic consolidation of motor cortical neuroplasticity in humans. 14 1240–1245.
    1. Nitsche M. A., Jaussi W., Liebetanz D., Lang N., Tergau F., Paulus W. (2004b). Consolidation of human motor cortical neuroplasticity by D-cycloserine. 29 1573–1578.
    1. Nitsche M. A., Kuo M. F., Karrasch R., Wächter B., Liebetanz D., Paulus W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. 66 503–508. 10.1016/j.biopsych.2009.03.022
    1. Nitsche M. A., Lampe C., Antal A., Liebetanz D., Lang N., Tergau F., et al. (2006). Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. 23 1651–1657. 10.1111/j.1460-9568.2006.04676.x
    1. Nitsche M. A., Liebetanz D., Antal A., Lang N., Tergau F., Paulus W. (2003). Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. 56 255–276. 10.1016/S1567-424X(09)70230-2
    1. Nitsche M. A., Liebetanz D., Schlitterlau A., Henschke U., Fricke K., Frommann K., et al. (2004c). GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. 19 2720–2726.
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. 527 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Ortman J. M., Velkoff V. A., Hogan H. (2014). Available at:
    1. Polania R., Paulus W., Nitsche M. A. (2011). Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. 33 2499–2508. 10.1002/hbm.21380
    1. Rigonatti S. P., Boggio P. S., Myczkowski M. L., Otta E., Fiquer J. T., Ribeiro R. B., et al. (2008). Transcranial direct stimulation and fluoxetine for the treatment of depression. 23 74–76. 10.1016/j.eurpsy.2007.09.006
    1. Roizenblatt S., Fregni F., Gimenez R., Wetzel T., Rigonatti S. P., Tufik S., et al. (2007). Site-specific effects of transcranial direct current stimulation on sleep and pain in fibromyalgia: a randomized, sham-controlled study. 7 297–306. 10.1111/j.1533-2500.2007.00152.x
    1. Ruland C. M., Maffei R. M., Børøsund E., Krahn A., Andersen T., Grimsbø G. H. (2013). Evaluation of different features of an eHealth application for personalized illness management support: cancer patients’ use and appraisal of usefulness. 82 593–603. 10.1016/j.ijmedinf.2013.02.007
    1. Saiote C., Goldschmidt T., Timäus C., Steenwijk M. D., Opitz A., Antal A., et al. (2014). Impact of transcranial direct current stimulation on fatigue in multiple sclerosis. 32 423–436. 10.3233/RNN-130372
    1. Sandrini M., Brambilla M., Manenti R., Rosini S., Cohen L. G., Cotelli M. (2014). Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. 6:289. 10.3389/fnagi.2014.00289
    1. Schag C. C., Heinrich R. L., Ganz P. A. (1984). Karnofsky performance status revisited: reliability, validity, and guidelines. 2 187–193. 10.1200/JCO.1984.2.3.187
    1. Seibt O., Brunoni A. R., Huang Y., Bikson M. (2015). The pursuit of DLPFC: Non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). 8 590–602. 10.1016/j.brs.2015.01.401
    1. Stagg C., Lin R., Mezue M., Segerdahl A., Kong Y., Xie J., et al. (2013). Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. 33 11425–11431. 10.1523/JNEUROSCI.3887-12.2013
    1. Stefani L. C., Torres I. L., de Souza I. C., Rozisky J. R., Fregni F., Caumo W. (2012). BDNF as an effect modifier for gender effects on pain thresholds in healthy subjects. 514 62–66. 10.1016/j.neulet.2012.02.057
    1. Stock V. M., Knotkova H., Nitsche M. A. (2016). “Principles of neuromodulation,” in , eds Knotkova H., Rasche D. (New York, NY: Springer; ), 3–7.
    1. Valle A., Roizenblatt S., Botte S., Zaghi S., Riberto M., Tufik S., et al. (2009). Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: results of a randomized, sham-controlled longitudinal clinical trial. 2 353–362.
    1. Weaver A., Young A. M., Rowntree J., Townsend N., Pearson S., Smith J., et al. (2007). Application of mobile phone technology for managing chemotherapy-associated side-effects. 18 1887–1892. 10.1093/annonc/mdm354
    1. Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. 127 1031–1048. 10.1016/j.clinph.2015.11.012

Source: PubMed

3
Abonner