Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols

Leigh E Charvet, Margaret Kasschau, Abhishek Datta, Helena Knotkova, Michael C Stevens, Angelo Alonzo, Colleen Loo, Kevin R Krull, Marom Bikson, Leigh E Charvet, Margaret Kasschau, Abhishek Datta, Helena Knotkova, Michael C Stevens, Angelo Alonzo, Colleen Loo, Kevin R Krull, Marom Bikson

Abstract

The effect of transcranial direct current stimulation (tDCS) is cumulative. Treatment protocols typically require multiple consecutive sessions spanning weeks or months. However, traveling to clinic for a tDCS session can present an obstacle to subjects and their caregivers. With modified devices and headgear, tDCS treatment can be administered remotely under clinical supervision, potentially enhancing recruitment, throughput, and convenience. Here we propose standards and protocols for clinical trials utilizing remotely-supervised tDCS with the goal of providing safe, reproducible and well-tolerated stimulation therapy outside of the clinic. The recommendations include: (1) training of staff in tDCS treatment and supervision; (2) assessment of the user's capability to participate in tDCS remotely; (3) ongoing training procedures and materials including assessments of the user and/or caregiver; (4) simple and fail-safe electrode preparation techniques and tDCS headgear; (5) strict dose control for each session; (6) ongoing monitoring to quantify compliance (device preparation, electrode saturation/placement, stimulation protocol), with corresponding corrective steps as required; (7) monitoring for treatment-emergent adverse effects; (8) guidelines for discontinuation of a session and/or study participation including emergency failsafe procedures tailored to the treatment population's level of need. These guidelines are intended to provide a minimal level of methodological rigor for clinical trials seeking to apply tDCS outside a specialized treatment center. We outline indication-specific applications (Attention Deficit Hyperactivity Disorder, Depression, Multiple Sclerosis, Palliative Care) following these recommendations that support a standardized framework for evaluating the tolerability and reproducibility of remote-supervised tDCS that, once established, will allow for translation of tDCS clinical trials to a greater size and range of patient populations.

Keywords: attention deficit hyperactivity disorder; clinical trials; depression; multiple sclerosis; palliative care; tDCS.

Figures

Figure 1
Figure 1
Example of subject checklist.
Figure 2
Figure 2
Guidelines for training.
Figure 3
Figure 3
Example of study flowchart with stop criteria.
Figure 4
Figure 4
Example of hardware-based waveform control. Users are provided with an individual device and accessories such as the 5x-Session Home Kit (A)The subject checks in with the supervisor before and after each session (B). The supervisor unlocks operation before each session by providing a code (B). The subject enters only the code provided with no access to device programming or stimulation settings. The subject uses custom fit headgear to position electrodes (C,D). The device automatically collects compliance data and may also prompt the user for information (E). Details of implementation will be customized to each clinical trial while maintaining the principles of supervised neuromodulation (F, G). (Image courtesy of Soterix Medical Inc.)
Figure 5
Figure 5
Example of software-based waveform control. Users are provided with an individual stimulator, a discharge key, and accessories such as the 5x-Session Home Kit. The supervisor limits stimulation by programming the discharge key. The subject plugs the discharge key into the device and presses a single button to activate stimulation. The subject uses custom fit headgear to position electrodes. The device automatically collects compliance data which is stored in the discharge key. Details of device implementation will be customized to each clinical trial while maintaining the principles of supervised neuromodulation. (Image courtesy of Soterix Medical Inc.)
Figure 6
Figure 6
Guidelines for study equipment.
Figure 7
Figure 7
Guidelines for ongoing assessment.

References

    1. Acler M., Bocci T., Valenti D., Turri M., Priori A., Bertolasi L. (2013). Transcranial direct current stimulation (tDCS) for sleep disturbances and fatigue in patients with post-polio syndrome. Restor. Neurol. Neurosci. 31, 661–668. 10.3233/RNN-130321
    1. Andrade C. (2013). Once- to twice-daily, 3-year domiciliary maintenance transcranial direct current stimulation for severe, disabling, clozapine-refractory continuous auditory hallucinations in schizophrenia. J. ECT 29, 239–242. 10.1097/YCT.0b013e3182843866
    1. Andrews S. C., Hoy K. E., Enticott P. G., Daskalakis Z. J., Fitzgerald P. B. (2011). Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul. 4, 84–89. 10.1016/j.brs.2010.06.004
    1. Arul-Anandam A. P., Loo C. (2009). Transcranial direct current stimulation: a new tool for the treatment of depression? J. Affect. Disord. 117, 137–145. 10.1016/j.jad.2009.01.016
    1. Ball K., Berch D. B., Helmers K. F., Jobe J. B., Leveck M. D., Marsiske M., et al. . (2002). Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA 288, 2271–2281. 10.1001/jama.288.18.2271
    1. Benedict R. H., Amato M. P., Boringa J., Brochet B., Foley F., Fredrikson S., et al. . (2012). Brief International Cognitive Assessment for MS (BICAMS): international standards for validation. BMC Neurol. 12:55. 10.1186/1471-2377-12-55
    1. Bennabi D., Pedron S., Haffen E., Monnin J., Peterschmitt Y., Van Waes V. (2014). Transcranial direct current stimulation for memory enhancement: from clinical research to animal models. Front. Syst. Neurosci. 8:159. 10.3389/fnsys.2014.00159
    1. Bikson M., Bestmann S., Edwards D. (2013). Neuroscience: transcranial devices are not playthings. Nature 501:167. 10.1038/501167b
    1. Brunoni A. R., Boggio P. S., De Raedt R., Benseñor I. M., Lotufo P. A., Namur V., et al. . (2014). Cognitive control therapy and transcranial direct current stimulation for depression: a randomized, double-blinded, controlled trial. J. Affect. Disord. 162, 43–49. 10.1016/j.jad.2014.03.026
    1. Brunoni A. R., Ferrucci R., Fregni F., Boggio P. S., Priori A. (2012a). Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Prog. Neuropsychopharmacol. Biol. Psychiatry 39, 9–16. 10.1016/j.pnpbp.2012.05.016
    1. Brunoni A. R., Nitsche M. A., Bolognini N., Bikson M., Wagner T., Merabet L., et al. . (2012b). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 5, 175–195. 10.1016/j.brs.2011.03.002
    1. Brunoni A. R., Valiengo L., Baccaro A., Zanão T. A., de Oliveira J. F., Goulart A., et al. . (2013a). The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry 70, 383–391. 10.1001/2013.jamapsychiatry.32
    1. Brunoni A. R., Vanderhasselt M. A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 86, 1–9. 10.1016/j.bandc.2014.01.008
    1. Brunoni A. R., Zanao T. A., Ferrucci R., Priori A., Valiengo L., de Oliveira J. F., et al. . (2013b). Bifrontal tDCS prevents implicit learning acquisition in antidepressant-free patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 43, 146–150. 10.1016/j.pnpbp.2012.12.019
    1. Connell T., Fernandez R. S., Tran D., Griffiths R., Harlum J., Agar M. (2013). Quality of life of community-based palliative care clients and their caregivers. Palliat. Support. Care 11, 323–330. 10.1017/s1478951512000260
    1. Cuypers K., Leenus D. J., Van Wijmeersch B., Thijs H., Levin O., Swinnen S. P., et al. . (2013). Anodal tDCS increases corticospinal output and projection strength in multiple sclerosis. Neurosci. Lett. 554, 151–155. 10.1016/j.neulet.2013.09.004
    1. Defilippi K. M., Cameron S. (2010). Expanding the reach of palliative care to community-based home care programs. J. Pain Symptom Manage. 40, 3–5. 10.1016/j.jpainsymman.2010.04.004
    1. Demirtas-Tatlidede A., Vahabzadeh-Hagh A. M., Pascual-Leone A. (2013). Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology 64, 566–578. 10.1016/j.neuropharm.2012.06.020
    1. Ditye T., Jacobson L., Walsh V., Lavidor M. (2012). Modulating behavioral inhibition by tDCS combined with cognitive training. Exp. Brain Res. 219, 363–368. 10.1007/s00221-012-3098-4
    1. Ferrucci R., Vergari M., Cogiamanian F., Bocci T., Ciocca M., Tomasini E., et al. . (2014). Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation 34, 121–127. 10.3233/NRE-131019
    1. Flöel A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 85(Pt. 3), 934–947. 10.1016/j.neuroimage.2013.05.098
    1. Fregni F., Boggio P. S., Lima M. C., Ferreira M. J., Wagner T., Rigonatti S. P., et al. . (2006). A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122, 197–209. 10.1016/j.pain.2006.02.023
    1. Hagenacker T., Bude V., Naegel S., Holle D., Katsarava Z., Diener H. C., et al. . (2014). Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J. Headache Pain 15:78. 10.1186/1129-2377-15-78
    1. Hauser J. M., Kramer B. J. (2004). Family caregivers in palliative care. Clin. Geriatr. Med. 20, 671–688, vi. 10.1016/j.cger.2004.07.003
    1. Holland R., Crinion J. (2012). Can tDCS enhance treatment of aphasia after stroke? Aphasiology 26, 1169–1191. 10.1080/02687038.2011.616925
    1. Kalu U. G., Sexton C. E., Loo C. K., Ebmeier K. P. (2012). Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychol. Med. 42, 1791–1800. 10.1017/s0033291711003059
    1. Kamal A. H., Currow D. C., Ritchie C. S., Bull J., Abernethy A. P. (2013). Community-based palliative care: the natural evolution for palliative care delivery in the U.S. J. Pain Symptom Manage. 46, 254–264. 10.1016/j.jpainsymman.2012.07.018
    1. Kurtzke J. F. (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1452. 10.1212/WNL.33.11.1444
    1. Loo C. K., Alonzo A., Martin D., Mitchell P. B., Galvez V., Sachdev P. (2012). Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br. J. Psychiatry 200, 52–59. 10.1192/bjp.bp.111.097634
    1. Loo C. K., Martin D. M., Alonzo A., Gandevia S., Mitchell P. B., Sachdev P. (2011). Avoiding skin burns with transcranial direct current stimulation: preliminary considerations. Int. J. Neuropsychopharmacol. 14, 425–426. 10.1017/s1461145710001197
    1. Martin D. M., Alonzo A., Ho K. A., Player M., Mitchell P. B., Sachdev P., et al. . (2013a). Continuation transcranial direct current stimulation for the prevention of relapse in major depression. J. Affect. Disord. 144, 274–278. 10.1016/j.jad.2012.10.012
    1. Martin D. M., Liu R., Alonzo A., Green M., Player M., Sachdev P., et al. . (2013b). Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. Int. J. Neuropsychopharmacol. 16, 1927–1936. 10.1017/S1461145713000539
    1. Meesen R. L., Thijs H., Leenus D. J., Cuypers K. (2014). A single session of 1 mA anodal tDCS-supported motor training does not improve motor performance in patients with multiple sclerosis. Restor. Neurol. Neurosci. 32, 293–300. 10.3233/RNN-130348
    1. Mori F., Codecà C., Kusayanagi H., Monteleone F., Buttari F., Fiore S., et al. . (2010). Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J. Pain 11, 436–442. 10.1016/j.jpain.2009.08.011
    1. Mori F., Nicoletti C. G., Kusayanagi H., Foti C., Restivo D. A., Marciani M. G., et al. . (2013). Transcranial direct current stimulation ameliorates tactile sensory deficit in multiple sclerosis. Brain Stimul. 6, 654–659. 10.1016/j.brs.2012.10.003
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. . (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223. 10.1016/j.brs.2008.06.004
    1. Palm U., Ayache S. S., Padberg F., Lefaucheur J. P. (2014). Non-invasive brain stimulation therapy in multiple sclerosis: a review of tDCS, rTMS and ECT results. Brain Stimul. 7, 849–854. 10.1016/j.brs.2014.09.014
    1. Peterchev A. V., Wagner T. A., Miranda P. C., Nitsche M. A., Paulus W., Lisanby S. H., et al. . (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection and reporting practices. Brain Stimul. 5, 435–453. 10.1016/j.brs.2011.10.001
    1. Prehn-Kristensen A., Munz M., Göder R., Wilhelm I., Korr K., Vahl W., et al. . (2014). Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls. Brain Stimul. 7, 793–799. 10.1016/j.brs.2014.07.036
    1. Shiozawa P., Fregni F., Benseñor I. M., Lotufo P. A., Berlim M. T., Daskalakis J. Z., et al. . (2014). Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. Int. J. Neuropsychopharmacol. 17, 1443–1452. 10.1017/S1461145714000418
    1. Tecchio F., Cancelli A., Cottone C., Zito G., Pasqualetti P., Ghazaryan A., et al. . (2014). Multiple sclerosis fatigue relief by bilateral somatosensory cortex neuromodulation. J. Neurol. 261, 1552–1558. 10.1007/s00415-014-7377-9
    1. Valiengo L., Benseñor I. M., Goulart A. C., de Oliveira J. F., Zanao T. A., Boggio P. S., et al. . (2013). The sertraline versus electrical current therapy for treating depression clinical study (select-TDCS): results of the crossover and follow-up phases. Depress. Anxiety 30, 646–653. 10.1002/da.22079
    1. Vanneste S., Plazier M., Ost J., van der Loo E., van de Heyning P., De Ridder D. (2010). Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp. Brain Res. 202, 779–785. 10.1007/s00221-010-2183-9
    1. Vaseghi B., Zoghi M., Jaberzadeh S. (2014). Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clin. Neurophysiol. 125, 1847–1858. 10.1016/j.clinph.2014.01.020

Source: PubMed

3
Abonner