Shared Neural Phenotypes for Mood and Anxiety Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies

Delfina Janiri, Dominik A Moser, Gaelle E Doucet, Maxwell J Luber, Alexander Rasgon, Won Hee Lee, James W Murrough, Gabriele Sani, Simon B Eickhoff, Sophia Frangou, Delfina Janiri, Dominik A Moser, Gaelle E Doucet, Maxwell J Luber, Alexander Rasgon, Won Hee Lee, James W Murrough, Gabriele Sani, Simon B Eickhoff, Sophia Frangou

Abstract

Importance: Major depressive disorder, bipolar disorder, posttraumatic stress disorder, and anxiety disorders are highly comorbid and have shared clinical features. It is not yet known whether their clinical overlap is reflected at the neurobiological level.

Objective: To detect transdiagnostic convergence in abnormalities in task-related brain activation.

Data source: Task-related functional magnetic resonance imaging articles published in PubMed, Web of Science, and Google Scholar during the last decade comparing control individuals with patients with mood, posttraumatic stress, and anxiety disorders were examined.

Study selection: Following Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guidelines, articles were selected if they reported stereotactic coordinates of whole-brain-based activation differences between adult patients and control individuals.

Data extraction and synthesis: Coordinates of case-control differences coded by diagnosis and by cognitive domain based on the research domain criteria were analyzed using activation likelihood estimation.

Main outcomes and measures: Identification of transdiagnostic clusters of aberrant activation and quantification of the contribution of diagnosis and cognitive domain to each cluster.

Results: A total of 367 experiments (major depressive disorder, 149; bipolar disorder, 103; posttraumatic stress disorder, 55; and anxiety disorders, 60) were included comprising observations from 4507 patients and 4755 control individuals. Three right-sided clusters of hypoactivation were identified centered in the inferior prefrontal cortex/insula (volume, 2120 mm3), the inferior parietal lobule (volume, 1224 mm3), and the putamen (volume, 888 mm3); diagnostic differences were noted only in the putamen (χ23 = 8.66; P = .03), where hypoactivation was more likely in bipolar disorder (percentage contribution = 72.17%). Tasks associated with cognitive systems made the largest contribution to each cluster (percentage contributions >29%). Clusters of hyperactivation could only be detected using a less stringent threshold. These were centered in the perigenual/dorsal anterior cingulate cortex (volume, 2208 mm3), the left amygdala/parahippocampal gyrus (volume, 2008 mm3), and the left thalamus (volume, 1904 mm3). No diagnostic differences were observed (χ23 < 3.06; P > .38), while tasks associated with negative valence systems made the largest contribution to each cluster (percentage contributions >49%). All findings were robust to the moderator effects of age, sex, and magnetic field strength of the scanner and medication.

Conclusions and relevance: In mood disorders, posttraumatic stress disorder, and anxiety disorders, the most consistent transdiagnostic abnormalities in task-related brain activity converge in regions that are primarily associated with inhibitory control and salience processing. Targeting these shared neural phenotypes could potentially mitigate the risk of affective morbidity in the general population and improve outcomes in clinical populations.

Conflict of interest statement

Conflict of Interest Disclosures: In the past 5 years, Dr Murrough has provided consultation services to Boehreinger Ingelheim, Sage Therapeutics, FSV7, Novartis, Allergan, Fortress Biotech, Janssen Research and Development, Medavante-Prophase, and Global Medical Education and has received research support from Avanir Pharmaceuticals Inc. Dr Murrough is named on a patent pending for neuropeptide Y as a treatment for mood and anxiety disorders. No other disclosures were reported.

Figures

Figure 1.. Transdiagnostic Clusters of Hypoactivation in…
Figure 1.. Transdiagnostic Clusters of Hypoactivation in Patients Relative to Healthy Individuals
A, Activation likelihood estimation identified 3 transdiagnostic clusters of relative hypoactivation in patients centered on right inferior prefrontal cortex/insula (IFG/INS), the right inferior parietal lobule (IPL), and the right putamen. B, Percentage contribution of each research domain criteria (RDoC) to each cluster. Additional details are in eTable 7 in the Supplement.
Figure 2.. Transdiagnostic Clusters of Hyperactivation in…
Figure 2.. Transdiagnostic Clusters of Hyperactivation in Patients Compared With Healthy Individuals
A, Activation likelihood estimation identified 3 transdiagnostic clusters of hyperactivation in the left amygdala/parahippocampal gyrus (PHG), the left thalamus, and the perigenual/dorsal anterior cingulate cortex (dACC). B, Percentage contribution of each research domain criteria (RDoC) to each cluster. Additional details are in eTable 7 in the Supplement.

References

    1. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):593-602. doi:10.1001/archpsyc.62.6.593
    1. Whiteford HA, Degenhardt L, Rehm J, et al. . Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382(9904):1575-1586. doi:10.1016/S0140-6736(13)61611-6
    1. Wittchen HU, Zhao S, Kessler RC, Eaton WW. DSM-III-R generalized anxiety disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1994;51(5):355-364. doi:10.1001/archpsyc.1994.03950050015002
    1. Kessler RC, Merikangas KR, Wang PS. Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century. Annu Rev Clin Psychol. 2007;3(1):137-158. doi:10.1146/annurev.clinpsy.3.022806.091444
    1. Merikangas KR, Akiskal HS, Angst J, et al. . Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry. 2007;64(5):543-552. doi:10.1001/archpsyc.64.5.543
    1. Beard C, Millner AJ, Forgeard MJC, et al. . Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychol Med. 2016;46(16):3359-3369. doi:10.1017/S0033291716002300
    1. Judd LL, Schettler PJ, Akiskal HS, et al. . Long-term symptomatic status of bipolar I vs bipolar II disorders. Int J Neuropsychopharmacol. 2003;6(2):127-137. doi:10.1017/S1461145703003341
    1. Müller VI, Cieslik EC, Serbanescu I, Laird AR, Fox PT, Eickhoff SB. Altered brain activity in unipolar depression revisited: meta-analyses of neuroimaging studies. JAMA Psychiatry. 2017;74(1):47-55. doi:10.1001/jamapsychiatry.2016.2783
    1. Sprooten E, Rasgon A, Goodman M, et al. . Addressing reverse inference in psychiatric neuroimaging: meta-analyses of task-related brain activation in common mental disorders. Hum Brain Mapp. 2017;38(4):1846-1864. doi:10.1002/hbm.23486
    1. Eickhoff SB, Nichols TE, Laird AR, et al. . Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage. 2016;137:70-85. doi:10.1016/j.neuroimage.2016.04.072
    1. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30(9):2907-2926. doi:10.1002/hbm.20718
    1. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis revisited. Neuroimage. 2012;59(3):2349-2361. doi:10.1016/j.neuroimage.2011.09.017
    1. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P. Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses. Hum Brain Mapp. 2012;33(1):1-13. doi:10.1002/hbm.21186
    1. Insel T, Cuthbert B, Garvey M, et al. . Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748-751. doi:10.1176/appi.ajp.2010.09091379
    1. Etkin A. Functional neuroanatomy of anxiety: a neural circuit perspective. Curr Top Behav Neurosci. 2010;2:251-277. doi:10.1007/7854_2009_5
    1. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003;54(5):515-528. doi:10.1016/S0006-3223(03)00171-9
    1. Pessoa L. Understanding brain networks and brain organization. Phys Life Rev. 2014;11(3):400-435. doi:10.1016/j.plrev.2014.03.005
    1. Price CJ, Friston KJ. Functional ontologies for cognition: the systematic definition of structure and function. Cogn Neuropsychol. 2005;22(3):262-275. doi:10.1080/02643290442000095
    1. Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7(1):1-17. doi:10.3758/CABN.7.1.1
    1. Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):917-932. doi:10.1098/rstb.2007.2097
    1. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004;8(4):170-177. doi:10.1016/j.tics.2004.02.010
    1. Guo Y, Schmitz TW, Mur M, Ferreira CS, Anderson MC. A supramodal role of the basal ganglia in memory and motor inhibition: meta-analytic evidence. Neuropsychologia. 2018;108:117-134. doi:10.1016/j.neuropsychologia.2017.11.033
    1. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5-6):655-667. doi:10.1007/s00429-010-0262-0
    1. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105(34):12569-12574. doi:10.1073/pnas.0800005105
    1. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201-215. doi:10.1038/nrn755
    1. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315(5820):1860-1862. doi:10.1126/science.1138071
    1. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189-195. doi:10.1038/nn1176
    1. Craig AD. How do you feel—now? the anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59-70. doi:10.1038/nrn2555
    1. Bruder GE, Stewart JW, McGrath PJ. Right brain, left brain in depressive disorders: clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neurosci Biobehav Rev. 2017;78:178-191. doi:10.1016/j.neubiorev.2017.04.021
    1. Ochsner KN, Ray RD, Cooper JC, et al. . For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage. 2004;23(2):483-499. doi:10.1016/j.neuroimage.2004.06.030
    1. Goeleven E, De Raedt R, Baert S, Koster EHW. Deficient inhibition of emotional information in depression. J Affect Disord. 2006;93(1-3):149-157. doi:10.1016/j.jad.2006.03.007
    1. Paulus MP. Cognitive control in depression and anxiety: out of control? Curr Opin Behav Sci. 2015;1:113-120. doi:10.1016/j.cobeha.2014.12.003
    1. Charles ST, Piazza JR, Mogle J, Sliwinski MJ, Almeida DM. The wear and tear of daily stressors on mental health. Psychol Sci. 2013;24(5):733-741. doi:10.1177/0956797612462222
    1. Neumann A, van Lier PAC, Frijns T, Meeus W, Koot HM. Emotional dynamics in the development of early adolescent psychopathology: a one-year longitudinal study. J Abnorm Child Psychol. 2011;39(5):657-669. doi:10.1007/s10802-011-9509-3
    1. Zetsche U, Bürkner PC, Schulze L. Shedding light on the association between repetitive negative thinking and deficits in cognitive control: a meta-analysis. Clin Psychol Rev. 2018;63(April):56-65. doi:10.1016/j.cpr.2018.06.001
    1. Bora E, Yucel M, Pantelis C. Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. J Affect Disord. 2009;113(1-2):1-20. doi:10.1016/j.jad.2008.06.009
    1. Bora E, Harrison BJ, Yücel M, Pantelis C. Cognitive impairment in euthymic major depressive disorder: a meta-analysis. Psychol Med. 2013;43(10):2017-2026. doi:10.1017/S0033291712002085
    1. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry. 2017;174(7):676-685. doi:10.1176/appi.ajp.2017.16040400
    1. Caspi A, Houts RM, Belsky DW, et al. . The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin Psychol Sci. 2014;2(2):119-137. doi:10.1177/2167702613497473
    1. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15(2):85-93. doi:10.1016/j.tics.2010.11.004
    1. Markowitsch HJ. Differential contribution of right and left amygdala to affective information processing. Behav Neurol. 1998;11(4):233-244. doi:10.1155/1999/180434
    1. Gianaros PJ, Derbyshire SWG, May JC, Siegle GJ, Gamalo MA, Jennings JR. Anterior cingulate activity correlates with blood pressure during stress. Psychophysiology. 2005;42(6):627-635. doi:10.1111/j.1469-8986.2005.00366.x
    1. Muehlhan M, Lueken U, Siegert J, Wittchen HU, Smolka MN, Kirschbaum C. Enhanced sympathetic arousal in response to FMRI scanning correlates with task induced activations and deactivations. PLoS One. 2013;8(8):e72576. doi:10.1371/journal.pone.0072576
    1. Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML. Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord. 2012;14(4):375-410. doi:10.1111/j.1399-5618.2012.01023.x

Source: PubMed

3
Abonner